51
|
Stasiłowicz A, Tykarska E, Lewandowska K, Kozak M, Miklaszewski A, Kobus-Cisowska J, Szymanowska D, Plech T, Jenczyk J, Cielecka-Piontek J. Hydroxypropyl-β-cyclodextrin as an effective carrier of curcumin - piperine nutraceutical system with improved enzyme inhibition properties. J Enzyme Inhib Med Chem 2020; 35:1811-1821. [PMID: 32967477 PMCID: PMC7534320 DOI: 10.1080/14756366.2020.1801670] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 07/10/2020] [Accepted: 07/18/2020] [Indexed: 01/10/2023] Open
Abstract
The nutraceutical system of curcumin-piperine in 2-hydroxypropyl-β-cyclodextrin was prepared by using the kneading technique. Interactions between the components of the system were defined by X-ray powder diffraction (XRPD), differential scanning calorimetry (DSC), infrared spectroscopy (FT-IR), nuclear magnetic resonance (NMR). Application of hydroxypropyl-β-cyclodextrin as a carrier-solubiliser improved solubility of the curcumin-piperine system, its permeability through biological membranes (gastrointestinal tract, blood-brain barrier) as well as the antioxidant, antimicrobial and enzyme inhibitory activities against acetylcholinesterase and butyrylcholinesterase.
Collapse
Affiliation(s)
- Anna Stasiłowicz
- Department of Pharmacognosy, Faculty of Pharmacy, Poznan University of Medical Sciences, Poznań, Poland
| | - Ewa Tykarska
- Department of Chemical Technology of Drugs, Poznan University of Medical Sciences, Poznan, Poland
| | - Kornelia Lewandowska
- Department of Molecular Crystals Institute, Molecular Physics Polish Academy Sciences, Poznan, Poland
| | - Maciej Kozak
- Department of Macromolecular Physics, Adam Mickiewicz University in Poznan, Poznan, Poland
| | - Andrzej Miklaszewski
- Division of Functional Nanomaterials, Poznan University of Technology, Poznan, Poland
| | - Joanna Kobus-Cisowska
- Department of Gastronomy Sciences and Functional Foods, Faculty of Food Science and Nutrition, Poznan University of Life Sciences, Poznan, Poland
| | - Daria Szymanowska
- Department of Biotechnology and Food Microbiology, Poznan University of Life Sciences, Poznan, Poland
| | - Tomasz Plech
- Department of Pharmacology, Medical University of Lublin, Lublin, Poland
| | - Jacek Jenczyk
- NanoBioMedical Centre, Adam Mickiewicz University, Poznań, Poland
| | - Judyta Cielecka-Piontek
- Department of Pharmacognosy, Faculty of Pharmacy, Poznan University of Medical Sciences, Poznań, Poland
| |
Collapse
|
52
|
Rawal S, Bora V, Patel B, Patel M. Surface-engineered nanostructured lipid carrier systems for synergistic combination oncotherapy of non-small cell lung cancer. Drug Deliv Transl Res 2020; 11:2030-2051. [PMID: 33215254 DOI: 10.1007/s13346-020-00866-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/07/2020] [Indexed: 12/24/2022]
Abstract
Nanoparticle-aided combination chemotherapy offers several advantages like ratiometric drug delivery, dose reduction, multi-targeted therapy, synergism, and overcoming multi-drug resistance. The current research was instigated to facilitate targeted and ratiometric co-delivery of docetaxel (DT) and curcumin (CR) through the development of folate (FA)-appended nanostructured lipid carriers (NLCs), i.e., FA-DTCR-NLCs to lung cancer cells. The FA-DTCR-NLCs were formulated by employing a scaleable and solvent-free high-pressure homogenization approach. The FA-DTCR-NLCs were evaluated for in vitro and in vivo characteristics using suitable analytical and statistical techniques. The FA-DTCR-NLCs demonstrated physicochemical properties and particokinetics suitable for targeted, ratiometric co-delivery of the anticancer agents. This was further affirmed by significantly better in vivo relative bioavailability of DT (24.85 fold) with FA-DTCR-NLCs as compared with Taxotere® (p < 0.05) and cell line studies. A significant tumor regression was observed from the results of tumor staging in a murine model of lung carcinoma (p < 0.05). Immunostaining of the tumor sections with tumor differentiation biomarkers suggested considerably higher apoptotic, anti-proliferative, anti-angiogenic, and anti-metastatic potential of FA-DTCR-NLCs compared with Taxotere®. In vivo toxicity assessment of the FA-DTCR-NLCs demonstrated a noteworthy reduction in DT associated side effects. The in vitro and in vivo pre-clinical findings prove the therapeutic and safety pre-eminence of FA-DTCR-NLCs for the treatment of NSCLC.
Collapse
Affiliation(s)
- Shruti Rawal
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University, SG Highway Ahmedabad 382481, Gujarat, Chharodi, India
| | - Vivek Bora
- Department of Pharmacology, Institute of Pharmacy, Nirma University, SG Highway Ahmedabad 382481, Gujarat, Chharodi, India
| | - Bhoomika Patel
- Department of Pharmacology, Institute of Pharmacy, Nirma University, SG Highway Ahmedabad 382481, Gujarat, Chharodi, India
| | - Mayur Patel
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University, SG Highway Ahmedabad 382481, Gujarat, Chharodi, India.
| |
Collapse
|
53
|
Abdollahifar MA, Ebrahimi V, Aliaghaei A, Raoofi A, Khosravi A, Hasani A, Mehdizadeh A, Asadi M. Protective effect of curcumin on busulfan-induced renal toxicity in male rats. Ren Fail 2020; 42:969-977. [PMID: 32954910 PMCID: PMC7534388 DOI: 10.1080/0886022x.2020.1818580] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 08/27/2020] [Indexed: 01/15/2023] Open
Abstract
AIM The aim of this study was to evaluate the effects of curcumin in an experimental model of busulfan-induced renal toxicity with emphasis on importance of histological alterations. METHODS In this study, we utilized 32 adult male Wistar rats (250 ± 10 g). All the animals were divided into four experimental groups randomly: (I) Control; (II) Busulfan (40 mg/kg); (III) Olive oil; and (IV) Curcumin (80 mg/kg/day). Finally, the rats were euthanized and kidney tissues were taken for histopathology experiments, serum BUN, and creatinine level, reactive oxygen species (ROS) production and glutathione disulfide (GSH) activity. RESULTS Our result showed that the reduction in body weight and kidney weight in busulfan groups in comparison with the control and curcumin groups. The result in this study also showed that the reduction in BUN, creatinine, and ROS production in curcumin groups in comparison with the busulfan group together with an increasing of GSH activity compared to busulfan induced rats. CONCLUSION Our results of this study indicated that that the reduction in body weight, kidney weight, total volume of kidney, total length of nephron tubules, and numerical density of glomeruli and nephron tubules in busulfan groups in comparison with the control and curcumin groups However, curcumin can be an alternative choice for therapeutically and research purposes in the disturbing kidney after treatment with busulfan.
Collapse
Affiliation(s)
- Mohammad-Amin Abdollahifar
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Vahid Ebrahimi
- Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Abbas Aliaghaei
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amir Raoofi
- Leishmaniasis Research Center, Department of Anatomy, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Amirreza Khosravi
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amirhosein Hasani
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali Mehdizadeh
- Student Research Committee, Department and Faculty of Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Asadi
- Student Research Committee, Department and Faculty of Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
54
|
Babaei F, Nassiri‐Asl M, Hosseinzadeh H. Curcumin (a constituent of turmeric): New treatment option against COVID-19. Food Sci Nutr 2020; 8:5215-5227. [PMID: 33133525 PMCID: PMC7590269 DOI: 10.1002/fsn3.1858] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 08/05/2020] [Accepted: 08/11/2020] [Indexed: 12/13/2022] Open
Abstract
In late December 2019, the outbreak of respiratory illness emerged in Wuhan, China, and spreads worldwide. World Health Organization (WHO) named this disease severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) caused by a new member of beta coronaviruses. Several medications are prescribed to patients, and some clinical trials are underway. Scientists are trying to find a specific drug against this virus. In this review, we summarize the pathogenesis, clinical features, and current treatments of coronavirus disease 2019 (COVID-19). Then, we describe the possible therapeutic effects of curcumin and its molecular mechanism against coronavirus-19. Curcumin, as an active constituent of Curcuma longa (turmeric), has been studied in several experimental and clinical trial studies. Curcumin has some useful clinical effects such as antiviral, antinociceptive, anti-inflammatory, antipyretic, and antifatigue effects that could be effective to manage the symptoms of the infected patient with COVID-19. It has several molecular mechanisms including antioxidant, antiapoptotic, and antifibrotic properties with inhibitory effects on Toll-like receptors, NF-κB, inflammatory cytokines and chemokines, and bradykinin. Scientific evidence suggests that curcumin could have a potential role to treat COVID-19. Thus, the use of curcumin in the clinical trial, as a new treatment option, should be considered.
Collapse
Affiliation(s)
- Fatemeh Babaei
- Department of Clinical BiochemistrySchool of Medicine, Student Research CommitteeShahid Beheshti University of Medical SciencesTehranIran
| | - Marjan Nassiri‐Asl
- Department of Pharmacology and Neurobiology Research CenterSchool of MedicineShahid Beheshti University of Medical SciencesTehranIran
| | - Hossein Hosseinzadeh
- Department of Pharmacodynamics and ToxicologySchool of PharmacyMashhad University of Medical SciencesMashhadIran
- Pharmaceutical Research CenterPharmaceutical Technology InstituteMashhad University of Medical SciencesMashhadIran
| |
Collapse
|
55
|
Andrijauskaite K, Wargovich MJ. Role of natural products in breast cancer related symptomology: Targeting chronic inflammation. Semin Cancer Biol 2020; 80:370-378. [PMID: 32891720 DOI: 10.1016/j.semcancer.2020.08.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 08/03/2020] [Accepted: 08/16/2020] [Indexed: 02/06/2023]
Abstract
Breast cancer is the most common cancer in women worldwide. There have been many advancements in the treatment of breast cancer leading to an increased population of patients living with this disease. Accumulating evidence suggests that cancer diagnosis and aftermath experienced stress could not only affect the quality of life of cancer patients, but it could also influence their disease outcome. The magnitude of stress experienced by breast cancer patients is often compared to the post-traumatic stress disorder-like symptoms suggested to be mediated by the chronic inflammation including NF-κB, AKt, p53 and other inflammatory pathways. Here, we describe the symptomology of PTSD-like symptoms in breast cancer patients and argue that they may in fact be caused by or maintained through aspects of chronic inflammation mediated by the pro-inflammatory markers. Evidence exists that natural products that might attenuate or lessen the effects of chronic inflammation abound in the diet. We summarize some possible agents that might abate the genesis of symptoms experienced by breast cancer patients while mitigating the effect of inflammation.
Collapse
Affiliation(s)
- Kristina Andrijauskaite
- Department of Molecular Medicine, UT Health San Antonio, San Antonio, TX, 78229, United States.
| | - Michael J Wargovich
- Department of Molecular Medicine, UT Health San Antonio, San Antonio, TX, 78229, United States
| |
Collapse
|
56
|
Najafi M, Mortezaee K, Rahimifard M, Farhood B, Haghi-Aminjan H. The role of curcumin/curcuminoids during gastric cancer chemotherapy: A systematic review of non-clinical study. Life Sci 2020; 257:118051. [DOI: 10.1016/j.lfs.2020.118051] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 07/01/2020] [Accepted: 07/01/2020] [Indexed: 02/07/2023]
|
57
|
Bostan M, Petrică-Matei GG, Radu N, Hainarosie R, Stefanescu CD, Diaconu CC, Roman V. The Effect of Resveratrol or Curcumin on Head and Neck Cancer Cells Sensitivity to the Cytotoxic Effects of Cisplatin. Nutrients 2020; 12:nu12092596. [PMID: 32859062 PMCID: PMC7551591 DOI: 10.3390/nu12092596] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/20/2020] [Accepted: 08/21/2020] [Indexed: 12/20/2022] Open
Abstract
Natural compounds can modulate all three major phases of carcinogenesis. The role of the natural compounds such as resveratrol (RSV) and curcumin (CRM) in modulation of anticancer potential of platinum-based drugs (CisPt) is still a topic of considerable debate. In order to enhance head and neck cancer (HNSCC) cells’ sensitivity to the cytotoxic effects of CisPt combined treatments with RSV or CRM were used. The study aim was to evaluate how the RSV or CRM associated to CisPt treatment modulated some cellular processes such as proliferation, P21 gene expression, apoptotic process, and cell cycle development in HNSCC tumor cell line (PE/CA-PJ49) compared to a normal cell line (HUVEC). The results showed that RSV or CRM treatment affected the viability of tumor cells more than normal cells. These natural compounds act against proliferation and sustain the effects of cisplatin by cell cycle arrest, induction of apoptosis and amplification of P21 expression in tumor cells. In conclusion, using RSV or CRM as adjuvants in CisPt therapy might have a beneficial effect by supporting the effects induced by CisPt.
Collapse
Affiliation(s)
- Marinela Bostan
- Center of Immunology, Stefan S. Nicolau’ Institute of Virology, 030304 Bucharest, Romania;
- Department of Immunology, Victor Babeș’ National Institute of Pathology, 050096 Bucharest, Romania
| | | | - Nicoleta Radu
- Department of Biotechnology, University of Agronomic Sciences and Veterinary Medicine of Bucharest, 011464 Βucharest, Romania;
- Biotechnology Department, National Institute for Chemistry and Petrochemistry R&D of Bucharest, 060021 Bucharest, Romania
| | - Razvan Hainarosie
- Otorhinolaryngology and Head and Neck Surgery Department-University of Medicine and Pharmacy “Carol Davila”, 020021 Bucharest, Romania; (R.H.); (C.D.S.)
| | - Cristian Dragos Stefanescu
- Otorhinolaryngology and Head and Neck Surgery Department-University of Medicine and Pharmacy “Carol Davila”, 020021 Bucharest, Romania; (R.H.); (C.D.S.)
| | - Carmen Cristina Diaconu
- Department of Cellular and Molecular Pathology, Stefan S. Nicolau Institute of Virology, 030304 Bucharest, Romania
- Correspondence: (C.C.D.); (V.R.)
| | - Viviana Roman
- Center of Immunology, Stefan S. Nicolau’ Institute of Virology, 030304 Bucharest, Romania;
- Correspondence: (C.C.D.); (V.R.)
| |
Collapse
|
58
|
Algahtani MS, Ahmad MZ, Nourein IH, Ahmad J. Co-Delivery of Imiquimod and Curcumin by Nanoemugel for Improved Topical Delivery and Reduced Psoriasis-Like Skin Lesions. Biomolecules 2020; 10:biom10070968. [PMID: 32605030 PMCID: PMC7407235 DOI: 10.3390/biom10070968] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 06/22/2020] [Accepted: 06/25/2020] [Indexed: 02/06/2023] Open
Abstract
The current investigation aimed to improve the topical efficacy of imiquimod in combination with curcumin using the nanoemulsion-based delivery system through a combinatorial approach. Co-delivery of curcumin acts as an adjuvant therapeutic and to minimize the adverse skin reactions that are frequently associated with the topical therapy of imiquimod for the treatment of cutaneous infections and basal cell carcinomas. The low-energy emulsification method was used for the nano-encapsulation of imiquimod and curcumin in the nanodroplet oil phase, which was stabilized using Tween 20 in an aqueous dispersion system. The weak base property of imiquimod helped to increase its solubility in oleic acid compared with ethyl oleate, which indicates that fatty acids should be preferred as the oil phase for the design of imiquimod-loaded topical nanoemulsion compared with fatty acid esters. The phase diagram method was used to optimize the percentage composition of the nanoemulsion formulation. The mean droplet size of the optimized nanoemulsion was 76.93 nm, with a polydispersity index (PdI) value of 0.121 and zeta potential value of −20.5 mV. The optimized imiquimod-loaded nanoemulsion was uniformly dispersed in carbopol 934 hydrogel to develop into a nanoemulgel delivery system. The imiquimod nanoemulgel exhibited significant improvement (p < 0.05) in skin permeability and deposition profile after topical application. The in vivo effectiveness of the combination of imiquimod and curcumin nanoemulgel was compared to the imiquimod nanoemulgel and imiquimod gel formulation through topical application for ten days in BALB/c mice. The combination of curcumin with imiquimod in the nanoemulgel system prevented the appearance of psoriasis-like symptoms compared with the imiquimod nanoemulgel and imiquimod gel formulation entirely. Further, the imiquimod nanoemulgel as a mono-preparation slowed and reduced the psoriasis-like skin reaction when compared with the conventional imiquimod gel, and that was contributed to by the control release property of the nano-encapsulation approach.
Collapse
Affiliation(s)
- Mohammed S. Algahtani
- Department of Pharmaceutics, College of Pharmacy, Najran University, Najran 11001, Saudi Arabia; (M.S.A.); (M.Z.A.)
| | - Mohammad Zaki Ahmad
- Department of Pharmaceutics, College of Pharmacy, Najran University, Najran 11001, Saudi Arabia; (M.S.A.); (M.Z.A.)
| | - Ihab Hamed Nourein
- Department of Clinical Laboratory (Histopathology and Cytology), College of Applied Medical Sciences, Najran University, Najran 11001, Saudi Arabia;
| | - Javed Ahmad
- Department of Pharmaceutics, College of Pharmacy, Najran University, Najran 11001, Saudi Arabia; (M.S.A.); (M.Z.A.)
- Correspondence: or ; Tel.: +966-17542-8744
| |
Collapse
|
59
|
Gan QX, Wang J, Hu J, Lou GH, Xiong HJ, Peng CY, Huang QW. Modulation of Apoptosis by Plant Polysaccharides for Exerting Anti-Cancer Effects: A Review. Front Pharmacol 2020; 11:792. [PMID: 32536869 PMCID: PMC7267062 DOI: 10.3389/fphar.2020.00792] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 05/13/2020] [Indexed: 12/17/2022] Open
Abstract
Cancer has become a significant public health problem with high disease burden and mortality. At present, radiotherapy and chemotherapy are the main means of treating cancer, but they have shown serious safety problems. The severity of this problem has caused further attention and research on effective and safe cancer treatment methods. Polysaccharides are natural products with anti-cancer activity that are widely present in a lot of plants, and many studies have found that inducing apoptosis of cancer cells is one of their important mechanisms. Therefore, this article reviews the various ways in which plant polysaccharides promote apoptosis of cancer cells. The major apoptotic pathways involved include the mitochondrial pathway, the death receptor pathway, and their upstream signal transduction such as MAPK pathway, PI3K/AKT pathway, and NF-κB pathway. Moreover, the paper has also been focused on the absorption and toxicity of plant polysaccharides with reference to extant literature, making the research more scientific and comprehensive. It is hoped that this review could provide some directions for the future development of plant polysaccharides as anticancer drugs in pharmacological experiments and clinical researches.
Collapse
Affiliation(s)
- Qing-Xia Gan
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jin Wang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ju Hu
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Guan-Hua Lou
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hai-Jun Xiong
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Cheng-Yi Peng
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qin-Wan Huang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
60
|
Ahmad R, Khan MA, Srivastava A, Gupta A, Srivastava A, Jafri TR, Siddiqui Z, Chaubey S, Khan T, Srivastava AK. Anticancer Potential of Dietary Natural Products: A Comprehensive Review. Anticancer Agents Med Chem 2020; 20:122-236. [DOI: 10.2174/1871520619666191015103712] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 06/21/2019] [Accepted: 07/02/2019] [Indexed: 02/07/2023]
Abstract
Nature is a rich source of natural drug-like compounds with minimal side effects. Phytochemicals
better known as “Natural Products” are found abundantly in a number of plants. Since time immemorial, spices
have been widely used in Indian cuisine as flavoring and coloring agents. Most of these spices and condiments
are derived from various biodiversity hotspots in India (which contribute 75% of global spice production) and
form the crux of India’s multidiverse and multicultural cuisine. Apart from their aroma, flavor and taste, these
spices and condiments are known to possess several medicinal properties also. Most of these spices are mentioned
in the Ayurveda, the indigenous system of medicine. The antimicrobial, antioxidant, antiproliferative,
antihypertensive and antidiabetic properties of several of these natural products are well documented in
Ayurveda. These phytoconstituemts are known to act as functional immunoboosters, immunomodulators as well
as anti-inflammatory agents. As anticancer agents, their mechanistic action involves cancer cell death via induction
of apoptosis, necrosis and autophagy. The present review provides a comprehensive and collective update
on the potential of 66 commonly used spices as well as their bioactive constituents as anticancer agents. The
review also provides an in-depth update of all major in vitro, in vivo, clinical and pharmacological studies done
on these spices with special emphasis on the potential of these spices and their bioactive constituents as potential
functional foods for prevention, treatment and management of cancer.
Collapse
Affiliation(s)
- Rumana Ahmad
- Department of Biochemistry, Era’s Lucknow Medical College & Hospital, Era University, Sarfarazganj, Lucknow-226003, UP, India
| | - Mohsin A. Khan
- Chancellor, Era University, Sarfarazganj, Hardoi Road, Lucknow-226003, UP, India
| | - A.N. Srivastava
- Department of Pathology, Era’s Lucknow Medical College & Hospital, Era University, Sarfarazganj, Lucknow-226003, UP, India
| | - Anamika Gupta
- Department of Biochemistry, Era’s Lucknow Medical College & Hospital, Era University, Sarfarazganj, Lucknow-226003, UP, India
| | - Aditi Srivastava
- Department of Biochemistry, Era’s Lucknow Medical College & Hospital, Era University, Sarfarazganj, Lucknow-226003, UP, India
| | - Tanvir R. Jafri
- Department of Biochemistry, Era’s Lucknow Medical College & Hospital, Era University, Sarfarazganj, Lucknow-226003, UP, India
| | - Zainab Siddiqui
- Department of Pathology, Era’s Lucknow Medical College & Hospital, Era University, Sarfarazganj, Lucknow-226003, UP, India
| | - Sunaina Chaubey
- Department of Biochemistry, Era’s Lucknow Medical College & Hospital, Era University, Sarfarazganj, Lucknow-226003, UP, India
| | - Tahmeena Khan
- Department of Chemistry, Integral University, Dasauli, P.O. Bas-ha, Kursi Road, Lucknow 226026, UP, India
| | - Arvind K. Srivastava
- Department of Food and Nutrition, Era University, Sarfarazganj, Lucknow-226003, UP, India
| |
Collapse
|
61
|
Wali AF, Rashid S, Rashid SM, Ansari MA, Khan MR, Haq N, Alhareth DY, Ahmad A, Rehman MU. Naringenin Regulates Doxorubicin-Induced Liver Dysfunction: Impact on Oxidative Stress and Inflammation. PLANTS 2020; 9:plants9040550. [PMID: 32344607 PMCID: PMC7238146 DOI: 10.3390/plants9040550] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 03/29/2020] [Accepted: 04/08/2020] [Indexed: 12/18/2022]
Abstract
Doxorubicin (Dox) is an operational and largely used anticancer drug, used to treat an array of malignancies. Nonetheless, its beneficial use is constrained due to its renal and hepatotoxicity dose dependently. Numerous research findings favor the use of antioxidants may impact Dox-induced liver injury/damage. In the current study, Wistar rats were given naringenin (50 and 100 mg/kg b.wt.) orally for 20 days as prophylactic dose, against the hepatotoxicity induced by single intraperitoneal injection of Dox (20 mg/kg b.wt.). Potency of naringenin against the liver damage caused by Dox was assessed by measuring malonyl aldehyde (MDA) as a by-product of lipid peroxidation, biochemical estimation of antioxidant enzyme system, reactive oxygen species (ROS) level, and inflammatory mediators. Naringenin-attenuated ROS production, ROS-induced lipid peroxidation, and replenished reduced antioxidant armory, namely, catalase (CAT), glutathione reductase (GR), superoxide dismutase (SOD), glutathione peroxidase (GPx), and glutathione (GSH). Naringenin similarly diminished expression of Cox-2 and levels of NF-κB and other inflammatory molecules induced by the Dox treatment. Histology added further evidence to the defensive effects of naringenin on Dox-induced liver damage. The outcomes of the current study reveal that oxidative stress and inflammation are meticulously linked with Dox-triggered damage, and naringenin illustrates the potential effect on Dox-induced hepatotoxicity probably through diminishing the oxidative stress and inflammation.
Collapse
Affiliation(s)
- Adil Farooq Wali
- RAK College of Pharmaceutical Sciences, RAK Medical and Health Sciences University, Ras Al Khaimah 11172, UAE;
| | - Summya Rashid
- Department of Pharmacology & Toxicology, College of Pharmacy Girls Section, Prince Sattam Bin Abdulaziz University, P.O. Box 173, Al-Kharj 11942, Saudi Arabia;
| | - Shahzada Mudasir Rashid
- Division of Veterinary Biochemistry, Faculty of Veterinary Science and Animal Husbandry, SKUAST-Kashmir, Shuhama, J&K 190006, India;
| | - Mushtaq Ahmad Ansari
- Department of Pharmacology & Toxicology, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia; (M.A.A.); (M.R.K.); (D.Y.A.)
| | - Mohammad Rashid Khan
- Department of Pharmacology & Toxicology, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia; (M.A.A.); (M.R.K.); (D.Y.A.)
| | - Nazrul Haq
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia;
| | - Dhafer Yahya Alhareth
- Department of Pharmacology & Toxicology, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia; (M.A.A.); (M.R.K.); (D.Y.A.)
| | - Ajaz Ahmad
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
- Correspondence: (A.A.); (M.U.R.); Tel.: +96-6114670765 (A.A. & M.U.R.)
| | - Muneeb U. Rehman
- Division of Veterinary Biochemistry, Faculty of Veterinary Science and Animal Husbandry, SKUAST-Kashmir, Shuhama, J&K 190006, India;
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
- Correspondence: (A.A.); (M.U.R.); Tel.: +96-6114670765 (A.A. & M.U.R.)
| |
Collapse
|
62
|
Highly Bioavailable Forms of Curcumin and Promising Avenues for Curcumin-Based Research and Application: A Review. Molecules 2020; 25:molecules25061397. [PMID: 32204372 PMCID: PMC7144558 DOI: 10.3390/molecules25061397] [Citation(s) in RCA: 184] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 03/10/2020] [Accepted: 03/16/2020] [Indexed: 01/08/2023] Open
Abstract
Curcumin exerts a wide range of beneficial physiological and pharmacological activities, including antioxidant, anti-amyloid, anti-inflammatory, anti-microbial, anti-neoplastic, immune-modulating, metabolism regulating, anti-depressant, neuroprotective and tissue protective effects. However, its poor solubility and poor absorption in the free form in the gastrointestinal tract and its rapid biotransformation to inactive metabolites greatly limit its utility as a health-promoting agent and dietary supplement. Recent advances in micro- and nano-formulations of curcumin with greatly enhanced absorption resulting in desirable blood levels of the active forms of curcumin now make it possible to address a wide range of potential applications, including pain management, and as tissue protective. Using these forms of highly bioavailable curcumin now enable a broad spectrum of appropriate studies to be conducted. This review discusses the formulations designed to enhance bioavailability, metabolism of curcumin, relationships between solubility and particle size relative to bioavailability, human pharmacokinetic studies involving formulated curcumin products, the widely used but inappropriate practice of hydrolyzing plasma samples for quantification of blood curcumin, current applications of curcumin and its metabolites and promising directions for health maintenance and applications.
Collapse
|
63
|
Hocking A, Tommasi S, Sordillo P, Klebe S. The Safety and Exploration of the Pharmacokinetics of Intrapleural Liposomal Curcumin. Int J Nanomedicine 2020; 15:943-952. [PMID: 32103948 PMCID: PMC7023862 DOI: 10.2147/ijn.s237536] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 01/17/2020] [Indexed: 12/16/2022] Open
Abstract
Background Malignant pleural effusion (MPE) is the accumulation of fluid in the pleural cavity as a result of malignancies affecting the lung, pleura and mediastinal lymph nodes. Curcumin, a compound found in turmeric, has anti-cancer properties that could not only treat MPE accumulation but also reduce cancer burden. To our knowledge, direct administration of curcumin into the pleural cavity has never been reported, neither in animals nor in humans. Purpose To explore the compartmental distribution, targeted pharmacokinetics and the safety profile of liposomal curcumin following intrapleural and intravenous administration. Methods Liposomal curcumin (16 mg/kg) was administered into Fischer 344 rats by either intrapleural injection or intravenous infusion. The concentration of curcumin in plasma and tissues (lung, liver and diaphragm) were measured using ultra-performance liquid chromatography-mass spectrometry (UPLC-MS). Blood and tissues were examined for pathological changes. Results No pleural or lung pathologies were observed following intrapleural liposomal curcumin administration. Total curcumin concentration peaked 1.5 hrs after the administration of intrapleural liposomal curcumin and red blood cell morphology appeared normal. A red blood cells abnormality (echinocytosis) was observed immediately and at 1.5 hrs after intravenous infusion of liposomal curcumin. Conclusion These results indicate that liposomal curcumin is safe when administered directly into the pleural cavity and may represent a viable alternative to intravenous infusion in patients with pleural-based tumors.
Collapse
Affiliation(s)
- Ashleigh Hocking
- Department of Anatomical Pathology, Flinders University, Adelaide, SA, Australia
| | - Sara Tommasi
- Department of Clinical Pharmacology, Flinders University, Adelaide, SA, Australia
| | | | - Sonja Klebe
- Department of Anatomical Pathology, Flinders University, Adelaide, SA, Australia.,Department of Surgical Pathology, SA Health, Flinders Medical Centre, Bedford Park, SA, Australia
| |
Collapse
|
64
|
Moballegh Nasery M, Abadi B, Poormoghadam D, Zarrabi A, Keyhanvar P, Khanbabaei H, Ashrafizadeh M, Mohammadinejad R, Tavakol S, Sethi G. Curcumin Delivery Mediated by Bio-Based Nanoparticles: A Review. Molecules 2020; 25:E689. [PMID: 32041140 PMCID: PMC7037405 DOI: 10.3390/molecules25030689] [Citation(s) in RCA: 140] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 01/29/2020] [Accepted: 02/02/2020] [Indexed: 02/07/2023] Open
Abstract
Todays, nano-pharmaceutics is emerging as an important field of science to develop and improve efficacy of different drugs. Although nutraceuticals are currently being utilized in the prevention and treatment of various chronic diseases such as cancers, a number of them have displayed issues associated with their solubility, bioavailability, and bio-degradability. In the present review, we focus on curcumin, an important and widely used polyphenol, with diverse pharmacological activities such as anti-inflammatory, anti-carcinogenic, anti-viral, etc. Notwithstanding, it also exhibits poor solubility and bioavailability that may compromise its clinical application to a great extent. Therefore, the manipulation and encapsulation of curcumin into a nanocarrier formulation can overcome these major drawbacks and potentially may lead to a far superior therapeutic efficacy. Among different types of nanocarriers, biological and biopolymer carriers have attracted a significant attention due to their pleiotropic features. Thus, in the present review, the potential protective and therapeutic applications of curcumin, as well as different types of bio-nanocarriers, which can be used to deliver curcumin effectively to the different target sites will be discussed.
Collapse
Affiliation(s)
- Mahshid Moballegh Nasery
- Student Research Committee, Kerman University of Medical Sciences, Kerman 7619813159, Iran; (M.M.N.); (B.A.)
- Department of Toxicology & Pharmacology, School of Pharmacy, Kerman University of Medical Sciences, Kerman 7616911319, Iran
- Nanomedicine Research Association (NRA), Universal Scientific Education and Research Network (USERN), Tehran 7616911319, Iran
| | - Banafshe Abadi
- Student Research Committee, Kerman University of Medical Sciences, Kerman 7619813159, Iran; (M.M.N.); (B.A.)
| | - Delaram Poormoghadam
- Department of Medical Nanotechnology, Faculty of Advanced Sciences & Technology, Pharmaceutical Sciences Branch, Islamic Azad University, (IAUPS), Tehran 1916893813, Iran;
| | - Ali Zarrabi
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, Istanbul 34956, Turkey;
| | - Peyman Keyhanvar
- Research Center for Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz 5165665811, Iran;
- Department of Medical Nanotechnology, School of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz 5165665811, Iran
| | - Hashem Khanbabaei
- Medical Physics Department, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz 6135715794, Iran;
| | - Milad Ashrafizadeh
- Department of Basic Science, Faculty of Veterinary Medicine, University of Tabriz, Tabriz 5166616471, Iran;
| | - Reza Mohammadinejad
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman 7616911319, Iran
| | - Shima Tavakol
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran 1449614525, Iran
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
| |
Collapse
|
65
|
Zhou Z, Ni K, Deng H, Chen X. Dancing with reactive oxygen species generation and elimination in nanotheranostics for disease treatment. Adv Drug Deliv Rev 2020; 158:73-90. [PMID: 32526453 DOI: 10.1016/j.addr.2020.06.006] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 06/02/2020] [Accepted: 06/04/2020] [Indexed: 02/08/2023]
Abstract
Reactive oxygen species (ROS) play important roles in cell signaling and tissue homeostasis, in which the level of ROS is critical through the equilibrium between ROS generating and eliminating events. A disruption of the balance leads to disease development either by a surplus or a dearth of ROS, which requires ROS-modulating strategies to overturn the defect for disease treatment. Over the past decade, there have been tremendous advances in nanomedicine centering ROS generation and/or elimination as major mechanisms to treat a variety of diseases. In this review, we will discuss the research achievements on two opposite approaches of ROS-generating and ROS-eliminating strategies for treating cancer and other related diseases. Importantly, we will highlight the conceptual and strategic advances of ROS-mediated immunomodulation, including macrophage polarization, immunogenic cell death and T cell activation, which are currently rising as one of the mainstreams of cancer therapy. At the end, the future challenges and opportunities of mediating ROS-based mechanisms are envisioned. In light of the pleiotropic roles of ROS in different diseases, we hope this review is timely to deliver a clear logic of designing principles on ROS generation and elimination for different disease treatments.
Collapse
|
66
|
Anti-Atherosclerotic and Anti-Inflammatory Effects of Curcumin on Hypercholesterolemic Male Rabbits. Indian J Clin Biochem 2019; 36:74-80. [PMID: 33505130 DOI: 10.1007/s12291-019-00858-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 11/02/2019] [Indexed: 12/18/2022]
Abstract
Curcumin has a potent antioxidant and anti-inflammatory properties that may suppress inflammatory component of atherosclerosis. It has been demonstrated that curcumin derivatives can reduce the formation of arterial fatty streaks in cholesterol-fed rabbits. Therefore in this study we evaluated the protective effects of Curcumin on the progression of atherosclerosis. 20 mature rabbits were included for this study; they were randomly divided into four groups each of 5. Group 1: (normal control) were fed corn pellets diet and tab water, group 2: (high cholesterol diet control) were kept on cholesterol rich diet (2% cholesterol) and tab water. Group 3: (cholesterol and rosuvastatin treated group) were kept on cholesterol rich diet (2% cholesterol) and 2.5 mg/kg/day Rosuvastatin dispersed in DW and given orally, group 4: (cholesterol and curcumin treated group) were kept on cholesterol rich diet (2% cholesterol) and 0.2% curcumin added with corn pellets. The study continued for 12 weeks then assessment of serum level of high sensitive C-reactive protein, ICAM1, VCAM1 and PCSK9 was carried out at the end of the study. Total antioxidant activity of curcumin was also determined. Histopathological examination of aortic tissues for atherosclerotic changes was also carried out. Atherogenic (cholesterol rich diet) induced an increment in serum level of TC, LDL, VLDL and TG with concomitant decrement in serum level of HDL and increased atherogenic index. Treatment with curcumin produced substantial reduction in serum TC, LDL, TG with no effect on HDL level thus decreased atherogenic index. Rabbits treated with curcumin showed a significant reduction in the serum level of high sensitive C-reactive protein, ICAM1, VCAM, PCSK9 serum expression and aortic total antioxidant capacity. Curcumin has a potent anti-inflammatory and anti- oxidant effects against atherosclerosis so exerts a protective role by decreasing lipid oxidation and inflammatory markers.
Collapse
|
67
|
Kong ZL, Kuo HP, Johnson A, Wu LC, Chang KLB. Curcumin-Loaded Mesoporous Silica Nanoparticles Markedly Enhanced Cytotoxicity in Hepatocellular Carcinoma Cells. Int J Mol Sci 2019; 20:ijms20122918. [PMID: 31207976 PMCID: PMC6628080 DOI: 10.3390/ijms20122918] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 06/03/2019] [Accepted: 06/13/2019] [Indexed: 02/07/2023] Open
Abstract
Curcumin, a natural polyphenol extracted from a perennial herb Curcuma longa has been verified for many physiological activities such as anti-oxidant, anti-inflammatory, and anti-tumor properties. The direct use of curcumin cytotoxicity studies are limited due to its unstable chemical structure, low bioavailability, easy oxidation, and degradation by ultraviolet (UV) light etc. Trying to overcome this problem, silica-encapsulated curcumin nanoparticles (SCNP) and chitosan with silica co-encapsulated curcumin nanoparticles (CSCNP) were prepared by silicification and biosilicification methods, respectively, and encapsulated curcumin within it. We investigated the antitumor properties of SCNP and CSCNP on different tumor cell lines. Scanning electron microscopy (SEM) analysis revealed that both SCNP and CSCNP were almost spherical in shape and the average particle size of CSCNP was 75.0 ± 14.62 nm, and SCNP was 61.7 ± 23.04 nm. The results show that CSCNP has more anti-oxidant activity as compared to curcumin and SCNP. The higher cytotoxicity towards different cancerous cell lines was also observed in CSCNP treated tumor cells. It was noted that the SCNP and CSCNP has a high percentage of IC50 values in Hep G2 cells. The encapsulation of curcumin improved instability, antioxidant activity, and antitumor activity. Our results demonstrated that nanoencapsulation of curcumin with silica and chitosan not only increase curcumin stability but also enhance its cytotoxic activity on hepatocellular carcinoma cells. On the basis of these primary studies, the curcumin-loaded nanoparticles appear to be promising as an innovative therapeutic material for the treatment of tumors.
Collapse
Affiliation(s)
- Zwe-Ling Kong
- Department of Food Science, National Taiwan Ocean University, Keelung 20224, Taiwan.
| | - Hsiang-Ping Kuo
- Department of Food Science, National Taiwan Ocean University, Keelung 20224, Taiwan.
| | - Athira Johnson
- Department of Food Science, National Taiwan Ocean University, Keelung 20224, Taiwan.
| | - Li-Cyuan Wu
- Department of Food Science, National Taiwan Ocean University, Keelung 20224, Taiwan.
| | - Ke Liang B Chang
- Department of Food Science, National Taiwan Ocean University, Keelung 20224, Taiwan.
| |
Collapse
|