51
|
Abstract
Covering: up to 2015. Traditional Chinese medicine has played a significant role in the mainstream healthcare system in China for thousands of years. Here, we summarize 84 major compounds from 15 selected herbal medicines targeting neurodegenerative diseases. We present a perspective based on the analysis of physicochemical properties of these TCM compounds, and comparison with current drugs and candidates for the treatment of Parkinson's and Alzheimer's disease. The results demonstrate that traditional Chinese medicines contain compounds possessing physicochemical properties that have excellent overlap with developed western medicines.
Collapse
Affiliation(s)
- Chunping Tang
- Eskitis Institute for Drug Discovery, Griffith University, Brisbane, QLD 4111, Australia. and State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yang Ye
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China and Eskitis-SIMM Joint Laboratory for Drug Discovery, Australia
| | - Yunjiang Feng
- Eskitis Institute for Drug Discovery, Griffith University, Brisbane, QLD 4111, Australia. and Eskitis-SIMM Joint Laboratory for Drug Discovery, Australia
| | - Ronald J Quinn
- Eskitis Institute for Drug Discovery, Griffith University, Brisbane, QLD 4111, Australia. and Eskitis-SIMM Joint Laboratory for Drug Discovery, Australia
| |
Collapse
|
52
|
Li F, Wu X, Li J, Niu Q. Ginsenoside Rg1 ameliorates hippocampal long-term potentiation and memory in an Alzheimer's disease model. Mol Med Rep 2016; 13:4904-10. [PMID: 27082952 DOI: 10.3892/mmr.2016.5103] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Accepted: 03/02/2016] [Indexed: 11/06/2022] Open
Abstract
The complex etiopathogenesis of Alzheimer's disease (AD) has limited progression in the identification of effective therapeutic agents. Amyloid precursor protein (APP) and presenilin‑1 (PS1) are always overexpressed in AD, and are considered to be the initiators of the formation of β‑amyloid plaques and the symptoms of AD. In the present study, a transgenic AD model, constructed via the overexpression of APP and PS1, was used to verify the protective effects of ginsenoside Rg1 on memory performance and synaptic plasticity. AD mice (6‑month‑old) were treated via intraperitoneal injection of 0.1‑10 mg/kg ginsenoside Rg1. Long‑term memory, synaptic plasticity, and the levels of AD‑associated and synaptic plasticity‑associated proteins were measured following treatment. Memory was measured using a fear conditioning task and protein expression levels were investigated using western blotting. All the data was analyzed by one-way analysis of variance or t‑test. Following 30 days of consecutive treatment, memory in the AD mouse model was ameliorated in the 10 mg/kg ginsenoside Rg1 treatment group. As demonstrated by biochemical experiments, ginsenoside Rg1 treatment reduced the accumulations of β‑amyloid 1‑42 and phosphorylated (p)‑Tau in the AD model. Additionally, brain-derived neurotrophic factor (BDNF) and p‑TrkB synaptic plasticity‑associated proteins were upregulated following ginsenoside Rg1 application. Correspondingly, long‑term potentiation (LTP) was restored following ginsenoside Rg1 application in the AD mice model. Taken together, ginsenoside Rg1 repaired hippocampal LTP and memory, likely through facilitating the clearance of AD‑associated proteins and through activation of the BDNF‑TrkB pathway. Therefore, ginsenoside Rg1 may be a candidate drug for the treatment of AD.
Collapse
Affiliation(s)
- Fengling Li
- Department of Neurology, The Affiliated Hospital of Weifang Medical University, Weifang, Shandong 261031, P.R. China
| | - Xiqing Wu
- Medical Imaging Center, Weifang Traditional Chinese Medicine Hospital, Weifang, Shandong 261041, P.R. China
| | - Jing Li
- Department of Orthopaedics Rehabilitation, Weifang Traditional Chinese Medicine Hospital, Weifang, Shandong 261041, P.R. China
| | - Qingliang Niu
- Medical Imaging Center, Weifang Traditional Chinese Medicine Hospital, Weifang, Shandong 261041, P.R. China
| |
Collapse
|
53
|
Determination of American ginseng saponins and their metabolites in human plasma, urine and feces samples by liquid chromatography coupled with quadrupole time-of-flight mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 2016; 1015-1016:62-73. [PMID: 26896573 DOI: 10.1016/j.jchromb.2016.02.008] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Revised: 02/03/2016] [Accepted: 02/04/2016] [Indexed: 02/07/2023]
Abstract
American ginseng is a commonly consumed herbal medicine in the United States and other countries. Ginseng saponins are considered to be its active constituents. We have previously demonstrated in an in vitro experiment that human enteric microbiota metabolize ginseng parent compounds into their metabolites. In this study, we analyzed American ginseng saponins and their metabolites in human plasma, urine and feces samples by liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (LC-Q-TOF-MS). Six healthy male volunteers ingested 1 g of American ginseng twice a day for 7 days. On day 7, biological samples were obtained and pretreated with solid phase extraction. The ginseng constituents and their metabolites were characterized, including 5 ginseng metabolites in plasma, 10 in urine, and 26 in feces. For the plasma, urine and feces samples, the levels of ginsenoside Rb1 (a major parent compound) were 8.6, 56.8 and 57.7 ng/mL, respectively, and the levels of compound K (a major metabolite) were 58.4 ng/mL, 109.8 ng/mL and 10.06 μg/mL, respectively. It suggested that compound K had a remarkably high level in all three samples. Moreover, in human feces, ginsenoside Rk1 and Rg5, Rk3 and Rh4, Rg6 and F4 were detected as the products of dehydration. Further studies are needed to evaluate the pharmacological activities of the identified ginseng metabolites.
Collapse
|
54
|
Catorce MN, Gevorkian G. LPS-induced Murine Neuroinflammation Model: Main Features and Suitability for Pre-clinical Assessment of Nutraceuticals. Curr Neuropharmacol 2016; 14:155-64. [PMID: 26639457 PMCID: PMC4825946 DOI: 10.2174/1570159x14666151204122017] [Citation(s) in RCA: 266] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Revised: 11/02/2015] [Accepted: 12/04/2015] [Indexed: 12/14/2022] Open
Abstract
Neuroinflammation is an important feature in the pathogenesis and progression of neurodegenerative diseases such as Alzheimer´s disease (AD), Parkinson´s disease (PD), frontotemporal dementia and amyotrophic lateral sclerosis. Based on current knowledge in the field, suggesting that targeting peripheral inflammation could be a promising additional treatment/prevention approach for neurodegenerative diseases, drugs and natural products with anti-inflammatory properties have been evaluated in animal models of neuroinflammation and neurodegeneration. In this review, we provide an extensive analysis of one of the most important and widely-used animal models of peripherally induced neuroinflammation and neurodegeneration - lipopolysaccharide (LPS)-treated mice, and address the data reproducibility in published research. We also summarize briefly basic features of various natural products, nutraceuticals, with known anti-inflammatory effects and present an overview of data on their therapeutic potential for reducing neuroinflammation in LPS-treated mice.
Collapse
Affiliation(s)
| | - Goar Gevorkian
- Instituto de Investigaciones Biomedicas, Universidad Nacional Autonoma de Mexico (UNAM), Apartado Postal 70228, Cuidad Universitaria, Mexico DF, CP 04510, Mexico.
| |
Collapse
|
55
|
Bak DH, Kim HD, Kim YO, Park CG, Han SY, Kim JJ. Neuroprotective effects of 20(S)-protopanaxadiol against glutamate-induced mitochondrial dysfunction in PC12 cells. Int J Mol Med 2015; 37:378-86. [PMID: 26709399 PMCID: PMC4716797 DOI: 10.3892/ijmm.2015.2440] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 12/10/2015] [Indexed: 11/09/2022] Open
Abstract
Ginseng (Panax ginseng C.A. Mey.) is commonly used in traditional oriental medicine for its wide spectrum of medicinal properties, including anti-inflammatory, antitumorigenic, adaptogenic and anti-aging properties. 20(S)-Protopanaxadiol (PPD), the main intestinal metabolite of ginsenosides, is one of the active ingredients in ginseng. In this study, we aimed to investigate the neuroprotective effects of PPD on PC12 cells; however, the underlying mechanisms remain elusive. We examined cell viability by MTT assay and the morphological changes of PC12 cells following glutamate-induced cell damage and evaluated the anti-apoptotic effects of PPD using Hoechst 33258 staining, western blot analysis and Muse™ Cell Analyzer and the antioxidant effects of PPD using FACS analysis and immunofluorescence. Furthermore, PPD exerted protective effects on PC12 cells via the inhibition of mitochondrial damage against glutamate-induced excitotoxicity using immunofluorescence, electron microscopy and FACS analysis. We demonstrate that treatment with PPD suppresses apoptosis, which contributes to the neuroprotective effects of PPD against glutamate-induced excitotoxicity in PC12 cells. Treatment with PPD inhibited nuclear condensation and decreased the number of Annexin V-positive cells. In addition, PPD increased antioxidant activity and mitochondrial homeostasis in the glutamate-exposed cells. These antioxidant effects were responsible for the neuroprotection and enhanced mitochondrial function following treatment with PPD. Furthermore, PD inhibited the glutamate-induced morphological changes in the mitochondria and scavenged the mitochondrial and cytosolic reactive oxygen species (ROS) induced by glutamate. In addition, mitochondrial function was significantly improved in terms of mitochondrial membrane potential (MMP) and enhanced mitochondrial mass compared with the cells exposed to glutamate and not treated with PPD. Taken together, the findings of our study indicate that the antioxidant effects and the enhanced mitochondrial function triggered by PPD contribute to the inhibition of apoptosis, thus leading to a neuroprotective response, as a novel survival mechanism.
Collapse
Affiliation(s)
- Dong-Ho Bak
- Department of Anatomy, College of Medicine, Konyang University, Daejeon 302-718, Republic of Korea
| | - Hyung Don Kim
- Department of Herbal Crop Research, National Institute of Horticultural and Herbal Science (NIHHS), Rural Development Administration (RDA), Eumseong, Chungbuk 369-873, Republic of Korea
| | - Young Ock Kim
- Department of Herbal Crop Research, National Institute of Horticultural and Herbal Science (NIHHS), Rural Development Administration (RDA), Eumseong, Chungbuk 369-873, Republic of Korea
| | - Chun Geun Park
- Department of Herbal Crop Research, National Institute of Horticultural and Herbal Science (NIHHS), Rural Development Administration (RDA), Eumseong, Chungbuk 369-873, Republic of Korea
| | - Seung-Yun Han
- Department of Anatomy, College of Medicine, Konyang University, Daejeon 302-718, Republic of Korea
| | - Jwa-Jin Kim
- Department of Anatomy, College of Medicine, Konyang University, Daejeon 302-718, Republic of Korea
| |
Collapse
|
56
|
Choi SH, Jung SW, Lee BH, Kim HJ, Hwang SH, Kim HK, Nah SY. Ginseng pharmacology: a new paradigm based on gintonin-lysophosphatidic acid receptor interactions. Front Pharmacol 2015; 6:245. [PMID: 26578955 PMCID: PMC4621423 DOI: 10.3389/fphar.2015.00245] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 10/12/2015] [Indexed: 01/21/2023] Open
Abstract
Ginseng, the root of Panax ginseng, is used as a traditional medicine. Despite the long history of the use of ginseng, there is no specific scientific or clinical rationale for ginseng pharmacology besides its application as a general tonic. The ambiguous description of ginseng pharmacology might be due to the absence of a predominant active ingredient that represents ginseng pharmacology. Recent studies show that ginseng abundantly contains lysophosphatidic acids (LPAs), which are phospholipid-derived growth factor with diverse biological functions including those claimed to be exhibited by ginseng. LPAs in ginseng form a complex with ginseng proteins, which can bind and deliver LPA to its cognate receptors with a high affinity. As a first messenger, gintonin produces second messenger Ca2+ via G protein-coupled LPA receptors. Ca2+ is an intracellular mediator of gintonin and initiates a cascade of amplifications for further intercellular communications by activation of Ca2+-dependent kinases, receptors, gliotransmitter, and neurotransmitter release. Ginsenosides, which have been regarded as primary ingredients of ginseng, cannot elicit intracellular [Ca2+]i transients, since they lack specific cell surface receptor. However, ginsenosides exhibit non-specific ion channel and receptor regulations. This is the key characteristic that distinguishes gintonin from ginsenosides. Although the current discourse on ginseng pharmacology is focused on ginsenosides, gintonin can definitely provide a mode of action for ginseng pharmacology that ginsenosides cannot. This review article introduces a novel concept of ginseng ligand-LPA receptor interaction and proposes to establish a paradigm that shifts the focus from ginsenosides to gintonin as a major ingredient representing ginseng pharmacology.
Collapse
Affiliation(s)
- Sun-Hye Choi
- Ginsentology Research Laboratory, Department of Physiology, College of Veterinary Medicine, Konkuk University , Seoul, South Korea
| | - Seok-Won Jung
- Ginsentology Research Laboratory, Department of Physiology, College of Veterinary Medicine, Konkuk University , Seoul, South Korea
| | - Byung-Hwan Lee
- Ginsentology Research Laboratory, Department of Physiology, College of Veterinary Medicine, Konkuk University , Seoul, South Korea
| | - Hyeon-Joong Kim
- Ginsentology Research Laboratory, Department of Physiology, College of Veterinary Medicine, Konkuk University , Seoul, South Korea
| | - Sung-Hee Hwang
- Department of Pharmaceutical Engineering, Sangji University , Wonju, South Korea
| | - Ho-Kyoung Kim
- Mibyeong Research Center, Korea Institute of Oriental Medicine , Daejeon, South Korea
| | - Seung-Yeol Nah
- Ginsentology Research Laboratory, Department of Physiology, College of Veterinary Medicine, Konkuk University , Seoul, South Korea
| |
Collapse
|
57
|
Helliwell RM, ShioukHuey CO, Dhuna K, Molero JC, Ye JM, Xue CC, Stokes L. Selected ginsenosides of the protopanaxdiol series are novel positive allosteric modulators of P2X7 receptors. Br J Pharmacol 2015; 172:3326-40. [PMID: 25752193 DOI: 10.1111/bph.13123] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Revised: 02/02/2015] [Accepted: 02/26/2015] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND AND PURPOSE The P2X7 receptor is an ATP-gated ion channel predominantly expressed in immune cells and plays a key role in inflammatory processes. Ginseng is a well-known Chinese herb with both pro- and anti-inflammatory properties and many of its actions have been ascribed to constituent ginsenosides. We screened a number of ginsenoside compounds for pharmacological activity at P2X7 receptors, that might contribute to the reported immunomodulatory actions of ginseng. EXPERIMENTAL APPROACH We used several assays to measure responses of P2X7 receptors, ATP-mediated dye uptake, intracellular calcium measurement and whole-cell patch-clamp recordings. HEK-293 cells stably expressing human P2X7 receptors were used in addition to mouse macrophages endogenously expressing P2X7 receptors. KEY RESULTS Four ginsenosides of the protopanaxdiol series, Rb1, Rh2, Rd and the metabolite compound K (CK) potentiated the dye uptake responses of P2X7 receptors, whereas other ginsenosides tested were ineffective (1-10 μM). The potentiation was rapid in onset, required a threshold concentration of ATP (>50 μM) and had an EC50 of 1.08 μM. CK markedly enhanced ATP-activated P2X7 currents, probably via an extracellular site of action. One of the consequences of this potentiation effect is a sustained rise in intracellular Ca(2+) that could account for the decrease in cell viability in mouse macrophages after a combination of 500 μM ATP and 10 μM CK that are non-toxic when applied alone. CONCLUSIONS AND IMPLICATIONS This study identifies selected ginsenosides as novel potent allosteric modulators of P2X7 channels that may account for some of the reported immune modulatory actions of protopanaxdiol ginsenosides in vivo.
Collapse
Affiliation(s)
- R M Helliwell
- School of Health Sciences, Health Innovations Research Institute, RMIT University, Melbourne, Victoria, Australia
| | - C O ShioukHuey
- School of Medical Sciences, Health Innovations Research Institute, RMIT University, Melbourne, Victoria, Australia
| | - K Dhuna
- School of Medical Sciences, Health Innovations Research Institute, RMIT University, Melbourne, Victoria, Australia
| | - J C Molero
- School of Health Sciences, Health Innovations Research Institute, RMIT University, Melbourne, Victoria, Australia
| | - J-M Ye
- School of Health Sciences, Health Innovations Research Institute, RMIT University, Melbourne, Victoria, Australia
| | - C C Xue
- School of Health Sciences, Health Innovations Research Institute, RMIT University, Melbourne, Victoria, Australia
| | - L Stokes
- School of Medical Sciences, Health Innovations Research Institute, RMIT University, Melbourne, Victoria, Australia.,School of Pharmacy, University of East Anglia, Norwich, UK
| |
Collapse
|
58
|
Yu X, Gao R, Yin L, Wo L. [The effects of low polarity ginsenoside Rh4 on proliferation and differentiation in K562 leukemia cells]. ZHONGHUA XUE YE XUE ZA ZHI = ZHONGHUA XUEYEXUE ZAZHI 2015; 36:347-9. [PMID: 25916302 PMCID: PMC7342623 DOI: 10.3760/cma.j.issn.0253-2727.2015.04.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Indexed: 11/30/2022]
Affiliation(s)
- Xiaoling Yu
- The First Affiliated Hospital of Zhejiang Chinese Medicine University, Hangzhou 310006, China
| | - Ruilan Gao
- The First Affiliated Hospital of Zhejiang Chinese Medicine University, Hangzhou 310006, China
| | - Liming Yin
- The First Affiliated Hospital of Zhejiang Chinese Medicine University, Hangzhou 310006, China
| | - Like Wo
- The First Affiliated Hospital of Zhejiang Chinese Medicine University, Hangzhou 310006, China
| |
Collapse
|
59
|
Zhu G, Wang Y, Li J, Wang J. Chronic treatment with ginsenoside Rg1 promotes memory and hippocampal long-term potentiation in middle-aged mice. Neuroscience 2015; 292:81-9. [DOI: 10.1016/j.neuroscience.2015.02.031] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Revised: 02/04/2015] [Accepted: 02/17/2015] [Indexed: 11/30/2022]
|
60
|
Hwang SH, Lee BH, Choi SH, Kim HJ, Jung SW, Kim HS, Shin HC, Park HJ, Park KH, Lee MK, Nah SY. Gintonin, a novel ginseng-derived lysophosphatidic acid receptor ligand, stimulates neurotransmitter release. Neurosci Lett 2014; 584:356-61. [PMID: 25445364 DOI: 10.1016/j.neulet.2014.11.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Revised: 10/30/2014] [Accepted: 11/06/2014] [Indexed: 10/24/2022]
Abstract
Gintonin is a novel ginseng-derived G protein-coupled lysophosphatidic acid (LPA) receptor ligand. Gintonin elicits an intracellular calcium concentration [Ca(2+)]i transient via activation of LPA receptors and regulates calcium-dependent ion channels and receptors. [Ca(2+)]i elevation by neurotransmitters or depolarization is usually coupled to neurotransmitter release in neuronal cells. Little is known about whether gintonin-mediated [Ca(2+)]i transients are also coupled to neurotransmitter release. The PC12 cell line is derived from a pheochromocytoma of the rat adrenal medulla and is widely used as a model for catecholamine release. In the present study, we examined the effects of gintonin on dopamine release in PC12 cells. Application of gintonin to PC12 cells induced [Ca(2+)]i transients in concentration-dependent and reversible manners. However, ginsenoside Rg3, another active ingredient of ginseng, induced a lagged and irreversible [Ca(2+)]i increase. The induction of gintonin-mediated [Ca(2+)]i transients was attenuated or blocked by the LPA1/3 receptor antagonist Ki16425, a phospholipase C inhibitor, an inositol 1,4,5-triphosphate receptor antagonist, and an intracellular Ca(2+) chelator. Repeated treatment with gintonin induced homologous desensitization of [Ca(2+)]i transients. Gintonin treatment in PC12 cells increased the release of dopamine in a concentration-dependent manner. Intraperitoneal administration of gintonin to mice also increased serum dopamine concentrations. The present study shows that gintonin-mediated [Ca(2+)]i transients are coupled to dopamine release via LPA receptor activation. Finally, gintonin-mediated [Ca(2+)]i transients and dopamine release via LPA receptor activation might explain one mechanism of gintonin-mediated inter-neuronal modulation in the nervous system.
Collapse
Affiliation(s)
- Sung-Hee Hwang
- Department of Pharmaceutical Engineering, College of Health Sciences, Sangji University, Wonju 220-702, South Korea
| | - Byung-Hwan Lee
- Department of Physiology, College of Veterinary Medicine and Bio/Molecular Informatics Center, Konkuk University, Seoul 143-701, South Korea
| | - Sun-Hye Choi
- Department of Physiology, College of Veterinary Medicine and Bio/Molecular Informatics Center, Konkuk University, Seoul 143-701, South Korea
| | - Hyeon-Joong Kim
- Department of Physiology, College of Veterinary Medicine and Bio/Molecular Informatics Center, Konkuk University, Seoul 143-701, South Korea
| | - Seok-Won Jung
- Department of Physiology, College of Veterinary Medicine and Bio/Molecular Informatics Center, Konkuk University, Seoul 143-701, South Korea
| | - Hyun-Sook Kim
- Department of Physiology, College of Veterinary Medicine and Bio/Molecular Informatics Center, Konkuk University, Seoul 143-701, South Korea
| | - Ho-Chul Shin
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, Konkuk University, Seoul 143‑701, South Korea
| | - Hyun Jin Park
- College of Pharmacy and Research Center for Bioresource and Health, Chungbuk National University, Cheongju 361-763, South Korea
| | - Keun Hong Park
- College of Pharmacy and Research Center for Bioresource and Health, Chungbuk National University, Cheongju 361-763, South Korea
| | - Myung Koo Lee
- College of Pharmacy and Research Center for Bioresource and Health, Chungbuk National University, Cheongju 361-763, South Korea
| | - Seung-Yeol Nah
- Department of Physiology, College of Veterinary Medicine and Bio/Molecular Informatics Center, Konkuk University, Seoul 143-701, South Korea.
| |
Collapse
|
61
|
Park JI, Bae HR, Kim CG, Stonik VA, Kwak JY. Relationships between chemical structures and functions of triterpene glycosides isolated from sea cucumbers. Front Chem 2014; 2:77. [PMID: 25250309 PMCID: PMC4159031 DOI: 10.3389/fchem.2014.00077] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2014] [Accepted: 08/21/2014] [Indexed: 11/15/2022] Open
Abstract
Many marine triterpene glycosides have in vitro and in vivo activities with very low toxicity, suggesting that they are suitable agents for the prevention and treatment of different diseases, particularly cancer. However, the molecular mechanisms of action of natural marine compounds in cancer, immune, and other various cells are not fully known. This review focuses on the structural characteristics of marine triterpene glycosides and how these affect their biological activities and molecular mechanisms. In particular, the membranotropic and membranolytic activities of frondoside A and cucumariosides from sea cucumbers and their ability to induce cytotoxicity and apoptosis have been discussed, with a focus on structure-activity relationships. In addition, the structural characteristics and antitumor effects of stichoposide C and stichoposide D have been reviewed along with underlying their molecular mechanisms.
Collapse
Affiliation(s)
- Joo-In Park
- Department of Biochemistry, Dong-A UniversityBusan, South Korea
| | - Hae-Rahn Bae
- Department of Physiology, School of Medicine, Dong-A UniversityBusan, South Korea
| | - Chang Gun Kim
- Department of Biochemistry, Dong-A UniversityBusan, South Korea
- Immune-Network Pioneer Research Center, Dong-A UniversityBusan, South Korea
| | - Valentin A. Stonik
- The Laboratory of Chemistry of Marine Natural Products, G. B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-Eastern Branch of the Russian Academy of ScienceVladivostok, Russia
| | - Jong-Young Kwak
- Department of Biochemistry, Dong-A UniversityBusan, South Korea
- Immune-Network Pioneer Research Center, Dong-A UniversityBusan, South Korea
| |
Collapse
|