51
|
Pinto MS, Sánchez C, Martins N, Menegaldo LL, Pompeu F, de Oliveira LF. Effect of Achilles Tendon Mechanics on the Running Economy of Elite Endurance Athletes. Int J Sports Med 2021; 42:1128-1136. [PMID: 33784785 DOI: 10.1055/a-1403-2606] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The Achilles tendon stores and releases strain energy, influencing running economy. The present study aims to verify the influence of the Achilles tendon tangent modulus, as a material property, on running economy by comparing two groups of elite endurance-performance athletes undergoing different running training volumes. Twelve athletes, six long-distance runners and six pentathletes, were studied. Long-distance runners had a higher weekly running training volume (116.7±13.7 vs. 58.3±20.4 km, p<0.05) and a better running economy (204.3±12.0 vs. 222.0±8.7 O2 mL ∙ kg-1 ∙ km-1, p<0.05) evaluated in a treadmill at 16 km·h-1, 1% inclination. Both groups presented similar VO2max (68.5±3.8 vs. 65.7±5.0 mL ∙ min-1 ∙ kg-1, p>0.05). Achilles tendon tangent modulus was estimated from ultrasound-measured deformations, with the ankle passively mobilized by a dynamometer. True stress was calculated from the measured torque. The long-distance runners had a higher maximum tangent modulus (380.6±92.2 vs. 236.2±82.6 MPa, p<0.05) and maximum true stress than pentathletes (24.2±5.1 vs. 16.0±3.5 MPa, p<0.05). The correlation coefficient between tangent modulus at larger deformations was R=-0.7447 (p<0.05). Quantifying tendon tissue adaptations associated with different running training volumes will support subject and modality-specific workouts prescription of elite endurance athletes.
Collapse
Affiliation(s)
- Mariana Souza Pinto
- Programa de Engenharia Biomédica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Carlos Sánchez
- Escola de Educação Física e Desportos, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Natália Martins
- Programa de Engenharia Biomédica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Fernando Pompeu
- Programa de Pós-Graduação em Educação Física (PPGEF-UFRJ), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Liliam Fernandes de Oliveira
- Programa de Engenharia Biomédica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Escola de Educação Física e Desportos, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
52
|
Increasing the midsole bending stiffness of shoes alters gastrocnemius medialis muscle function during running. Sci Rep 2021; 11:749. [PMID: 33436965 PMCID: PMC7804138 DOI: 10.1038/s41598-020-80791-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 12/28/2020] [Indexed: 01/30/2023] Open
Abstract
In recent years, increasing the midsole bending stiffness (MBS) of running shoes by embedding carbon fibre plates in the midsole resulted in many world records set during long-distance running competitions. Although several theories were introduced to unravel the mechanisms behind these performance benefits, no definitive explanation was provided so far. This study aimed to investigate how the function of the gastrocnemius medialis (GM) muscle and Achilles tendon is altered when running in shoes with increased MBS. Here, we provide the first direct evidence that the amount and velocity of GM muscle fascicle shortening is reduced when running with increased MBS. Compared to control, running in the stiffest condition at 90% of speed at lactate threshold resulted in less muscle fascicle shortening (p = 0.006, d = 0.87), slower average shortening velocity (p = 0.002, d = 0.93) and greater estimated Achilles tendon energy return (p ≤ 0.001, d = 0.96), without a significant change in GM fascicle work (p = 0.335, d = 0.40) or GM energy cost (p = 0.569, d = 0.30). The findings of this study suggest that running in stiff shoes allows the ankle plantarflexor muscle-tendon unit to continue to operate on a more favourable position of the muscle's force-length-velocity relationship by lowering muscle shortening velocity and increasing tendon energy return.
Collapse
|
53
|
Snyder KL, Hoogkamer W, Triska C, Taboga P, Arellano CJ, Kram R. Effects of course design (curves and elevation undulations) on marathon running performance: a comparison of Breaking 2 in Monza and the INEOS 1:59 Challenge in Vienna. J Sports Sci 2020; 39:754-759. [PMID: 33176588 DOI: 10.1080/02640414.2020.1843820] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Eliud Kipchoge made two attempts to break the 2-hour marathon, in Monza and then Vienna. Here we analyse only the effects of course elevation profile and turn curvatures on his performances. We used publicly available data to determine the undulations in elevation and the radii of the curves on the course. With previously developed equations for the effects of velocity, slope, and curvature on oxygen uptake, we performed simulations to quantify how much the elevation changes and curves of the Vienna course affect a runner's oxygen uptake (at a fixed velocity) or velocity (at a fixed oxygen uptake). We estimate that, after the initial downhill benefit, the course led to an overall oxygen uptake penalty of only 0.03%. When compared to a perfectly level straight course, we estimate that the combined effects of the undulations and curves of the Vienna course incurred a penalty of just 1.37 seconds. Kipchoge ran 2:00:25 in Monza Italy. Comparison with the Monza course profile indicates a 46.2 second (1.09% oxygen uptake) advantage of Vienna's course while the fewer curves of Vienna contributed ~ 1 second. The Vienna course was very well-chosen because it minimized the negative effects of elevation changes and curves.Abbreviations: CoT: Oxygen cost of transport; CV˙O2: Curved rate of oxygen consumption; V˙O2: Rate of oxygen consumption; WA: World Athletics.
Collapse
Affiliation(s)
| | - Wouter Hoogkamer
- Department of Kinesiology, University of Massachusetts, Amherst, MA, USA
| | - Christoph Triska
- Centre for Sports Science and University Sports, University of Vienna, Vienna, Austria.,Austrian Institute of Sports Medicine, Vienna, Austria
| | - Paolo Taboga
- Department of Kinesiology, California State University, Sacramento, CA, USA
| | | | - Rodger Kram
- Department of Integrative Physiology, University of Colorado, Boulder, CO, USA
| |
Collapse
|
54
|
Beck ON, Golyski PR, Sawicki GS. Adding carbon fiber to shoe soles may not improve running economy: a muscle-level explanation. Sci Rep 2020; 10:17154. [PMID: 33051532 PMCID: PMC7555508 DOI: 10.1038/s41598-020-74097-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 09/21/2020] [Indexed: 01/13/2023] Open
Abstract
In an attempt to improve their distance-running performance, many athletes race with carbon fiber plates embedded in their shoe soles. Accordingly, we sought to establish whether, and if so how, adding carbon fiber plates to shoes soles reduces athlete aerobic energy expenditure during running (improves running economy). We tested 15 athletes as they ran at 3.5 m/s in four footwear conditions that varied in shoe sole bending stiffness, modified by carbon fiber plates. For each condition, we quantified athlete aerobic energy expenditure and performed biomechanical analyses, which included the use of ultrasonography to examine soleus muscle dynamics in vivo. Overall, increased footwear bending stiffness lengthened ground contact time (p = 0.048), but did not affect ankle (p ≥ 0.060), knee (p ≥ 0.128), or hip (p ≥ 0.076) joint angles or moments. Additionally, increased footwear bending stiffness did not affect muscle activity (all seven measured leg muscles (p ≥ 0.146)), soleus active muscle volume (p = 0.538; d = 0.241), or aerobic power (p = 0.458; d = 0.04) during running. Hence, footwear bending stiffness does not appear to alter the volume of aerobic energy consuming muscle in the soleus, or any other leg muscle, during running. Therefore, adding carbon fiber plates to shoe soles slightly alters whole-body and calf muscle biomechanics but may not improve running economy.
Collapse
Affiliation(s)
- Owen N Beck
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA. .,School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA.
| | - Pawel R Golyski
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA.,Parker H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Gregory S Sawicki
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA.,School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA.,Parker H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA, USA
| |
Collapse
|
55
|
Emig T, Peltonen J. Human running performance from real-world big data. Nat Commun 2020; 11:4936. [PMID: 33024098 PMCID: PMC7538888 DOI: 10.1038/s41467-020-18737-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Accepted: 09/08/2020] [Indexed: 11/22/2022] Open
Abstract
Wearable exercise trackers provide data that encode information on individual running performance. These data hold great potential for enhancing our understanding of the complex interplay between training and performance. Here we demonstrate feasibility of this idea by applying a previously validated mathematical model to real-world running activities of ≈ 14,000 individuals with ≈ 1.6 million exercise sessions containing duration and distance, with a total distance of ≈ 20 million km. Our model depends on two performance parameters: an aerobic power index and an endurance index. Inclusion of endurance, which describes the decline in sustainable power over duration, offers novel insights into performance: a highly accurate race time prediction and the identification of key parameters such as the lactate threshold, commonly used in exercise physiology. Correlations between performance indices and training volume and intensity are quantified, pointing to an optimal training. Our findings hint at new ways to quantify and predict athletic performance under real-world conditions. Laboratory performance tests provide the gold standard for running performance but do not reflect real running conditions. Here the authors use a large, real world dataset obtained from wearable exercise trackers to extract parameters that accurately predict race times and correlate with training.
Collapse
Affiliation(s)
- Thorsten Emig
- Université Paris-Saclay, CNRS, Laboratoire de Physique Théorique et Modèles Statistiques, 91405, Orsay, France.
| | - Jussi Peltonen
- Polar Electro Oy, Professorintie 5, 90440, Kempele, Finland
| |
Collapse
|
56
|
Rodrigo-Carranza V, González-Mohíno F, Santos-Concejero J, González-Ravé JM. Influence of Shoe Mass on Performance and Running Economy in Trained Runners. Front Physiol 2020; 11:573660. [PMID: 33071828 PMCID: PMC7538857 DOI: 10.3389/fphys.2020.573660] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 08/25/2020] [Indexed: 11/13/2022] Open
Abstract
Purpose The aim of this study was to assess the effects of adding shoe mass on running economy (RE), gait characteristics, neuromuscular variables and performance in a group of trained runners. Methods Eleven trained runners (6 men and 5 women) completed four evaluation sessions separated by at least 7 days. The first session consisted of a maximal incremental test where the second ventilatory threshold (VT2) and the speed associated to the VO2max (vVO2max) were calculated. In the next sessions, RE at 75, 85, and 95% of the VT2 and the time to exhaustion (TTE) at vVO2max were assessed in three different shoe mass conditions (control, +50 g and +100 g) in a randomized, counterbalanced crossover design. Biomechanical and neuromuscular variables, blood lactate and energy expenditure were measured during the TTE test. Results RE worsened with the increment of shoe mass (Control vs. 100 g) at 85% (7.40%, 4.409 ± 0.29 and 4.735 ± 0.27 kJ⋅kg−1⋅km−1, p = 0.021) and 95% (10.21%, 4.298 ± 0.24 and 4.737 ± 0.45 kJ⋅kg−1⋅km−1, p = 0.005) of VT2. HR significantly increased with the addition of mass (50 g) at 75% of VT2 (p = 0.01) and at 75, 85, and 95% of VT2 (p = 0.035, 0.03, and 0.03, respectively) with the addition of 100 g. TTE was significantly longer (∼22%, ∼42 s, p = 0.002, ES = 0.149) in the Control condition vs. 100 g condition, but not between Control vs. 50 g (∼24 s, p = 0.094, ES = 0.068). Conclusion Overall, our findings suggest that adding 100 g per shoe impairs running economy and performance in trained runners without changes in gait characteristics or neuromuscular variables. These findings further support the use of light footwear to optimize running performance.
Collapse
Affiliation(s)
| | - Fernando González-Mohíno
- Sport Training Lab, University of Castilla-La Mancha, Toledo, Spain.,Facultad de Lenguas y Educación, Universidad Nebrija, Madrid, Spain
| | - Jordan Santos-Concejero
- Department of Physical Education and Sport, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain
| | | |
Collapse
|
57
|
Lanferdini FJ, Silva ES, Machado E, Fischer G, Peyré-Tartaruga LA. Physiological Predictors of Maximal Incremental Running Performance. Front Physiol 2020; 11:979. [PMID: 32848890 PMCID: PMC7419685 DOI: 10.3389/fphys.2020.00979] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Accepted: 07/20/2020] [Indexed: 11/13/2022] Open
Abstract
Purpose The aim of this study was to verify whether physiological components [vertical jumps (Squat Jump - SJ and Countermovement Jump - CMJ), eccentric utilization ratio (EUR) of vertical jumps, running economy (RE), metabolic cost (C MET ), first and second ventilatory threshold (VT1 and VT2) maximal oxygen uptake (VO2MAX)] can predict maximal endurance running performance. Methods Twenty male runners performed maximal vertical jumps, submaximal running at constant speeds, and maximal incremental running test. Before, we measured anthropometric parameters (body mass and height) and registered the training history and volume. SJ and CMJ tests were evaluated prior to running tests. Initially, the oxygen uptake (VO2) was collected at rest in the orthostatic position for 6 min. Soon after, a 10-min warm-up was performed on the treadmill at 10 km⋅h-1, followed by two 5-min treadmill rectangular tests at 12 and 16 km⋅h-1 monitored by a gas analyzer. After that, the runners performed a maximal incremental test, where the VT1, VT2, and VO2MAX were evaluated, as well as the maximum running speed (vVO2MAX). Thus, RE and C MET were calculated with data obtained during rectangular running tests. Multivariate stepwise regression analyses were conducted to measure the relationship between independent variables (height and power of SJ and CMJ, EUR; RE and C MET 12 and 16 km⋅h-1 ; VT1, VT2, and VO2MAX), as predictors of maximal running performance (vVO2MAX), with significance level at α = 0.05. Results We found that VO2MAX and RE at 16 km⋅h-1 predict 81% of performance (vVO2MAX) of endurance runners (p < 0.001). Conclusion The main predictors of the maximal incremental running test performance were VO2MAX and RE.
Collapse
Affiliation(s)
- Fábio J Lanferdini
- Laboratório de Biomecânica, Centro de Desportos, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Edson S Silva
- Laboratório de Pesquisa do Exercício, Escola de Educação Física, Fisioterapia e Dança, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Esthevan Machado
- Laboratório de Pesquisa do Exercício, Escola de Educação Física, Fisioterapia e Dança, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Gabriela Fischer
- Laboratório de Biomecânica, Centro de Desportos, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Leonardo A Peyré-Tartaruga
- Laboratório de Pesquisa do Exercício, Escola de Educação Física, Fisioterapia e Dança, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
58
|
Padilha CS, Billaut F, Figueiredo C, Panissa VLG, Rossi FE, Lira FS. Capsaicin Supplementation during High-intensity Continuous Exercise: A Double-blind Study. Int J Sports Med 2020; 41:1061-1066. [PMID: 32693427 DOI: 10.1055/a-1088-5388] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
To investigate the effect of acute capsaicin (CAP) supplementation on time to exhaustion, physiological responses and energy systems contribution during continuous high-intensity exercise session in runners. Fifteen recreationally-trained runners completed two randomized, double-blind continuous high-intensity exercises at the speed eliciting 90% V̇O2peak (90% s V̇O2peak), 45 minutes after consuming capsaicin or an isocaloric placebo. Time to exhaustion, blood lactate concentration, oxygen consumption during and 20-min post-exercise, energy systems contribution, time to reach V̇O2peak, heart rate and the rate of perceived exertion (RPE) were evaluated. There was no significant difference between conditions for time to reach V̇O2peak (CAP:391.71±221.8 vs. PLA:298.20±174.5 sec, ES:0.58, p=0.872), peak lactate (CAP:7.98±2.11 vs. PLA:8.58±2.15 µmol, ES:-0.28, p=0.257), time to exhaustion (CAP:654.28±195.44 vs. PLA:709.20±208.44 sec, ES:-0.28, p=0.462, end-of-exercise heart rate (CAP:177.6±14.9 vs. PLA:177.5±17.9 bpm, ES:-0.10, p=0.979) and end-of-exercise RPE (CAP: 19±0.8 vs. PLA: 18±2.4, ES: 0.89, p=0.623). In conclusion, acute CAP supplementation did not increase time to exhaustion during high-intensity continuous exercise nor alter physiological responses in runners.
Collapse
Affiliation(s)
- Camila S Padilha
- Laboratory of Exercise Biochemistry. Department of Physical Education. Universidade Estadual de Londrina, Paraná, Brazil.,Exercise and Immunometabolism Research Group. Post-Graduation Program in Moviment Sicences. Department of Physical Education. State University of São Paulo (UNESP). School of Technology and Sciences. Presidente Prudente, São Paulo, Brazil
| | | | - Caique Figueiredo
- Exercise and Immunometabolism Research Group. Post-Graduation Program in Physiotherapy. Department of Physical Education. State University of São Paulo (UNESP). School of T-echnology and Sciences. Presidente Prudente, São Paulo, Brazil
| | | | | | - Fabio S Lira
- Exercise and Immunometabolism Research Group. Post-Graduation Program in Moviment Sicences. Department of Physical Education. State University of São Paulo (UNESP). School of Technology and Sciences. Presidente Prudente, São Paulo, Brazil
| |
Collapse
|
59
|
Burke LM, Sharma AP, Heikura IA, Forbes SF, Holloway M, McKay AKA, Bone JL, Leckey JJ, Welvaert M, Ross ML. Crisis of confidence averted: Impairment of exercise economy and performance in elite race walkers by ketogenic low carbohydrate, high fat (LCHF) diet is reproducible. PLoS One 2020; 15:e0234027. [PMID: 32497061 PMCID: PMC7272074 DOI: 10.1371/journal.pone.0234027] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 05/15/2020] [Indexed: 12/26/2022] Open
Abstract
INTRODUCTION We repeated our study of intensified training on a ketogenic low-carbohydrate (CHO), high-fat diet (LCHF) in world-class endurance athletes, with further investigation of a "carryover" effect on performance after restoring CHO availability in comparison to high or periodised CHO diets. METHODS After Baseline testing (10,000 m IAAF-sanctioned race, aerobic capacity and submaximal walking economy) elite male and female race walkers undertook 25 d supervised training and repeat testing (Adapt) on energy-matched diets: High CHO availability (8.6 g∙kg-1∙d-1 CHO, 2.1 g∙kg-1∙d-1 protein; 1.2 g∙kg-1∙d-1 fat) including CHO before/during/after workouts (HCHO, n = 8): similar macronutrient intake periodised within/between days to manipulate low and high CHO availability at various workouts (PCHO, n = 8); and LCHF (<50 g∙d-1 CHO; 78% energy as fat; 2.1 g∙kg-1∙d-1 protein; n = 10). After Adapt, all athletes resumed HCHO for 2.5 wk before a cohort (n = 19) completed a 20 km race. RESULTS All groups increased VO2peak (ml∙kg-1∙min-1) at Adapt (p = 0.02, 95%CI: [0.35-2.74]). LCHF markedly increased whole-body fat oxidation (from 0.6 g∙min-1 to 1.3 g∙min-1), but also the oxygen cost of walking at race-relevant velocities. Differences in 10,000 m performance were clear and meaningful: HCHO improved by 4.8% or 134 s (95% CI: [207 to 62 s]; p < 0.001), with a trend for a faster time (2.2%, 61 s [-18 to +144 s]; p = 0.09) in PCHO. LCHF were slower by 2.3%, -86 s ([-18 to -144 s]; p < 0.001), with no evidence of superior "rebound" performance over 20 km after 2.5 wk of HCHO restoration and taper. CONCLUSION Our previous findings of impaired exercise economy and performance of sustained high-intensity race walking following keto-adaptation in elite competitors were repeated. Furthermore, there was no detectable benefit from undertaking an LCHF intervention as a periodised strategy before a 2.5-wk race preparation/taper with high CHO availability. TRIAL REGISTRATION Australia New Zealand Clinical Trial Registry: ACTRN12619000794101.
Collapse
Affiliation(s)
- Louise M. Burke
- Australian Institute of Sport, Canberra, Australia
- Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, Australia
| | - Avish P. Sharma
- Australian Institute of Sport, Canberra, Australia
- Griffith Sports Physiology and Performance, School of Allied Health Sciences, Griffith University, Gold Coast, Australia
| | - Ida A. Heikura
- Australian Institute of Sport, Canberra, Australia
- Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, Australia
| | | | | | - Alannah K. A. McKay
- Australian Institute of Sport, Canberra, Australia
- School of Human Sciences (Exercise and Sport Science), The University of Western Australia, Crawley, WA, Australia
- Western Australian Institute of Sport, Mt Claremont, WA, Australia
| | - Julia L. Bone
- Australian Institute of Sport, Canberra, Australia
- Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, Australia
| | - Jill J. Leckey
- Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, Australia
| | - Marijke Welvaert
- Australian Institute of Sport, Canberra, Australia
- University of Canberra Research Institute for Sport and Exercise, Canberra, Australia
| | - Megan L. Ross
- Australian Institute of Sport, Canberra, Australia
- Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, Australia
| |
Collapse
|
60
|
Dyer B. A Pragmatic Approach to Resolving Technological Unfairness: the Case of Nike's Vaporfly and Alphafly Running Footwear. SPORTS MEDICINE-OPEN 2020; 6:21. [PMID: 32448974 PMCID: PMC7246269 DOI: 10.1186/s40798-020-00250-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 04/30/2020] [Indexed: 11/10/2022]
Abstract
BACKGROUND Technology is often introduced into sport to facilitate it or to improve human performance within it. On occasion, some forms of novel technology require regulation or prevention entirely to ensure that a sport remains fair and accessible. Recently, the Nike Vaporfly and Alphafly shoes have received some concerns over their appropriateness for use in competitive distance running. METHODS This paper evaluates the use of these shoes against an existing framework for sports technology discourse and adopts a pragmatic approach to attempt to resolve them. RESULTS It is proposed that the three concerns regarding cost, access and coercion cannot be ruled out but likely remain short-term issues. As a result, it is proposed that these running shoes are acceptable forms of technology but that ongoing vigilance will be required as such technologies develop further in the future. CONCLUSIONS The Nike Vaporfly/Alphafly shoes do push the perceived acceptability of running shoes to the limits of the current sports regulations. However, the alleged gains have not manifested themselves to a level that could be considered excessive when reviewing historical performances or when evaluated against a set of well-cited criteria. The sport will need to adopt a stance of ongoing vigilance as such technologies continue to develop or be optimised in the future.
Collapse
Affiliation(s)
- Bryce Dyer
- Department of Design & Engineering, Bournemouth University, Poole, UK.
| |
Collapse
|
61
|
Sawicki GS, Beck ON, Kang I, Young AJ. The exoskeleton expansion: improving walking and running economy. J Neuroeng Rehabil 2020; 17:25. [PMID: 32075669 PMCID: PMC7029455 DOI: 10.1186/s12984-020-00663-9] [Citation(s) in RCA: 139] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 02/13/2020] [Indexed: 11/10/2022] Open
Abstract
Since the early 2000s, researchers have been trying to develop lower-limb exoskeletons that augment human mobility by reducing the metabolic cost of walking and running versus without a device. In 2013, researchers finally broke this 'metabolic cost barrier'. We analyzed the literature through December 2019, and identified 23 studies that demonstrate exoskeleton designs that improved human walking and running economy beyond capable without a device. Here, we reviewed these studies and highlighted key innovations and techniques that enabled these devices to surpass the metabolic cost barrier and steadily improve user walking and running economy from 2013 to nearly 2020. These studies include, physiologically-informed targeting of lower-limb joints; use of off-board actuators to rapidly prototype exoskeleton controllers; mechatronic designs of both active and passive systems; and a renewed focus on human-exoskeleton interface design. Lastly, we highlight emerging trends that we anticipate will further augment wearable-device performance and pose the next grand challenges facing exoskeleton technology for augmenting human mobility.
Collapse
Affiliation(s)
- Gregory S Sawicki
- The George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA.
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA.
- Institute for Robotics and Intelligent Machines, Georgia Institute of Technology, Atlanta, GA, USA.
| | - Owen N Beck
- The George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Inseung Kang
- The George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Aaron J Young
- The George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA.
- Institute for Robotics and Intelligent Machines, Georgia Institute of Technology, Atlanta, GA, USA.
| |
Collapse
|
62
|
Taboga P, Kram R. Modelling the effect of curves on distance running performance. PeerJ 2019; 7:e8222. [PMID: 31879575 PMCID: PMC6927354 DOI: 10.7717/peerj.8222] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 11/15/2019] [Indexed: 11/20/2022] Open
Abstract
Background Although straight ahead running appears to be faster, distance running races are predominately contested on tracks or roads that involve curves. How much faster could world records be run on straight courses? Methods Here,we propose a model to explain the slower times observed for races involving curves compared to straight running. For a given running velocity, on a curve, the average axial leg force (\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{upgreek}
\usepackage{mathrsfs}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
}{}${\overline{F}}_{a}$\end{document}F¯a) of a runner is increased due to the need to exert centripetal force. The increased \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{upgreek}
\usepackage{mathrsfs}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
}{}${\overline{F}}_{a}$\end{document}F¯a presumably requires a greater rate of metabolic energy expenditure than straight running at the same velocity. We assumed that distance runners maintain a constant metabolic rate and thus slow down on curves accordingly. We combined published equations to estimate the change in the rate of gross metabolic energy expenditure as a function of \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{upgreek}
\usepackage{mathrsfs}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
}{}${\overline{F}}_{a}$\end{document}F¯a, where \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{upgreek}
\usepackage{mathrsfs}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
}{}${\overline{F}}_{a}$\end{document}F¯a depends on curve radius and velocity, with an equation for the gross rate of oxygen uptake as a function of velocity. We compared performances between straight courses and courses with different curve radii and geometries. Results The differences between our model predictions and the actual indoor world records, are between 0.45% in 3,000 m and 1.78% in the 1,500 m for males, and 0.59% in the 5,000 m and 1.76% in the 3,000 m for females. We estimate that a 2:01:39 marathon on a 400 m track, corresponds to 2:01:32 on a straight path and to 2:02:00 on a 200 m track. Conclusion Our model predicts that compared to straight racecourses, the increased time due to curves, is notable for smaller curve radii and for faster velocities. But, for larger radii and slower speeds, the time increase is negligible and the general perception of the magnitude of the effects of curves on road racing performance is not supported by our calculations.
Collapse
Affiliation(s)
- Paolo Taboga
- Kinesiology Department, California State University, Sacramento, CA, United States of America
| | - Rodger Kram
- Integrative Physiology Department, University of Colorado, Boulder, CO, United States of America
| |
Collapse
|
63
|
Swinnen W, Hoogkamer W, De Groote F, Vanwanseele B. Habitual foot strike pattern does not affect simulated triceps surae muscle metabolic energy consumption during running. ACTA ACUST UNITED AC 2019; 222:jeb.212449. [PMID: 31704899 DOI: 10.1242/jeb.212449] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 11/02/2019] [Indexed: 12/26/2022]
Abstract
Foot strike pattern affects ankle joint work and triceps surae muscle-tendon dynamics during running. Whether these changes in muscle-tendon dynamics also affect triceps surae muscle energy consumption is still unknown. In addition, as the triceps surae muscle accounts for a substantial amount of the whole-body metabolic energy consumption, changes in triceps surae energy consumption may affect whole-body metabolic energy consumption. However, direct measurements of muscle metabolic energy consumption during dynamic movements is difficult. Model-based approaches can be used to estimate individual muscle and whole-body metabolic energy consumption based on Hill type muscle models. In this study, we use an integrated experimental and dynamic optimization approach to compute muscle states (muscle forces, lengths, velocities, excitations and activations) of 10 habitual midfoot/forefoot striking and nine habitual rearfoot striking runners while running at 10 and 14 km h-1 The Achilles tendon stiffness of the musculoskeletal model was adapted to fit experimental ultrasound data of the gastrocnemius medialis muscle during ground contact. Next, we calculated triceps surae muscle and whole-body metabolic energy consumption using four different metabolic energy models provided in the literature. Neither triceps surae metabolic energy consumption (P>0.35) nor whole-body metabolic energy consumption (P>0.14) was different between foot strike patterns, regardless of the energy model used or running speed tested. Our results provide new evidence that midfoot/forefoot and rearfoot strike patterns are metabolically equivalent.
Collapse
Affiliation(s)
- Wannes Swinnen
- Human Movement Biomechanics Research Group, Department of Movement Sciences, KU Leuven, 3001 Leuven, Belgium
| | - Wouter Hoogkamer
- Department of Kinesiology, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Friedl De Groote
- Human Movement Biomechanics Research Group, Department of Movement Sciences, KU Leuven, 3001 Leuven, Belgium
| | - Benedicte Vanwanseele
- Human Movement Biomechanics Research Group, Department of Movement Sciences, KU Leuven, 3001 Leuven, Belgium
| |
Collapse
|
64
|
Simpson CS, Welker CG, Uhlrich SD, Sketch SM, Jackson RW, Delp SL, Collins SH, Selinger JC, Hawkes EW. Connecting the legs with a spring improves human running economy. J Exp Biol 2019; 222:jeb202895. [PMID: 31395676 PMCID: PMC6765174 DOI: 10.1242/jeb.202895] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 08/01/2019] [Indexed: 12/20/2022]
Abstract
Human running is inefficient. For every 10 calories burned, less than 1 is needed to maintain a constant forward velocity - the remaining energy is, in a sense, wasted. The majority of this wasted energy is expended to support the bodyweight and redirect the center of mass during the stance phase of gait. An order of magnitude less energy is expended to brake and accelerate the swinging leg. Accordingly, most devices designed to increase running efficiency have targeted the costlier stance phase of gait. An alternative approach is seen in nature: spring-like tissues in some animals and humans are believed to assist leg swing. While it has been assumed that such a spring simply offloads the muscles that swing the legs, thus saving energy, this mechanism has not been experimentally investigated. Here, we show that a spring, or 'exotendon', connecting the legs of a human reduces the energy required for running by 6.4±2.8%, and does so through a complex mechanism that produces savings beyond those associated with leg swing. The exotendon applies assistive forces to the swinging legs, increasing the energy optimal stride frequency. Runners then adopt this frequency, taking faster and shorter strides, and reduce the joint mechanical work to redirect their center of mass. Our study shows how a simple spring improves running economy through a complex interaction between the changing dynamics of the body and the adaptive strategies of the runner, highlighting the importance of considering each when designing systems that couple human and machine.
Collapse
Affiliation(s)
- Cole S Simpson
- Stanford University, Department of Mechanical Engineering, Stanford, CA 94305, USA
| | - Cara G Welker
- Stanford University, Department of Mechanical Engineering, Stanford, CA 94305, USA
- Stanford University, Department of Bioengineering, Stanford, CA 94305, USA
| | - Scott D Uhlrich
- Stanford University, Department of Mechanical Engineering, Stanford, CA 94305, USA
| | - Sean M Sketch
- Stanford University, Department of Mechanical Engineering, Stanford, CA 94305, USA
| | - Rachel W Jackson
- Stanford University, Department of Bioengineering, Stanford, CA 94305, USA
| | - Scott L Delp
- Stanford University, Department of Mechanical Engineering, Stanford, CA 94305, USA
- Stanford University, Department of Bioengineering, Stanford, CA 94305, USA
| | - Steve H Collins
- Stanford University, Department of Mechanical Engineering, Stanford, CA 94305, USA
| | - Jessica C Selinger
- Stanford University, Department of Bioengineering, Stanford, CA 94305, USA
- Queen's University, School of Kinesiology and Health Studies, Kingston, ON K7L 3N6, Canada
| | - Elliot W Hawkes
- University of California, Santa Barbara, Department of Mechanical Engineering, Santa Barbara, CA 93106, USA
| |
Collapse
|
65
|
Kram R. Shoes, running economy and distance running performance. FOOTWEAR SCIENCE 2019. [DOI: 10.1080/19424280.2019.1606339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Rodger Kram
- Locomotion Lab, Integrative Physiology Department, University of Colorado, Boulder, CO, USA
| |
Collapse
|