51
|
Burke EE, Kodumudi K, Ramamoorthi G, Czerniecki BJ. Vaccine Therapies for Breast Cancer. Surg Oncol Clin N Am 2019; 28:353-367. [DOI: 10.1016/j.soc.2019.02.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
52
|
Trastuzumab deruxtecan (DS-8201a) in patients with advanced HER2-positive breast cancer previously treated with trastuzumab emtansine: a dose-expansion, phase 1 study. Lancet Oncol 2019; 20:816-826. [DOI: 10.1016/s1470-2045(19)30097-x] [Citation(s) in RCA: 169] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 01/25/2019] [Accepted: 01/28/2019] [Indexed: 01/01/2023]
|
53
|
Gene Expression and miRNAs Profiling: Function and Regulation in Human Epidermal Growth Factor Receptor 2 (HER2)-Positive Breast Cancer. Cancers (Basel) 2019; 11:cancers11050646. [PMID: 31083383 PMCID: PMC6562440 DOI: 10.3390/cancers11050646] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 05/06/2019] [Accepted: 05/08/2019] [Indexed: 02/06/2023] Open
Abstract
Breast cancer is the second most common cause of cancer-related deaths among women worldwide. It is a heterogeneous disease with four major molecular subtypes. One of the subtypes, human epidermal growth factor receptor 2 (HER2)-enriched (HER2-positive) is characterized by the absence of estrogen and progesterone receptors and overexpression of HER2 receptor, and accounts for 15–20% of all breast cancers. Despite the anti-HER2 and cytotoxic chemotherapy, HER2 subtype is an aggressive disease with significant mortality. Recent advances in molecular biology techniques, including gene expression profiling, proteomics, and microRNA analysis, have been extensively used to explore the underlying mechanisms behind human breast carcinogenesis and metastasis including HER2-positive breast cancer, paving the way for developing new targeted therapies. This review focuses on recent advances on gene expression and miRNA status in HER2-positive breast cancer.
Collapse
|
54
|
Inoue K, Ninomiya J, Saito T, Okubo K, Nakakuma T, Yamada H, Kimizuka K, Higuchi T. Eribulin, trastuzumab, and pertuzumab as first-line therapy for patients with HER2-positive metastatic breast cancer: a phase II, multicenter, collaborative, open-label, single-arm clinical trial. Invest New Drugs 2019; 37:538-547. [PMID: 30848403 PMCID: PMC6538821 DOI: 10.1007/s10637-019-00755-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 03/01/2019] [Indexed: 01/04/2023]
Abstract
Purpose To examine the efficacy and safety of triple therapy with eribulin, trastuzumab, and pertuzumab in patients with HER2-positive metastatic breast cancer (MBC) who never received any prior therapy in the first-line metastatic/advanced setting. Methods Eribulin 1.4 mg/m2 (days 1 and 8), trastuzumab 8 mg/kg over 90 min and 6 mg/kg over 30 min, and pertuzumab 840 mg/body over 60 min and 420 mg/body over 30 min were administered intravenously in 21-day cycles. Results 25 women (median age, 57 years [range, 41–75 years]) received a median of 10 cycles (range, 0–34 cycles); 24 had performance status (PS) 0, 1 PS 1, 8 stage IV breast cancer, and 17 recurrence. Lung and liver metastases occurred in 9 and 9 patients, respectively. Median time to treatment failure with eribulin was 9.1 months (95% confidence interval [CI], 4.3–13.9 months), and median progression-free survival was 23.1 months (95% CI, 14.4–31.8 months). The overall response rate (complete response [CR] + partial response [PR]) was 80.0% (95% CI, 59.3–93.2%), and the clinical benefit rate (CR + PR + stable disease ≥24 weeks) was 84.0% (95% CI, 63.9–95.5%). The most common treatment-emergent adverse events (TEAEs) were alopecia (92.0%), fatigue (68.0%), and sensory peripheral neuropathy (60.0%). Grade 3/4 TEAEs occurred in 11 patients (44.0%). The only grade 4 TEAE was neutrophil count decreased (16.0%). Neither grade 4 peripheral neuropathy nor febrile neutropenia occurred. Conclusions ETP therapy showed acceptable efficacy and safety and is a potential first-line therapy for patients with HER2-positive MBC.
Collapse
Affiliation(s)
- Kenichi Inoue
- Division of Breast Oncology, Saitama Cancer Center, 780 Komuro, Ina-machi, Kita-adachi-gun, Saitama, 362-0806, Japan.
| | - Jun Ninomiya
- Department of Breast Surgery, Ninomiya Hospital, Soka, Japan
| | - Tsuyoshi Saito
- Department of Breast Surgery, Saitama Red Cross Hospital, Saitama, Japan
| | - Katsuhiko Okubo
- Department of Breast Unit, Toda Central General Hospital, Saitama, Japan
| | - Takashi Nakakuma
- Department of Breast Surgery, Ageo Central General Hospital, Ageo, Japan
| | | | - Kei Kimizuka
- Department of Breast Surgery, Kasukabe Medical Center, Kasukabe, Japan
| | - Tohru Higuchi
- Department of Breast Surgery, Saitama Red Cross Hospital, Saitama, Japan
| | | |
Collapse
|
55
|
Ulm M, Ramesh AV, McNamara KM, Ponnusamy S, Sasano H, Narayanan R. Therapeutic advances in hormone-dependent cancers: focus on prostate, breast and ovarian cancers. Endocr Connect 2019; 8:R10-R26. [PMID: 30640710 PMCID: PMC6365668 DOI: 10.1530/ec-18-0425] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 01/14/2019] [Indexed: 12/17/2022]
Abstract
Hormonal cancers affect over 400,000 men and women and contribute collectively to over 100,000 deaths in the United States alone. Thanks to advances in the understanding of these cancers at the molecular level and to the discovery of several disease-modifying therapeutics, the last decade has seen a plateauing or even a decreasing trend in the number of deaths from these cancers. These advanced therapeutics not only effectively slow the growth of hormonal cancers, but also provide an insight on how these cancers become refractory and evolve as an altogether distinct subset. This review summarizes the current therapeutic trends in hormonal cancers, with focus on prostate, breast and ovarian cancers. The review discusses the clinical drugs being used now, promising molecules that are going through various stages of development and makes some predictions on how the therapeutic landscape will shift in the next decade.
Collapse
Affiliation(s)
- Michael Ulm
- University of Tennessee Health Science Center, Memphis, Tennessee, USA
- West Cancer Center, Memphis, Tennessee, USA
| | | | | | - Suriyan Ponnusamy
- University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | | | - Ramesh Narayanan
- University of Tennessee Health Science Center, Memphis, Tennessee, USA
- West Cancer Center, Memphis, Tennessee, USA
| |
Collapse
|
56
|
Zheng W, Cao L, Ouyang L, Zhang Q, Duan B, Zhou W, Chen S, Peng W, Xie Y, Fan Q, Gong D. Anticancer activity of 1,25-(OH) 2D 3 against human breast cancer cell lines by targeting Ras/MEK/ERK pathway. Onco Targets Ther 2019; 12:721-732. [PMID: 30774359 PMCID: PMC6348968 DOI: 10.2147/ott.s190432] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Purpose Breast cancer is the most common cancer among women with ~1.67 million cases diagnosed annually worldwide, and ~1 in 37 women succumbed to breast cancer. Over the past decades, new therapeutic strategy has substantially improved the curative effect for women with breast cancer. However, the currently available ER-targeted and HER-2-based therapies are not effective for triple-negative breast cancer patients, which account for ~15% of total breast cancer cases. Materials and methods We reported that 1,25-(OH)2D3, a biologically active form of vitamin D3, exhibited a strong anticancer effects on the proliferation, migration, invasion, cell cycle arrest, and apoptosis of both ER-positive (MCF-7) and ER-negative breast cancer cells (MDA-MB-453). Results The anticancer effect of 1,25-(OH)2D3 was more potent compared to the classical chemotherapeutics tamoxifen in MDA-MB-453 cells. Furthermore, we also found that 1,25-(OH)2D3 decreased the expression of Ras and resulted in decrease of the phosphorylation of downstream proteins MEK and ERK1/2, indicating that 1,25-(OH)2D3 plays its anticancer roles through targeting the Ras/MEK/ERK signaling pathway. In addition, Ras overexpression abrogated 1,25-(OH)2D3-induced G0/G1 cell cycle arrest and apoptosis of breast cancer cells, as well as the suppression of proliferation, migration, and invasion. Our study suggested that 1,25-(OH)2D3 suppressed breast cancer tumorigenesis by targeting the Ras/MEK/ERK signaling pathway. Conclusion 1,25-(OH)2D3 might serve as a promising supplement for breast cancer drug therapy, especially for the ER-negative breast cancer and drug-resistant breast cancer.
Collapse
Affiliation(s)
- Wei Zheng
- Department of Thyroid and Breast Surgery, The Third People's Hospital of Shenzhen, Shenzhen, Guangdong 518112, China,
| | - Lin Cao
- Department of Breast Surgery, Maternal and Child Health Care Hospital of Hunan Province, Changsha, Hunan 410008, China
| | - Linna Ouyang
- Department of Thyroid and Breast Surgery, The Third People's Hospital of Shenzhen, Shenzhen, Guangdong 518112, China,
| | - Qian Zhang
- School of Clinical Medicine, Xiangnan University, Chenzhou, Hunan 423000, China
| | - Bofeng Duan
- Department of Thyroid and Breast Surgery, The Third People's Hospital of Shenzhen, Shenzhen, Guangdong 518112, China,
| | - Wei Zhou
- Department of Medical Examination, Zhuzhou Central Hospital, Zhuzhou, Hunan 412007, China
| | - Shan Chen
- Department of General Surgery, The Third Hospital of Changsha, Changsha, Hunan 410013, China
| | - Wei Peng
- Department of Thyroid and Breast Surgery, The Third People's Hospital of Shenzhen, Shenzhen, Guangdong 518112, China,
| | - Yi Xie
- Department of Thyroid and Breast Surgery, The Third People's Hospital of Shenzhen, Shenzhen, Guangdong 518112, China,
| | - Qing Fan
- Department of Gastrointestinal and Breast and Thyroid Surgery, Changsha Hospital of Traditional Chinese Medicine (Changsha Eighth Hospital), Changsha, Hunan 410100, China
| | - Daoxing Gong
- Department of Surgery, The Medical School, University of South China, Hengyang, Hunan 421000, China
| |
Collapse
|
57
|
Jung S, Anusha JR, Park S, Yu KH, Raj CJ, Kim BC. HER2 inhibition efficiency of 6-amino-2-methyl-2-phenethyl-2H-benzopyran and feasibility of the 64Cu-labeled benzopyran derivative in cancer diagnosis. NEW J CHEM 2019. [DOI: 10.1039/c9nj02893e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The benzopyran derivative 6-amino-2-methyl-2-phenethyl-2H-benzopyran inhibits the overexpression of the protein HER2, and the 64Cu-labeled compound is promising for cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Soonjae Jung
- Division of Applied RI
- Korea Institute of Radiological & Medical Sciences
- Seoul-01812
- Republic of Korea
| | - J. R. Anusha
- Department of Chemistry
- Dongguk University
- Seoul-04620
- Republic of Korea
- Department of Advanced Zoology and Biotechnology
| | - Seungil Park
- Department of Chemistry
- Dongguk University
- Seoul-04620
- Republic of Korea
| | - Kook Hyun Yu
- Department of Chemistry
- Dongguk University
- Seoul-04620
- Republic of Korea
| | - C. Justin Raj
- Department of Chemistry
- Dongguk University
- Seoul-04620
- Republic of Korea
| | - Byung Chul Kim
- Department of Printed Electronics Engineering
- Sunchon National University
- 255, Jungang-ro
- Suncheon-si
- Republic of Korea
| |
Collapse
|
58
|
Martínez-Pérez C, Turnbull AK, Dixon JM. The evolving role of receptors as predictive biomarkers for metastatic breast cancer. Expert Rev Anticancer Ther 2018; 19:121-138. [PMID: 30501540 DOI: 10.1080/14737140.2019.1552138] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
INTRODUCTION In breast cancer, estrogen receptor (ER) and human epidermal growth factor receptor 2 (HER2) are essential biomarkers to predict response to endocrine and anti-HER2 therapies, respectively. In metastatic breast cancer, the use of these receptors and targeted therapies present additional challenges: temporal heterogeneity, together with limited sampling methodologies, hinders receptor status assessment, and the constant evolution of the disease invariably leads to resistance to treatment. Areas covered: This review summarizes the genomic abnormalities in ER and HER2, such as mutations, amplifications, translocations, and alternative splicing, emerging as novel biomarkers that provide an insight into underlying mechanisms of resistance and hold potential predictive value to inform treatment selection. We also describe how liquid biopsies for sampling of circulating markers and ultrasensitive detection technologies have emerged which complement ongoing efforts for biomarker discovery and analysis. Expert commentary: While evidence suggests that genomic aberrations in ER and HER2 could contribute to meeting the pressing need for better predictive biomarkers, efforts need to be made to standardize assessment methods and better understand the resistance mechanisms these markers denote. Taking advantage of emerging technologies, research in upcoming years should include prospective trials incorporating these predictors into the study design to validate their potential clinical value.
Collapse
Affiliation(s)
- Carlos Martínez-Pérez
- a Breast Cancer Now Edinburgh Team, Institute of Genetics and Molecular Medicine , University of Edinburgh, Western General Hospital , Edinburgh , UK
| | - Arran K Turnbull
- a Breast Cancer Now Edinburgh Team, Institute of Genetics and Molecular Medicine , University of Edinburgh, Western General Hospital , Edinburgh , UK
| | - J Michael Dixon
- a Breast Cancer Now Edinburgh Team, Institute of Genetics and Molecular Medicine , University of Edinburgh, Western General Hospital , Edinburgh , UK.,b Edinburgh Breast Unit , Western General Hospital , Edinburgh , UK
| |
Collapse
|
59
|
Roskoski R. Small molecule inhibitors targeting the EGFR/ErbB family of protein-tyrosine kinases in human cancers. Pharmacol Res 2018; 139:395-411. [PMID: 30500458 DOI: 10.1016/j.phrs.2018.11.014] [Citation(s) in RCA: 284] [Impact Index Per Article: 47.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 11/07/2018] [Indexed: 02/07/2023]
Abstract
The EGFR family is among the most investigated receptor protein-tyrosine kinase groups owing to its general role in signal transduction and in oncogenesis. This family consists of four members that belong to the ErbB lineage of proteins (ErbB1-4). The ErbB proteins function as homo and heterodimers. These receptors contain an extracellular domain that consists of four parts: domains I and III are leucine-rich segments that participate in growth factor binding (except for ErbB2) and domains II and IV contain multiple disulfide bonds. Moreover, domain II participates in both homo and heterodimer formation within the ErbB/HER family of proteins. Seven ligands bind to EGFR including epidermal growth factor and transforming growth factor-α, none bind to ErbB2, two bind to ErbB3, and seven ligands bind to ErbB4. The extracellular domain is followed by a single transmembrane segment of about 25 amino acid residues and an intracellular portion of about 550 amino acid residues that contains (i) a short juxtamembrane segment, (ii) a protein kinase domain, and (iii) a carboxyterminal tail. ErbB2 lacks a known activating ligand and ErbB3 is kinase impaired. Surprisingly, the ErbB2-ErbB3 heterodimer complex is the most active dimer in the family. These receptors are implicated in the pathogenesis of a large proportion of lung and breast cancers, which rank first and second, respectively, in the incidence of all types of cancers (excluding skin) worldwide. On the order of 20% of non-small cell lung cancers bear activating mutations in EGFR. More than 90% of these patients have exon-19 deletions (746ELREA750) or the exon-21 L858R substitution. Gefitinib and erlotinib are orally effective type I reversible EGFR mutant inhibitors; type I inhibitors bind to an active enzyme conformation. Unfortunately, secondary resistance to these drugs occurs within about one year owing to a T790M gatekeeper mutation. Osimertinib is an irreversible type VI inhibitor that forms a covalent bond with C797 of EGFR and is FDA-approved for the treatment of patients with this mutation; type VI inhibitors generally form a covalent adduct with their target protein. Resistance also develops to this and related type VI inhibitory drugs owing to a C797S mutation; the serine residue is unable to react with the drugs to form a covalent bond. Approximately 20% of breast cancer patients exhibit ErbB2/HER2 gene amplification on chromosome 17q. One of the earliest targeted treatments in cancer involved the development of trastuzumab, a monoclonal antibody that interacts with the extracellular domain ErbB2/HER2 causing its down regulation. Surgery, radiation therapy, chemotherapy with cytotoxic drugs, and hormonal modulation are the mainstays in the treatment of breast cancer. Moreover, lapatinib and neratinib are FDA-approved small molecule ErbB2/HER2 antagonists used in the treatment of selected breast cancer patients. Of the approximate three dozen FDA-approved small molecule protein kinase inhibitors, five are type VI irreversible inhibitors and four of them including afatinib, osimertinib, dacomitinib, and neratinib are directed against the ErbB family of receptors (ibrutinib is the fifth and it targets Bruton tyrosine kinase). Avitinib, olmutinib, and pelitinib are additional type VI inhibitors in clinical trials for non-small cell lung cancer that target EGFR. Secondary resistance to both targeted and cytotoxic drugs is the norm, and devising and implementing strategies for minimizing or overcoming resistance is an important goal in cancer therapeutics.
Collapse
Affiliation(s)
- Robert Roskoski
- Blue Ridge Institute for Medical Research, 3754 Brevard Road, Suite 116, Box 19, Horse Shoe, NC 28742-8814, United States.
| |
Collapse
|
60
|
Chemotherapeutic resistance: a nano-mechanical point of view. Biol Chem 2018; 399:1433-1446. [DOI: 10.1515/hsz-2018-0274] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 07/19/2018] [Indexed: 12/17/2022]
Abstract
AbstractChemotherapeutic resistance is one of the main obstacles for cancer remission. To understand how cancer cells acquire chemotherapeutic resistance, biochemical studies focusing on drug target alteration, altered cell proliferation, and reduced susceptibility to apoptosis were performed. Advances in nano-mechanobiology showed that the enhanced mechanical deformability of cancer cells accompanied by cytoskeletal alteration is a decisive factor for cancer development. Furthermore, atomic force microscopy (AFM)–based nano-mechanical studies showed that chemotherapeutic treatments reinforced the mechanical stiffness of drug-sensitive cancer cells. However, drug-resistant cancer cells did not show such mechanical responses following chemotherapeutic treatments. Interestingly, drug-resistant cancer cells are mechanically heterogeneous, with a subpopulation of resistant cells showing higher stiffness than their drug-sensitive counterparts. The signaling pathways involving Rho, vinculin, and myosin II were found to be responsible for these mechanical alterations in drug-resistant cancer cells. In the present review, we highlight the mechanical aspects of chemotherapeutic resistance, and suggest how mechanical studies can contribute to unravelling the multifaceted nature of chemotherapeutic resistance.
Collapse
|
61
|
Kantidze OL, Velichko AK, Luzhin AV, Petrova NV, Razin SV. Synthetically Lethal Interactions of ATM, ATR, and DNA-PKcs. Trends Cancer 2018; 4:755-768. [PMID: 30352678 DOI: 10.1016/j.trecan.2018.09.007] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 09/10/2018] [Accepted: 09/18/2018] [Indexed: 12/12/2022]
Abstract
Synthetic lethality occurs when simultaneous perturbations of two genes or molecular processes result in a loss of cell viability. The number of known synthetically lethal interactions is growing steadily. We review here synthetically lethal interactions of ataxia-telangiectasia mutated (ATM), ATM- and Rad3-related (ATR), and DNA-dependent protein kinase catalytic subunit (DNA-PKcs). These kinases are appropriate for synthetic lethal therapies because their genes are frequently mutated in cancer, and specific inhibitors are currently in clinical trials. Understanding synthetically lethal interactions of a particular gene or gene family can facilitate predicting new synthetically lethal interactions, therapy toxicity, and mechanisms of resistance, as well as defining the spectrum of tumors amenable to these therapeutic approaches.
Collapse
Affiliation(s)
- Omar L Kantidze
- Institute of Gene Biology Russian Academy of Sciences, Moscow, Russia; LFR2O, Institute Gustave Roussy, Villejuif, France.
| | - Artem K Velichko
- Institute of Gene Biology Russian Academy of Sciences, Moscow, Russia; Institute for Translational Medicine and Biotechnology, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Artem V Luzhin
- Institute of Gene Biology Russian Academy of Sciences, Moscow, Russia
| | | | - Sergey V Razin
- Institute of Gene Biology Russian Academy of Sciences, Moscow, Russia; LFR2O, Institute Gustave Roussy, Villejuif, France; Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
62
|
Jiang N, Lin JJ, Wang J, Zhang BN, Li A, Chen ZY, Guo S, Li BB, Duan YZ, Yan RY, Yan HF, Fu XY, Zhou JL, Yang HM, Cui Y. Novel treatment strategies for patients with HER2-positive breast cancer who do not benefit from current targeted therapy drugs. Exp Ther Med 2018; 16:2183-2192. [PMID: 30186457 PMCID: PMC6122384 DOI: 10.3892/etm.2018.6459] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 06/27/2018] [Indexed: 12/11/2022] Open
Abstract
Human epidermal growth factor receptor-2 positive breast cancer (HER2+ BC) is characterized by a high rate of metastasis and drug resistance. The advent of targeted therapy drugs greatly improves the prognosis of HER2+ BC patients. However, drug resistance or severe side effects have limited the application of targeted therapy drugs. To achieve more effective treatment, considerable research has concentrated on strategies to overcome drug resistance. Abemaciclib (CDK4/6 inhibitor), a new antibody-drug conjugate (ADC), src homology 2 (SH2) containing tyrosine phosphatase-1 (SHP-1) and fatty acid synthase (FASN) have been demonstrated to improve drug resistance. In addition, using an effective vector to accurately deliver drugs to tumors has shown good application prospects. Many studies have also found that natural anti-cancer substances produced effective results during in vitro and in vivo anti-HER2+ BC research. This review aimed to summarize the current status of potential clinical drugs that may benefit HER2+ BC patients in the future.
Collapse
Affiliation(s)
- Nan Jiang
- Department of General Surgery, 306 Hospital of PLA, Beijing 100101, P.R. China
- Department of General Surgery, 306 Teaching Hospital of Peking University Health Science Center, Beijing 100101, P.R. China
| | - Jing-Jing Lin
- Department of General Surgery, 306 Hospital of PLA, Beijing 100101, P.R. China
- Department of General Surgery, 306 Teaching Hospital of Peking University Health Science Center, Beijing 100101, P.R. China
| | - Jun Wang
- Department of Hepatology, 302 Teaching Hospital of Peking University Health Science Center, Beijing 100101, P.R. China
| | - Bei-Ning Zhang
- Department of General Surgery, 306 Hospital of PLA, Beijing 100101, P.R. China
- Department of General Surgery, PLA 306 Clinical Hospital of Anhui Medical University, Beijing 230000, P.R. China
| | - Ao Li
- Department of General Surgery, 306 Hospital of PLA, Beijing 100101, P.R. China
- Department of General Surgery, PLA 306 Clinical Hospital of Anhui Medical University, Beijing 230000, P.R. China
| | - Zheng-Yang Chen
- Department of General Surgery, 306 Hospital of PLA, Beijing 100101, P.R. China
- Department of General Surgery, 306 Teaching Hospital of Peking University Health Science Center, Beijing 100101, P.R. China
| | - Song Guo
- Department of General Surgery, 306 Hospital of PLA, Beijing 100101, P.R. China
- Department of General Surgery, 306 Teaching Hospital of Peking University Health Science Center, Beijing 100101, P.R. China
| | - Bin-Bin Li
- Department of General Surgery, 306 Hospital of PLA, Beijing 100101, P.R. China
- Department of General Surgery, PLA 306 Clinical Hospital of Anhui Medical University, Beijing 230000, P.R. China
| | - Yu-Zhong Duan
- Department of General Surgery, 306 Hospital of PLA, Beijing 100101, P.R. China
| | - Ru-Yi Yan
- Department of General Surgery, PLA 306 Clinical Hospital of Anhui Medical University, Beijing 230000, P.R. China
- Department of Pathology, 306 Hospital of PLA, Beijing 100101, P.R. China
| | - Hong-Feng Yan
- Department of General Surgery, 306 Hospital of PLA, Beijing 100101, P.R. China
| | - Xiao-Yan Fu
- Department of General Surgery, 306 Hospital of PLA, Beijing 100101, P.R. China
| | - Jin-Lian Zhou
- Department of Pathology, 306 Hospital of PLA, Beijing 100101, P.R. China
| | - He-Ming Yang
- Department of General Surgery, 306 Hospital of PLA, Beijing 100101, P.R. China
| | - Yan Cui
- Department of General Surgery, 306 Hospital of PLA, Beijing 100101, P.R. China
| |
Collapse
|