51
|
Zhang H, Zhou S, Sun M, Hua M, Liu Z, Mu G, Wang Z, Xiang Q, Cui Y. Ferroptosis of Endothelial Cells in Vascular Diseases. Nutrients 2022; 14:4506. [PMID: 36364768 PMCID: PMC9656460 DOI: 10.3390/nu14214506] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/21/2022] [Accepted: 10/23/2022] [Indexed: 08/13/2023] Open
Abstract
Endothelial cells (ECs) line the inner surface of blood vessels and play a substantial role in vascular biology. Endothelial dysfunction (ED) is strongly correlated with the initiation and progression of many vascular diseases. Regulated cell death, such as ferroptosis, is one of the multiple mechanisms that lead to ED. Ferroptosis is an iron-dependent programmed cell death associated with various vascular diseases, such as cardiovascular, cerebrovascular, and pulmonary vascular diseases. This review summarized ferroptosis of ECs in vascular diseases and discussed potential therapeutic strategies for treating ferroptosis of ECs. In addition to lipid peroxidation inhibitors and iron chelators, a growing body of evidence showed that clinical drugs, natural products, and intervention of noncoding RNAs may also inhibit ferroptosis of ECs.
Collapse
Affiliation(s)
- Hanxu Zhang
- Department of Pharmacy, Peking University First Hospital, Beijing 100034, China
- School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Shuang Zhou
- Department of Pharmacy, Peking University First Hospital, Beijing 100034, China
| | - Minxue Sun
- Department of Pharmacy, Peking University First Hospital, Beijing 100034, China
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Manqi Hua
- Department of Pharmacy, Peking University First Hospital, Beijing 100034, China
- School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Zhiyan Liu
- Department of Pharmacy, Peking University First Hospital, Beijing 100034, China
| | - Guangyan Mu
- Department of Pharmacy, Peking University First Hospital, Beijing 100034, China
| | - Zhe Wang
- Department of Pharmacy, Peking University First Hospital, Beijing 100034, China
- School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Qian Xiang
- Department of Pharmacy, Peking University First Hospital, Beijing 100034, China
| | - Yimin Cui
- Department of Pharmacy, Peking University First Hospital, Beijing 100034, China
- School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing 100191, China
- Institute of Clinical Pharmacology, Peking University, Beijing 100191, China
| |
Collapse
|
52
|
Baicalin Modulates Inflammatory Response of Macrophages Activated by LPS via Calcium-CHOP Pathway. Cells 2022; 11:cells11193076. [PMID: 36231038 PMCID: PMC9563021 DOI: 10.3390/cells11193076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/18/2022] [Accepted: 09/27/2022] [Indexed: 11/17/2022] Open
Abstract
Studies on natural products that can alleviate the inflammatory response of macrophages caused by endotoxin (lipopolysaccharide) continue. This study investigated the anti-inflammatory activity of baicalin related to macrophage activation caused by lipopolysaccharide (LPS). Baicalin is a flavone glycoside found in plants such as Scutellaria baicalensis and Scutellaria lateriflora belonging to the genus Scutellaria. The multiplex cytokine assay (MCA), Griess reagent assay, fluo-4 calcium assay, dihydrorhodamine 123 (DHR123) assay, quantitative RT-PCR, and flow cytometry were performed using RAW 264.7 mouse macrophages. The MCA revealed that baicalin significantly decreased the production of interleukin (IL)-6, granulocyte colony-stimulating factor (G-CSF), vascular endothelial growth factor (VEGF), macrophage inflammatory protein (MIP)-1α, MIP-1β, MIP-2, and RANTES in LPS-stimulated RAW 264.7 macrophages at concentrations of 10, 25, and 50 μM. The DHR123 assay showed that baicalin significantly inhibited reactive oxygen species generation in LPS-stimulated RAW 264.7 macrophages. Flow cytometry revealed that baicalin significantly reduced the levels of phosphorylated p38 MAPK and Fas in LPS-stimulated RAW 264.7 macrophages. Baicalin also inhibited the mRNA expression levels of inflammatory genes such as Chop, Fas, Nos2, Ptgs2, Stat1, c-Jun, c-Fos, and At1a. The IC50 values of baicalin for IL-6, TNF-α, G-CSF, VEGF, interferon gamma-induced protein 10 (IP-10), leukemia inhibitory factor (LIF), lipopolysaccharide-induced CXC chemokine (LIX), MIP-1α, MIP-1β, MIP-2, RANTES, nitric oxide, intracellular calcium, and hydrogen peroxide were 591.3, 450, 1719, 27.68, 369.4, 256.6, 230.7, 856.9, 1326, 1524, 378.1, 26.76, 345.1, and 32.95 μM, respectively. Baicalin modulated the inflammatory response of macrophages activated by LPS via the calcium-CHOP pathway.
Collapse
|
53
|
Exploring the Ferroptosis Mechanism of Zhilong Huoxue Tongyu Capsule for the Treatment of Intracerebral Hemorrhage Based on Network Pharmacology and In Vivo Validation. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:5033135. [PMID: 36199551 PMCID: PMC9527400 DOI: 10.1155/2022/5033135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 06/03/2022] [Accepted: 07/01/2022] [Indexed: 11/17/2022]
Abstract
Objective. The purpose of this study is to explore the mechanism of the Zhilong Huoxue Tongyu (ZL) capsule in the treatment of intracerebral hemorrhage (ICH) via targeting ferroptosis based on network pharmacology. Methods. The active ingredients and related key targets of the ZL capsule were screened using the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP). The gene ontology (GO) enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis were also performed. Finally, identified targets were validated in an in-vivo model of ICH. Results. A total of 30 active ingredients and 33 intersecting targets were identified through a TCMSP database search. Ingredients-Targets-Pathways network was constructed to filter out the key targets according to the degree value. TP53 was selected as the key target. The in-vivo validation studies demonstrated that TP53 was down-regulated and GPX4 was upregulated in rats following ZL capsule treatment. Conclusions. It is concluded that the ZL capsule could alleviate ICH in a muti-target and multi-pathway manner. ZL capsule could alleviate ICH by inhibiting ferroptosis, and TP53 is identified to be the potential target. Further research is needed to clarify the detailed anti-ferroptotic mechanism of the ZL capsule.
Collapse
|
54
|
Zheng Y, Li R, Fan X. Targeting Oxidative Stress in Intracerebral Hemorrhage: Prospects of the Natural Products Approach. Antioxidants (Basel) 2022; 11:1811. [PMID: 36139885 PMCID: PMC9495708 DOI: 10.3390/antiox11091811] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/05/2022] [Accepted: 09/06/2022] [Indexed: 11/17/2022] Open
Abstract
Intracerebral hemorrhage (ICH), the second most common subtype of stroke, remains a significant cause of morbidity and mortality worldwide. The pathological mechanism of ICH is very complex, and it has been demonstrated that oxidative stress (OS) plays an important role in the pathogenesis of ICH. Previous studies have shown that OS is a therapeutic target after ICH, and antioxidants have also achieved some benefits in the treatment of ICH. This review aimed to explore the promise of natural products therapy to target OS in ICH. We searched PubMed using the keywords "oxidative stress in intracerebral hemorrhage" and "natural products in intracerebral hemorrhage". Numerous animal and cell studies on ICH have demonstrated the potent antioxidant properties of natural products, including polyphenols and phenolic compounds, terpenoids, alkaloids, etc. In summary, natural products such as antioxidants offer the possibility of treatment of OS after ICH. However, researchers still have a long way to go to apply these natural products for the treatment of ICH more widely in the clinic.
Collapse
Affiliation(s)
| | | | - Xiang Fan
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| |
Collapse
|
55
|
Han J, Luo L, Wang Y, Wu S, Kasim V. Therapeutic potential and molecular mechanisms of salidroside in ischemic diseases. Front Pharmacol 2022; 13:974775. [PMID: 36060000 PMCID: PMC9437267 DOI: 10.3389/fphar.2022.974775] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 07/29/2022] [Indexed: 11/13/2022] Open
Abstract
Rhodiola is an ancient wild plant that grows in rock areas in high-altitude mountains with a widespread habitat in Asia, Europe, and America. From empirical belief to research studies, Rhodiola has undergone a long history of discovery, and has been used as traditional medicine in many countries and regions for treating high-altitude sickness, anoxia, resisting stress or fatigue, and for promoting longevity. Salidroside, a phenylpropanoid glycoside, is the main active component found in all species of Rhodiola. Salidroside could enhance cell survival and angiogenesis while suppressing oxidative stress and inflammation, and thereby has been considered a potential compound for treating ischemia and ischemic injury. In this article, we highlight the recent advances in salidroside in treating ischemic diseases, such as cerebral ischemia, ischemic heart disease, liver ischemia, ischemic acute kidney injury and lower limb ischemia. Furthermore, we also discuss the pharmacological functions and underlying molecular mechanisms. To our knowledge, this review is the first one that covers the protective effects of salidroside on different ischemia-related disease.
Collapse
Affiliation(s)
- Jingxuan Han
- The Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
- State and Local Joint Engineering Laboratory for Vascular Implants, Chongqing, China
| | - Lailiu Luo
- The Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
- State and Local Joint Engineering Laboratory for Vascular Implants, Chongqing, China
| | - Yicheng Wang
- The Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
- State and Local Joint Engineering Laboratory for Vascular Implants, Chongqing, China
| | - Shourong Wu
- The Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
- State and Local Joint Engineering Laboratory for Vascular Implants, Chongqing, China
- The 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing, China
- *Correspondence: Shourong Wu, ; Vivi Kasim,
| | - Vivi Kasim
- The Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
- State and Local Joint Engineering Laboratory for Vascular Implants, Chongqing, China
- The 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing, China
- *Correspondence: Shourong Wu, ; Vivi Kasim,
| |
Collapse
|
56
|
Dexmedetomidine prevents hemorrhagic brain injury by reducing damage induced by ferroptosis in mice. Neurosci Lett 2022; 788:136842. [PMID: 35995304 DOI: 10.1016/j.neulet.2022.136842] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 07/20/2022] [Accepted: 08/14/2022] [Indexed: 11/20/2022]
Abstract
Intracerebral hemorrhage (ICH) is a devastating condition with significant morbidity and mortality for which few effective treatments are clinically available. After ICH, iron overload within the perihaematomal region can induce lethal reactive oxygen species (ROS) production and lipid peroxidation, which contribute to secondary brain injury. An iron-dependent form of non-apoptotic cell death known as ferroptosis was recently identified. Ferroptosis plays an important role in ICH pathology. It is characterized by an accumulation of iron-induced lipid ROS, which leads to intracellular oxidative stress. Dexmedetomidine (DEX), an α2-adrenergic agonist, is widely used for anesthesia, pain control, and intensive care unit sedation. DEX has numerous beneficial activities, including anti-inflammatory, anti-oxidative, and anti-cell death activities. Here, we established a mouse model of ICH using collagenase VII and evaluated the effect of DEX in preventing ICH-induced brain injury. Our study showed that administering DEX reduced the damage induced by ferroptosis after ICH by regulating iron metabolism, amino acid metabolism and lipid peroxidation processes.
Collapse
|
57
|
Dexpramipexole Attenuates White Matter Injury to Facilitate Locomotion and Motor Coordination Recovery via Reducing Ferroptosis after Intracerebral Hemorrhage. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:6160701. [PMID: 35965685 PMCID: PMC9371846 DOI: 10.1155/2022/6160701] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/24/2022] [Accepted: 07/14/2022] [Indexed: 11/20/2022]
Abstract
Deciphering the factors causing damage to white matter fiber bundles and exploring new strategies to alleviate white matter injury (WMI) is a promising treatment to improve neurological impairments after intracerebral hemorrhage (ICH). Ferroptosis usually occurs at perihematomal region and contributes to neuronal death due to reactive oxygen species (ROS) production. Dexpramipexole (DPX) easily crosses the blood brain barrier (BBB) and exerts antioxidative properties by reducing ROS production, while the role of DPX in ferroptosis after ICH remains elusive. Here, our results indicated that ferroptosis played a significant role in WMI resulting from iron and ROS accumulation around hematoma. Further evidence demonstrated that the administration of DPX decreased iron and ROS deposition to inhibit ferroptosis at perihematomal site. With the inhibition of ferroptosis, WMI was alleviated at perihematomal site, thereafter promoting locomotion and motor coordination recovery in mice after ICH. Subsequently, the results showcased that the expression of glutathione peroxidase 4 (GPX4) and ferroptosis suppressing protein 1 (FSP1) was upregulated with the administration of DPX. Collectively, the present study uncovers the underlying mechanism and elucidates the therapeutic effect of DPX on ICH, and even in other central nervous system (CNS) diseases with the presence of ferroptosis.
Collapse
|
58
|
Zhang HY, Lu X, Hao YH, Tang L, He ZY. Oxidized low-density lipoprotein receptor 1: a novel potential therapeutic target for intracerebral hemorrhage. Neural Regen Res 2022; 17:1795-1801. [PMID: 35017440 PMCID: PMC8820711 DOI: 10.4103/1673-5374.332157] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 09/09/2021] [Accepted: 11/03/2021] [Indexed: 11/04/2022] Open
Abstract
Oxidized low-density lipoprotein receptor 1 (OLR1) is upregulated in neurons and participates in hypertension-induced neuronal apoptosis. OLR1 deletion exerts protective effects on cerebral damage induced by hypertensive-induced stroke. Therefore, OLR1 is likely involved in the progress of intracerebral hemorrhage. In this study, we examined the potential role of OLR1 in intracerebral hemorrhage using a rat model. OLR1 small interfering RNA (10 μL; 50 pmol/μL) was injected into the right basal ganglia to knock down OLR1. Twenty-four hours later, 0.5 U collagenase type VII was injected to induce intracerebral hemorrhage. We found that knockdown of OLR1 attenuated neurological behavior impairment in rats with intracerebral hemorrhage and reduced hematoma, neuron loss, inflammatory reaction, and oxidative stress in rat brain tissue. We also found that silencing of OLR1 suppressed ferroptosis induced by intracerebral hemorrhage and the p38 signaling pathway. Therefore, silencing OLR1 exhibits protective effects against secondary injury of intracerebral hemorrhage. These findings suggest that OLR1 may be a novel potential therapeutic target for intracerebral hemorrhage.
Collapse
Affiliation(s)
- Hui-Yuan Zhang
- Department of Neurology, The First Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Xi Lu
- Department of Neurology, The First Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Yue-Han Hao
- Department of Neurology, The First Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Ling Tang
- Department of Neurology, The First Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Zhi-Yi He
- Department of Neurology, The First Hospital of China Medical University, Shenyang, Liaoning Province, China
| |
Collapse
|
59
|
Activation of SIRT1 Alleviates Ferroptosis in the Early Brain Injury after Subarachnoid Hemorrhage. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:9069825. [PMID: 35855863 PMCID: PMC9288286 DOI: 10.1155/2022/9069825] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 06/13/2022] [Accepted: 06/18/2022] [Indexed: 12/24/2022]
Abstract
Ferroptosis is a regulated cell death that characterizes the lethal lipid peroxidation and iron overload, which may contribute to early brain injury (EBI) pathogenesis after subarachnoid hemorrhage (SAH). Although Sirtuin 1 (SIRT1), a class III histone deacetylase, has been proved to have endogenous neuroprotective effects on the EBI following SAH, the role of SIRT1 in ferroptosis has not been studied. Hence, we designed the current study to determine the role of ferroptosis in the EBI and explore the correlation between SIRT1 and ferroptosis after SAH. The pathways of ferroptosis were examined after experimental SAH in vivo (prechiasmatic cistern injection mouse model) and in HT-22 cells stimulated by oxyhemoglobin (oxyHb) in vitro. Then, ferrostatin-1 (Fer-1) was used further to determine the role of ferroptosis in EBI. Finally, we explored the correlation between SIRT1 and ferroptosis via regulating the expression of SIRT1 by resveratrol (RSV) and selisistat (SEL). Our results showed that ferroptosis was involved in the pathogenesis of EBI after SAH through multiple pathways, including acyl-CoA synthetase long-chain family member 4 (ACSL4) activation, iron metabolism disturbance, and the downregulation of glutathione peroxidase 4 (GPX4) and ferroptosis suppressor protein 1 (FSP1). Inhibition of ferroptosis by Fer-1 significantly alleviated oxidative stress-mediated brain injury. SIRT1 activation could suppress SAH-induced ferroptosis by upregulating the expression of GPX4 and FSP1. Therefore, ferroptosis could be a potential therapeutic target for SAH, and SIRT1 activation is a promising method to inhibit ferroptosis.
Collapse
|
60
|
Ferroptosis and Its Role in Chronic Diseases. Cells 2022; 11:cells11132040. [PMID: 35805124 PMCID: PMC9265893 DOI: 10.3390/cells11132040] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/23/2022] [Accepted: 06/25/2022] [Indexed: 02/04/2023] Open
Abstract
Ferroptosis, which has been widely associated with many diseases, is an iron-dependent regulated cell death characterized by intracellular lipid peroxide accumulation. It exhibits morphological, biochemical, and genetic characteristics that are unique in comparison to other types of cell death. The course of ferroptosis can be accurately regulated by the metabolism of iron, lipids, amino acids, and various signal pathways. In this review, we summarize the basic characteristics of ferroptosis, its regulation, as well as the relationship between ferroptosis and chronic diseases such as cancer, nervous system diseases, metabolic diseases, and inflammatory bowel diseases. Finally, we describe the regulatory effects of food-borne active ingredients on ferroptosis.
Collapse
|
61
|
Zhang L, Wang X, Che W, Yi Y, Zhou S, Feng Y. Methyltransferase-like 3 silenced inhibited the ferroptosis development via regulating the glutathione peroxidase 4 levels in the intracerebral hemorrhage progression. Bioengineered 2022; 13:14215-14226. [PMID: 35758287 PMCID: PMC9342256 DOI: 10.1080/21655979.2022.2084494] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
This study examined the effects of methyltransferase-like 3 (METTL3) on ferroptosis during intracerebral hemorrhage (ICH) progression. The brain microvascular endothelial cells (BMVECs) were stimulated with oxygen and glucose deprivation (OGD) and hemin to establish an ICH model. Cell viability was tested using a CCK8 assay. The levels of Fe2+, glutathione, reactive oxygen species, LPO, and MDA were determined using the corresponding commercial kits. Cell death was analyzed using TUNEL and propidium iodide staining. The correlation between METTL3 and glutathione peroxidase 4 (GPX4) was analyzed using Spearman’s correlation test and further confirmed using the CHIP assay. Western blotting and RT-qPCR were performed to measure the relative expression levels. Mice were injected with 0.2 units collagenase IV to establish an ICH model in vivo. We found that the Fe2+, reactive oxygen species, LPO, and MDA levels were enhanced, and glutathione was depleted in OGD/H-treated BMVECs as well as in ICH mice. Additionally, cell viability and SLC7A11 protein levels decreased, and cell death and TFR1 protein levels increased in OGD/H-treated BMVECs. METTL3 silencing relieves OGD/H-induced injury in BMVECs. In addition, METTL3 was significantly negatively related to GPX4, which was further confirmed by the CHIP assay. Silencing of METTL3 decreased the N6-methyladenosine levels of GPX4 and increased its mRNA levels of GPX4. GPX4 knockdown neutralized the role of METTL3 in OGD/H-treated BMVECs. These results implied that ferroptosis occurred in the ODG/H-treated BMVECs and ICH mouse models. METTL3 silencing effectively suppressed ferroptosis by regulating N6-methyladenosine and mRNA levels of GPX4.
Collapse
Affiliation(s)
- Liu Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Xiangyu Wang
- Department of Neurosurgery, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Wenqiang Che
- Department of Neurosurgery, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Yongjun Yi
- Department of Neurosurgery, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Shuoming Zhou
- Department of Neurosurgery, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Yongjian Feng
- Department of Neurosurgery, The First Affiliated Hospital of Jinan University, Guangzhou, China
| |
Collapse
|
62
|
Huang YT, Liang QQ, Zhang HR, Chen SY, Xu LH, Zeng B, Xu R, Shi FL, Ouyang DY, Zha QB, He XH. Baicalin inhibits necroptosis by decreasing oligomerization of phosphorylated MLKL and mitigates caerulein-induced acute pancreatitis in mice. Int Immunopharmacol 2022; 108:108885. [PMID: 35623294 DOI: 10.1016/j.intimp.2022.108885] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 05/17/2022] [Accepted: 05/18/2022] [Indexed: 11/05/2022]
Abstract
Necroptosis is a form of regulated necrosis mainly controlled by receptor-interacting protein kinases 3 (RIPK3) and mixed lineage kinase domain-like protein (MLKL). Necroptosis has important roles in defensing against pathogenic infections, but it is also implicated in various inflammatory diseases including pancreatitis. Baicalin, a flavonoid from Scutellaria baicalensis Georgi, has been shown to possess anti-inflammatory and anti-pyroptosis properties, yet it is unclear whether baicalin can inhibit necroptosis and confer protection against necroptosis-related diseases. Here we reported that baicalin significantly inhibited necroptosis in macrophages induced by lipopolysaccharide plus pan-caspase inhibitor (IDN-6556), or by tumor-necrosis factor-α in combination with LCL-161 (Smac mimetic) and IDN-6556 (TSI). Mechanistically, baicalin did not inhibit the phosphorylation of RIPK1, RIPK3 and MLKL, nor membrane translocation of p-MLKL, during necroptotic induction, but instead inhibited p-MLKL oligomerization that is required for executing necroptosis. As intracellular reactive oxygen species (ROS) has been reported to be involved in p-MLKL oligomerization, we assessed the effects of N-acetyl-L-cysteine (NAC), an ROS scavenger, on necroptosis and found that NAC significantly attenuated TSI-induced necroptosis and intracellular ROS production concomitantly with reduced levels of oligomerized p-MLKL, mirroring the effect of baicalin. Indeed, inhibitory effect of baicalin was associated with reduced TSI-induced superoxide (indicating mitochondrial ROS) production and increased mitochondrial membrane potential within cells during necroptosis. Besides, oral administration of baicalin significantly reduced the severity of caerulein-induced acute pancreatitis in mice, an animal model of necroptosis-related disease. Collectively, baicalin can inhibit necroptosis through attenuating p-MLKL oligomerization and confers protection against caerulein-induced pancreatitis in mice.
Collapse
Affiliation(s)
- Yuan-Ting Huang
- Department of Immunobiology, College of Life Science and Technology, Jinan University, Guangzhou 510632, China; Department of Clinical Laboratory, The Fifth Affiliated Hospital of Jinan University, Heyuan 517000, China
| | - Qi-Qi Liang
- Department of Immunobiology, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Hong-Rui Zhang
- Department of Immunobiology, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Si-Yuan Chen
- Department of Immunobiology, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Li-Hui Xu
- Department of Cell Biology, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Bo Zeng
- Department of Immunobiology, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Rong Xu
- Department of Immunobiology, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Fu-Li Shi
- Department of Immunobiology, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Dong-Yun Ouyang
- Department of Immunobiology, College of Life Science and Technology, Jinan University, Guangzhou 510632, China.
| | - Qing-Bing Zha
- Department of Clinical Laboratory, The Fifth Affiliated Hospital of Jinan University, Heyuan 517000, China; Department of Fetal Medicine, The First Affiliated Hospital of Jinan University, Guangzhou 510632, China.
| | - Xian-Hui He
- Department of Immunobiology, College of Life Science and Technology, Jinan University, Guangzhou 510632, China; Department of Clinical Laboratory, The Fifth Affiliated Hospital of Jinan University, Heyuan 517000, China.
| |
Collapse
|
63
|
Duan C, Wang H, Jiao D, Geng Y, Wu Q, Yan H, Li C. Curcumin Restrains Oxidative Stress of After Intracerebral Hemorrhage in Rat by Activating the Nrf2/HO-1 Pathway. Front Pharmacol 2022; 13:889226. [PMID: 35571134 PMCID: PMC9092178 DOI: 10.3389/fphar.2022.889226] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 03/28/2022] [Indexed: 12/13/2022] Open
Abstract
Intracerebral hemorrhage (ICH), a severe hemorrhagic stroke, induces cerebral oxidative stress and severe secondary neurological injury. Curcumin was demonstrated to inhibit oxidative stress in the brain after ICH. However, the pharmacological mechanism needs further research. We used an intrastriatal injection of autologous blood to make the rat ICH model, and then the rat was treated with curcumin (100 mg/kg/day). Modified Neurological Severity Score (mNSS) and corner test results showed that curcumin could significantly promote the neurological recovery of ICH rats. Meanwhile, curcumin could substantially reduce ROS and MDA in the tissues around intracranial hematoma and prevent GSH depletion. To explore the pharmacological molecular mechanism of curcumin, we used HAPI cells and primary rat cortical microglia for in vitro experiments. In vitro, heme-treated cells were used as the cell model of ICH to explore the molecular mechanism of inhibiting oxidative stress by curcumin treatment. The results showed that curcumin significantly inhibited heme-induced oxidative stress, decreased intracellular ROS and MDA, and promoted Nrf2 and its downstream antioxidant gene (HO-1, NQO1, and Gpx4) expression. These results suggest that curcumin inhibits oxidative stress by activating the Nrf2/HO-1 pathway. Here, our results indicate that curcumin can promote the inhibition of oxidative stress in microglia by activating the Nrf2/HO-1 pathway and promoting neurological recovery after ICH, providing a new therapeutic target for clinical treatment of ICH.
Collapse
Affiliation(s)
- Chenyang Duan
- Affiliated Hospital of Hebei University, Baoding, China.,Hebei University, Baoding, China
| | - Hanbin Wang
- Affiliated Hospital of Hebei University, Baoding, China.,Hebei University, Baoding, China
| | - Dian Jiao
- Tianjin University, Tianjin, China.,Tianjin Huanhu Hospital, Tianjin University, Tianjin, China
| | - Yanqin Geng
- Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative Diseases, Tianjin Neurosurgical Institute, Tianjin Huanhu Hospital, Tianjin, China.,School of Medicine, Nankai University, Tianjin, China
| | - Qiaoli Wu
- Tianjin Huanhu Hospital, Tianjin University, Tianjin, China.,Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative Diseases, Tianjin Neurosurgical Institute, Tianjin Huanhu Hospital, Tianjin, China
| | - Hua Yan
- Tianjin Huanhu Hospital, Tianjin University, Tianjin, China.,Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative Diseases, Tianjin Neurosurgical Institute, Tianjin Huanhu Hospital, Tianjin, China
| | - Chunhui Li
- Affiliated Hospital of Hebei University, Baoding, China.,Hebei University, Baoding, China
| |
Collapse
|
64
|
Ou M, Jiang Y, Ji Y, Zhou Q, Du Z, Zhu H, Zhou Z. Role and Mechanism of Ferroptosis in Neurological Diseases. Mol Metab 2022; 61:101502. [PMID: 35447365 PMCID: PMC9170779 DOI: 10.1016/j.molmet.2022.101502] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/14/2022] [Accepted: 04/15/2022] [Indexed: 02/08/2023] Open
Abstract
Background Ferroptosis, as a new form of cell death, is different from other cell deaths such as autophagy or senescence. Ferroptosis involves in the pathophysiological progress of several diseases, including cancers, cardiovascular diseases, nervous system diseases, and kidney damage. Since oxidative stress and iron deposition are the broad pathological features of neurological diseases, the role of ferroptosis in neurological diseases has been widely explored. Scope of review Ferroptosis is mainly characterized by changes in iron homeostasis, iron-dependent lipid peroxidation, and glutamate toxicity accumulation, of which can be specifically reversed by ferroptosis inducers or inhibitors. The ferroptosis is mainly regulated by the metabolism of iron, lipids and amino acids through System Xc−, voltage-dependent anion channels, p53, p62-Keap1-Nrf2, mevalonate and other pathways. This review also focus on the regulatory pathways of ferroptosis and its research progress in neurological diseases. Major conclusions The current researches of ferroptosis in neurological diseases mostly focus on the key pathways of ferroptosis. At the same time, ferroptosis was found playing a bidirectional regulation role in neurological diseases. Therefore, the specific regulatory mechanisms of ferroptosis in neurological diseases still need to be further explored to provide new perspectives for the application of ferroptosis in the treatment of neurological diseases.
Collapse
Affiliation(s)
- Mengmeng Ou
- The affiliated Wuxi Mental Health Center of JiangNan University, Wuxi Tongren International Rehabilitation Hospital, Wuxi, Jiangsu, 214151, China
| | - Ying Jiang
- The affiliated Wuxi Mental Health Center of JiangNan University, Wuxi Tongren International Rehabilitation Hospital, Wuxi, Jiangsu, 214151, China
| | - Yingying Ji
- The affiliated Wuxi Mental Health Center of JiangNan University, Wuxi Tongren International Rehabilitation Hospital, Wuxi, Jiangsu, 214151, China
| | - Qin Zhou
- The affiliated Wuxi Mental Health Center of JiangNan University, Wuxi Tongren International Rehabilitation Hospital, Wuxi, Jiangsu, 214151, China
| | - Zhiqiang Du
- The affiliated Wuxi Mental Health Center of JiangNan University, Wuxi Tongren International Rehabilitation Hospital, Wuxi, Jiangsu, 214151, China
| | - Haohao Zhu
- The affiliated Wuxi Mental Health Center of JiangNan University, Wuxi Tongren International Rehabilitation Hospital, Wuxi, Jiangsu, 214151, China.
| | - Zhenhe Zhou
- The affiliated Wuxi Mental Health Center of JiangNan University, Wuxi Tongren International Rehabilitation Hospital, Wuxi, Jiangsu, 214151, China.
| |
Collapse
|
65
|
Fang XL, Ding SY, Du XZ, Wang JH, Li XL. Ferroptosis—A Novel Mechanism With Multifaceted Actions on Stroke. Front Neurol 2022; 13:881809. [PMID: 35481263 PMCID: PMC9035991 DOI: 10.3389/fneur.2022.881809] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 03/21/2022] [Indexed: 12/30/2022] Open
Abstract
As a neurological disease with high morbidity, disability, and mortality, the pathological mechanism underlying stroke involves complex processes such as neuroinflammation, oxidative stress, apoptosis, autophagy, and excitotoxicity; but the related research on these molecular mechanisms has not been effectively applied in clinical practice. As a form of iron-dependent regulated cell death, ferroptosis was first discovered in the pathological process of cancer, but recent studies have shown that ferroptosis is closely related to the onset and development of stroke. Therefore, a deeper understanding of the relationship between ferroptosis and stroke may lead to more effective treatment strategies. Herein, we reviewed the mechanism(s) underlying the onset of ferroptosis in stroke, the potential role of ferroptosis in stroke, and the crosstalk between ferroptosis and other pathological mechanisms. This will further deepen our understanding of ferroptosis and provide new approaches to the treatment of stroke.
Collapse
Affiliation(s)
- Xiao-Ling Fang
- College of Acupuncture and Massage, Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Shao-Yun Ding
- College of Acupuncture and Massage, Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Xiao-Zheng Du
- College of Acupuncture and Massage, Gansu University of Traditional Chinese Medicine, Lanzhou, China
- *Correspondence: Xiao-Zheng Du
| | - Jin-Hai Wang
- Department of Traditional Chinese Medicine, The Second Hospital of Lanzhou University, Lanzhou, China
- Jin-Hai Wang
| | - Xing-Lan Li
- College of Acupuncture and Massage, Gansu University of Traditional Chinese Medicine, Lanzhou, China
| |
Collapse
|
66
|
Xu A, Wen ZH, Su SX, Chen YP, Liu WC, Guo SQ, Li XF, Zhang X, Li R, Xu NB, Wang KX, Li WX, Guan DG, Duan CZ. Elucidating the Synergistic Effect of Multiple Chinese Herbal Prescriptions in the Treatment of Post-stroke Neurological Damage. Front Pharmacol 2022; 13:784242. [PMID: 35355727 PMCID: PMC8959705 DOI: 10.3389/fphar.2022.784242] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 02/14/2022] [Indexed: 12/12/2022] Open
Abstract
Background: Traditional Chinese medicine (TCM) has been widely used in the treatment of human diseases. However, the synergistic effects of multiple TCM prescriptions in the treatment of stroke have not been thoroughly studied. Objective of the study: This study aimed to reveal the mechanisms underlying the synergistic effects of these TCM prescriptions in stroke treatment and identify the active compounds. Methods: Herbs and compounds in the Di-Tan Decoction (DTD), Xue-Fu Zhu-Yu Decoction (XFZYD), and Xiao-Xu-Ming Decoction (XXMD) were acquired from the TCMSP database. SEA, HitPick, and TargetNet web servers were used for target prediction. The compound-target (C-T) networks of three prescriptions were constructed and then filtered using the collaborative filtering algorithm. We combined KEGG enrichment analysis, molecular docking, and network analysis approaches to identify active compounds, followed by verification of these compounds with an oxygen-glucose deprivation and reoxygenation (OGD/R) model. Results: The filtered DTD network contained 39 compounds and 534 targets, the filtered XFZYD network contained 40 compounds and 508 targets, and the filtered XXMD network contained 55 compounds and 599 targets. The filtered C-T networks retained approximately 80% of the biological functions of the original networks. Based on the enriched pathways, molecular docking, and network analysis results, we constructed a complex network containing 3 prescriptions, 14 botanical drugs, 26 compounds, 13 targets, and 5 pathways. By calculating the synergy score, we identified the top 5 candidate compounds. The experimental results showed that quercetin, baicalin, and ginsenoside Rg1 independently and synergistically increased cell viability. Conclusion: By integrating pharmacological and chemoinformatic approaches, our study provides a new method for identifying the effective synergistic compounds of TCM prescriptions. The filtered compounds and their synergistic effects on stroke require further research.
Collapse
Affiliation(s)
- Anqi Xu
- Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, National Key Clinical Specialty/Engineering Technology Research Center of Education Ministry of China, Neurosurgery Institute, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Zhuo-Hua Wen
- Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, National Key Clinical Specialty/Engineering Technology Research Center of Education Ministry of China, Neurosurgery Institute, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Shi-Xing Su
- Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, National Key Clinical Specialty/Engineering Technology Research Center of Education Ministry of China, Neurosurgery Institute, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yu-Peng Chen
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Southern Medical University, Guangzhou, China
| | - Wen-Chao Liu
- Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, National Key Clinical Specialty/Engineering Technology Research Center of Education Ministry of China, Neurosurgery Institute, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Shen-Quan Guo
- Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, National Key Clinical Specialty/Engineering Technology Research Center of Education Ministry of China, Neurosurgery Institute, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Xi-Feng Li
- Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, National Key Clinical Specialty/Engineering Technology Research Center of Education Ministry of China, Neurosurgery Institute, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Xin Zhang
- Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, National Key Clinical Specialty/Engineering Technology Research Center of Education Ministry of China, Neurosurgery Institute, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Ran Li
- Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, National Key Clinical Specialty/Engineering Technology Research Center of Education Ministry of China, Neurosurgery Institute, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Ning-Bo Xu
- Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, National Key Clinical Specialty/Engineering Technology Research Center of Education Ministry of China, Neurosurgery Institute, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Ke-Xin Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Southern Medical University, Guangzhou, China
| | - Wen-Xing Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Southern Medical University, Guangzhou, China
| | - Dao-Gang Guan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Southern Medical University, Guangzhou, China
| | - Chuan-Zhi Duan
- Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, National Key Clinical Specialty/Engineering Technology Research Center of Education Ministry of China, Neurosurgery Institute, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
67
|
Liu Q, Yang R, Wang D. Ferritinophagy in vascular endothelial cells regulated by nanoparticles may benefit the prevention of atherosclerosis and in-stent restenosis. Biomed Pharmacother 2022; 148:112702. [PMID: 35228066 DOI: 10.1016/j.biopha.2022.112702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/28/2022] [Accepted: 02/02/2022] [Indexed: 11/29/2022] Open
Affiliation(s)
- Qing Liu
- The Second Clinical School of Medicine, Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine-Zhuhai Hospital, Zhuhai 519015, China.
| | - Rongyuan Yang
- The Second Clinical School of Medicine, Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine-Zhuhai Hospital, Zhuhai 519015, China
| | - Dawei Wang
- Shunde Hospital of Guangzhou University of Chinese medicine, Guangdong 528329, China
| |
Collapse
|
68
|
Duan T, Li L, Yu Y, Li T, Han R, Sun X, Cui Y, Liu T, Wang X, Wang Y, Fan X, Liu Y, Zhang H. Traditional Chinese medicine use in the pathophysiological processes of intracerebral hemorrhage and comparison with conventional therapy. Pharmacol Res 2022; 179:106200. [PMID: 35367344 DOI: 10.1016/j.phrs.2022.106200] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 02/21/2022] [Accepted: 03/28/2022] [Indexed: 12/12/2022]
Abstract
Intracerebral hemorrhage (ICH) refers to hemorrhage caused by non-traumatic vascular rupture in the brain parenchyma, which is characterized by acute onset, severe illness, and high mortality and disability. The influx of blood into the brain tissue after cerebrovascular rupture causes severe brain damage, including primary injury caused by persistent hemorrhage and secondary brain injury (SBI) induced by hematoma. The mechanism of brain injury is complicated and is a significant cause of disability after ICH. Therefore, it is essential to understand the mechanism of brain injury after ICH to develop drugs to prevent and treat ICH. Studies have confirmed that many traditional Chinese medicines (TCM) can reduce brain injury by improving neurotoxicity, inflammation, oxidative stress (OS), blood-brain barrier (BBB), apoptosis, and neurological dysfunction after ICH. Starting from the pathophysiological process of brain injury after ICH, this paper summarizes the mechanisms by which TCM improves cerebral injury after ICH and its comparison with conventional western medicine, so as to provide clues and a reference for the clinical application of TCM in the prevention and treatment of hemorrhagic stroke and further research and development of new drugs.
Collapse
Affiliation(s)
- Tian Duan
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Lin Li
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yajun Yu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Tiantian Li
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Rui Han
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xingyi Sun
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yan Cui
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Tao Liu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xiaoying Wang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yu Wang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xiang Fan
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yang Liu
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Han Zhang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| |
Collapse
|
69
|
Chen Y, Long T, Xu Q, Zhang C. Bibliometric Analysis of Ferroptosis in Stroke From 2013 to 2021. Front Pharmacol 2022; 12:817364. [PMID: 35264947 PMCID: PMC8899397 DOI: 10.3389/fphar.2021.817364] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 12/29/2021] [Indexed: 12/12/2022] Open
Abstract
Background: Stroke is a major cause of long-term disability and death, but the clinical therapeutic strategy for stroke is limited and more research must be conducted to explore the possible avenues for stroke treatment and recovery. Since ferroptosis is defined, its role in the body has become the focus of attention and discussion, including in stroke. Methods: In this work, we aim to systematically discuss the “ferroptosis in stroke” research by bibliometric analysis. Documents were retrieved from the Web of Science Core Collection database on October 30, 2021. Statistical analysis and visualization analysis were conducted by the VOSviewer 1.6.15. Results: Ninety-nine documents were identified for bibliometric analysis. Research on “ferroptosis in stroke” has been rapidly developing and has remained the focus of many scholars and organizations in the last few years, but the Chinese groups in this field still lacked collaboration with others. Documents and citation analysis suggested that Rajiv R. Ratan and Brent R. Stockwell are active researchers, and the research by Qingzhang Tuo, Ishraq Alim, and Qian Li are more important drivers in the development of the field. Keywords associated with lipid peroxidation, ferroptosis, iron, oxidative stress, and cell death had high frequency, but apoptosis, necroptosis, pyroptosis, and autophagy had scant research, and there may be more research ideas in the future by scholars. Conclusion: Further exploration of the mechanisms of crosstalk between ferroptosis and other programmed cell death may improve clinical applications and therapeutic effects against stroke. Scholars will also continue to pay attention to and be interested in the hot topic “ferroptosis in stroke”, to produce more exciting results and provide new insights into the bottleneck of stroke treatment.
Collapse
Affiliation(s)
- Yuhua Chen
- Department of Central Laboratory, Xi’an Peihua University, Xi’an, China
- Department of Neurosurgery, Bijie Traditional Chinese Medicine Hospital, Bijie, China
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Tianlin Long
- Department of Neurosurgery, Bijie Traditional Chinese Medicine Hospital, Bijie, China
| | - Quanhua Xu
- Department of Neurosurgery, Bijie Traditional Chinese Medicine Hospital, Bijie, China
| | - Chi Zhang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- The Institute of Skull Base Surgery and Neurooncology at Hunan Province, Changsha, China
- *Correspondence: Chi Zhang,
| |
Collapse
|
70
|
Bai G, Qiao Y, Lo PC, Song L, Yang Y, Duan L, Wei S, Li M, Huang S, Zhang B, Wang Q, Yang C. Anti-depressive effects of Jiao-Tai-Wan on CORT-induced depression in mice by inhibiting inflammation and microglia activation. JOURNAL OF ETHNOPHARMACOLOGY 2022; 283:114717. [PMID: 34627986 DOI: 10.1016/j.jep.2021.114717] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 09/29/2021] [Accepted: 10/05/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Jiao-Tai-Wan (JTW) is a very famous traditional Chinese medicine formula for the treatment of psychiatric disorders, especially in anxiety, insomnia and depression. However, its molecular mechanism of treatment remains indistinct. AIM OF THE STUDY We aimed to reveal the action mechanism of JTW on anti-depression via inhibiting microglia activation and pro-inflammatory response both in vivo and in vitro. MATERIAL AND METHODS The corticosterone (CORT)-induced depression mouse model was used to evaluate the therapeutic efficacy of JTW. Behavioral tests (open field, elevated plus maze, tail suspension and forced swim test) were conducted to evaluate the effect of JTW on depressive-like behaviors. The levels of inflammatory factors and the concentration of neurotransmitters were detected by RT-qPCR or ELISA assays. Then three hippocampal tissue samples per group (Control, CORT, and JTW group) were sent for RNA sequencing (RNA-seq). Transcriptomics data analysis was used to screen the key potential therapeutic targets and signaling pathways of JTW. Based on 8 bioactive species of JTW by our previous study using High-performance liquid chromatography (HPLC) analysis, molecular docking analyses were used to predict the interaction of JTW-derived compounds and depression targets. Finally, the results of transcriptome and molecular docking analyses were combined to verify the targets, key pathways, and efficacy of JTW treatment in vivo and vitro. RESULTS JTW ameliorated CORT-induced depressive-like behaviors, neuronal damage and enhanced the levels of monoamine neurotransmitters in the serum of mice. JTW also inhibited CORT-induced inflammatory activation of microglia and decreased the serum levels of interleukin- 6(IL-6) and interleukin- 1β (IL-1β) in vivo. Transcriptomic data analysis showed there were 10 key driver analysis (KDA) genes with the strongest correlation which JTW regulated in depression mice. Molecular docking analysis displayed bioactive compound Magnoflorine had the strongest binding force to the key gene colony-stimulating factor 1 receptor (CSF1R), which is the signaling microglia dependent upon for their survival. Meanwhile, CSF1R staining showed it was consistent with inflammatory activation of microglia. Our vitro experiment also showed JTW and CSF1R inhibitor significantly reduced lipopolysaccharide (LPS)/interferon-gamma (IFNɣ)-induced inflammatory activation response in macrophage cells. CONCLUSIONS Our study suggests that JTW might ameliorate CORT-induced neuronal damage in depression mice by inhibiting CSF1R mediated microglia activation and pro-inflammatory response.
Collapse
Affiliation(s)
- Guiqin Bai
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China.
| | - Yiqi Qiao
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China.
| | - Po-Chieh Lo
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China.
| | - Lei Song
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China.
| | - Yuna Yang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China; Laboratory Animal Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China.
| | - Lining Duan
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China; Clinical Medical College of Acupuncture Moxibustion and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China.
| | - Sufen Wei
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China.
| | - Min Li
- Clinical Medical College of Acupuncture Moxibustion and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China.
| | - Shuiqing Huang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China.
| | - Beiping Zhang
- Guangdong Province Hospital of Traditional Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China.
| | - Qi Wang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China.
| | - Cong Yang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China.
| |
Collapse
|
71
|
Lu C, Tan C, Ouyang H, Chen Z, Yan Z, Zhang M. Ferroptosis in Intracerebral Hemorrhage: A Panoramic Perspective of the Metabolism, Mechanism and Theranostics. Aging Dis 2022; 13:1348-1364. [PMID: 36186133 PMCID: PMC9466971 DOI: 10.14336/ad.2022.01302] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 01/30/2022] [Indexed: 11/22/2022] Open
Abstract
Iron is one of the most crucial elements in the human body. In recent years, a kind of programmed, non-apoptotic cell death closely related to iron metabolism-called ferroptosis- has aroused much interest among many scientists. Ferroptosis also interacts with other pathways involved in cell death including iron abnormality, the cystine/glutamate antiporter and lipid peroxidation. Together these pathological pathways exert great impacts on intracerebral hemorrhage (ICH), a lethal cerebrovascular disease with a high incidence rate and mortality rate. Furthermore, the ferroptosis also affects different brain cells (neurons and neuroglial cells) and different organelles (mitochondria and endoplasmic reticulum). Clinical treatments for ferroptosis in ICH have been closely investigated recently. This perspective provides a comprehensive summary of ferroptosis mechanisms after ICH and its interaction with other cell death patterns. Understanding the role of ferroptosis in ICH will open new windows for the future treatments and preventions for ICH and other intracerebral diseases.
Collapse
Affiliation(s)
- Chenxiao Lu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China.
- Xiangya School of Medicine, Central South University, Changsha, 410031, China
| | - Changwu Tan
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China.
- Xiangya School of Medicine, Central South University, Changsha, 410031, China
| | - Hongfei Ouyang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China.
- Xiangya School of Medicine, Central South University, Changsha, 410031, China
| | - Zhuohui Chen
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.
| | - Zhouyi Yan
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China.
| | - Mengqi Zhang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China.
- Correspondence should be addressed to: Dr. Mengqi Zhang, Department of Neurology, Xiangya Hospital, Central South University, Changsha 410008, China. ..
| |
Collapse
|
72
|
Jiang H, Yao Q, An Y, Fan L, Wang J, Li H. Baicalin suppresses the progression of Type 2 diabetes-induced liver tumor through regulating METTL3/m 6A/HKDC1 axis and downstream p-JAK2/STAT1/clevaged Capase3 pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 94:153823. [PMID: 34763315 DOI: 10.1016/j.phymed.2021.153823] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 09/27/2021] [Accepted: 10/21/2021] [Indexed: 05/27/2023]
Abstract
BACKGROUND Epidemiological and clinical evidence suggests that diabetes increases the risk of liver cancer. Although the co-occurrence of type 2 diabetes (T2D) and liver cancer is becoming more frequent, the underlying mechanisms remain unclear. Even though baicalin, extensively used in traditional Chinese medicine (TCM), can control T2D and inhibit liver cancer separately, minimal research is available regarding its possible effect on T2D-induced liver cancer. Thus, in the present study, we aimed to investigate the role of baicalin in T2D-induced hepatocellular cancer, and for the first time, we particularly emphasized the regulation of baicalin in genes RNA m6A in hepatocellular cancer. METHODS Here, we constructed a cell culture model under a high concentration of glucose and a T2D-induced liver tumor model to evaluate the in vitro and in vivo role of baicalin in T2D-induced liver cancer progression. After confirming the suppressive effect of baicalin and the HKDC1 antibody on T2D-induced liver tumors, the epigenetic alterations (DNA 5mC and RNA m6A) of the baicalin-regulated HKDC1 gene were detected using MS and q-PCR. Next, the METTL3 gene-regulated m6A (2854 site) was investigated using SELECT PCR. Finally, the impact of the other three baicalin analogs (baicalein, wogonoside, and wogonin) on tumor inhibition was tested in vivo while verifying the related RNA m6A mechanism. RESULTS The results showed that baicalin and the HKDC1 antibody suppressed T2D-induced liver tumor progression in vitro and in vivo. Furthermore, baicalin significantly inhibited the epigenetic modification (DNA 5mC and RNA m6A) of HKDC1 in HepG2 tumors, mainly targeting the RNA m6A site (2854). The m6A-related gene, METTL3, regulated the RNA m6A site (2854) of HKDC1, which was also restricted by baicalin. Moreover, the study verified that baicalin regulated the METTL3/HKDC1/JAK2/STAT1/caspase-3 pathway in liver cancer cells when exposed to a high glucose concentration. In addition, the three baicalin analogs were proven to regulate the m6A (2854 site) of HKDC1 and suppress T2D-induced liver tumors. CONCLUSIONS The findings of this study revealed that baicalin suppressed T2D-induced liver tumor progression by regulating the METTL3/m6A/HKDC1 axis, which might support its potential application for preventing and treating T2D-induced liver cancer.
Collapse
Affiliation(s)
- Hongpeng Jiang
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing Key Laboratory of Cancer Invasion and Metastasis Research & National Clinical Research Center for Digestive Diseases, Xi-Cheng District, Beijing 100050, China
| | - Qianqian Yao
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Haidian District, Beijing 100193, China
| | - Yongbo An
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing Key Laboratory of Cancer Invasion and Metastasis Research & National Clinical Research Center for Digestive Diseases, Xi-Cheng District, Beijing 100050, China
| | - Linlin Fan
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Haidian District, Beijing 100193, China
| | - Jing Wang
- School of Food and Health, Beijing Technology and Business University, Beijing 100048, China.
| | - Huiying Li
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Haidian District, Beijing 100193, China.
| |
Collapse
|
73
|
Maltol as a Novel Agent Protecting SH-SY5Y Cells Against Hemin-induced Ferroptosis. Chem Res Chin Univ 2021. [DOI: 10.1007/s40242-021-1438-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
74
|
Zheng B, Zhou X, Pang L, Che Y, Qi X. Baicalin suppresses autophagy-dependent ferroptosis in early brain injury after subarachnoid hemorrhage. Bioengineered 2021; 12:7794-7804. [PMID: 34704542 PMCID: PMC8806453 DOI: 10.1080/21655979.2021.1975999] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Early brain injury, characterized by massive cell apoptosis or death, is identified as a critical pathophysiological process during subarachnoid hemorrhage (SAH). Ferroptosis, a class of autophagy-dependent cell death discovered in 2012, is induced by iron-dependent lipid peroxidation accumulation. The present study was designed to study the role of baicalin in autophagy-dependent ferroptosis in early brain injury after SAH. Neurological scores and brain water content were measured to evaluate brain injury. Measurement of iron ion, malondialdehyde (MDA), lipid reactive oxygen species was conducted for ferroptosis evaluation. Immunofluorescence staining, western blotting, and flow cytometry analysis were used to evaluate autophagy and apoptosis. First, we observed that, compared with sham rats, SAH rats had lower neurobehavioral scores. Next, baicalin was proven to decrease the Fe2+, malondialdehyde, and ROS levels in the brain tissues of rats. Also, baicalin was confirmed to suppress the beclin1, LC3-II, and LC3-I protein levels in rat brain tissues. Moreover, we found that baicalin inhibited neuronal apoptosis. Finally, the effects of baicalin on brain injury in the SAH rats were verified. Overall, our results demonstrated that baicalin suppressed autophagy-dependent ferroptosis in EBI after SAH.
Collapse
Affiliation(s)
- Bao Zheng
- Department of Neurosurgery, Jingjiang People's Hospital, Jingjiang, Jiangsu, China
| | - Xiwei Zhou
- Department of Neurosurgery, Jingjiang People's Hospital, Jingjiang, Jiangsu, China
| | - Lujun Pang
- Department of Neurosurgery, Jingjiang People's Hospital, Jingjiang, Jiangsu, China
| | - Yanjun Che
- Department of Neurosurgery, Jingjiang People's Hospital, Jingjiang, Jiangsu, China
| | - Xin Qi
- Department of Neurosurgery, Jingjiang People's Hospital, Jingjiang, Jiangsu, China
| |
Collapse
|
75
|
Jakaria M, Belaidi AA, Bush AI, Ayton S. Ferroptosis as a mechanism of neurodegeneration in Alzheimer's disease. J Neurochem 2021; 159:804-825. [PMID: 34553778 DOI: 10.1111/jnc.15519] [Citation(s) in RCA: 98] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 09/07/2021] [Accepted: 09/14/2021] [Indexed: 01/19/2023]
Abstract
Alzheimer's disease (AD) is the most prevalent form of dementia, with complex pathophysiology that is not fully understood. While β-amyloid plaque and neurofibrillary tangles define the pathology of the disease, the mechanism of neurodegeneration is uncertain. Ferroptosis is an iron-mediated programmed cell death mechanism characterised by phospholipid peroxidation that has been observed in clinical AD samples. This review will outline the growing molecular and clinical evidence implicating ferroptosis in the pathogenesis of AD, with implications for disease-modifying therapies.
Collapse
Affiliation(s)
- Md Jakaria
- Melbourne Dementia Research Centre, The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, Australia
| | - Abdel Ali Belaidi
- Melbourne Dementia Research Centre, The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, Australia
| | - Ashley I Bush
- Melbourne Dementia Research Centre, The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, Australia
| | - Scott Ayton
- Melbourne Dementia Research Centre, The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
76
|
Peng C, Fu X, Wang K, Chen L, Luo B, Huang N, Luo Y, Chen W. Dauricine alleviated secondary brain injury after intracerebral hemorrhage by upregulating GPX4 expression and inhibiting ferroptosis of nerve cells. Eur J Pharmacol 2021; 914:174461. [PMID: 34469757 DOI: 10.1016/j.ejphar.2021.174461] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 08/25/2021] [Accepted: 08/27/2021] [Indexed: 01/18/2023]
Abstract
Intracerebral hemorrhage (ICH) is a severe stroke subtype with high disability and mortality, and no effective treatment is available. Previous research on intracerebral hemorrhage secondary brain injury drugs mainly targeted at cell apoptosis, inflammation and oxidative stress, but did not achieve good effects. In recent years, ferroptosis has become a focus concern in neurological diseases. Ferroptosis is a new type of programmed cell death caused by iron-dependent accumulation of lipid peroxides, in which glutathione peroxidase 4 (GPX4) is a key protein affecting ferroptosis. In this study, we used the STRING protein database to predict the proteins that may be co-expressed with GPX4, and studied the ability of Dauricine(Dau) to up-regulate the expression of GPX4 against ferroptosis and neuroprotection after intracerebral hemorrhage in normal cells in vitro, glutathione peroxidase 4 (GPX4) knockdown cells and collagenase injection in vivo in mouse models of intracerebral hemorrhage. The results showed that glutathione reductase (GSR) was a possible co-expression protein with GPX4. Dau could up-regulate the expression of glutathione peroxidase 4 (GPX4) in intracerebral hemorrhage(ICH) model, normal cells and GPX4 knockdown cells in vitro, and simultaneously up-regulate the expression of GSR in ICH mice. Dau could also reduce the levels of iron and lipid peroxidation, and have a neuroprotective effect on intracerebral hemorrhage(ICH) mice. It was tesified that Dauricine(Dau) could inhibit ferroptosis of nerve cells and alleviate brain injury after intracerebral hemorrhage by upregulating glutathione peroxidase 4 (GPX4) and glutathione reductase (GSR) co-expression. Therefore, Dau may be an effective drug for inhibiting ferroptosis and treating intracerebral hemorrhage.
Collapse
Affiliation(s)
- Chiwei Peng
- Clinical Research Center for Neurological Disease of Guangxi Province, The Affiliated Hospital of Guilin Medical University, Guilin, 541001, China; School of Pharmacy, Guilin Medical University, Guilin, 541001, China
| | - Xiang Fu
- Department of Pharmacy, The Affiliated Hospital of Guilin Medical University, Guilin, 541001, China
| | - Kaixuan Wang
- Clinical Research Center for Neurological Disease of Guangxi Province, The Affiliated Hospital of Guilin Medical University, Guilin, 541001, China; School of Pharmacy, Guilin Medical University, Guilin, 541001, China
| | - Ling Chen
- Clinical Research Center for Neurological Disease of Guangxi Province, The Affiliated Hospital of Guilin Medical University, Guilin, 541001, China; School of Pharmacy, Guilin Medical University, Guilin, 541001, China
| | - Beijiao Luo
- Clinical Research Center for Neurological Disease of Guangxi Province, The Affiliated Hospital of Guilin Medical University, Guilin, 541001, China; School of Pharmacy, Guilin Medical University, Guilin, 541001, China
| | - Ni Huang
- Clinical Research Center for Neurological Disease of Guangxi Province, The Affiliated Hospital of Guilin Medical University, Guilin, 541001, China; School of Pharmacy, Guilin Medical University, Guilin, 541001, China
| | - Yunfeng Luo
- Jiangxi Research Institute of Ophthalmology and Visual Sciences, Affiliated Eye Hospital of Nanchang University, 330006, Jiangxi, China.
| | - Wei Chen
- Clinical Research Center for Neurological Disease of Guangxi Province, The Affiliated Hospital of Guilin Medical University, Guilin, 541001, China; Department of Pharmacy, The Affiliated Hospital of Guilin Medical University, Guilin, 541001, China.
| |
Collapse
|