51
|
Testa MTDJ, Cella PS, Marinello PC, Frajacomo FTT, Padilha CDS, Perandini PC, Moura FA, Duarte JA, Cecchini R, Guarnier FA, Deminice R. Resistance Training Attenuates Activation of STAT3 and Muscle Atrophy in Tumor-Bearing Mice. Front Oncol 2022; 12:880787. [PMID: 35847939 PMCID: PMC9283857 DOI: 10.3389/fonc.2022.880787] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 06/06/2022] [Indexed: 11/16/2022] Open
Abstract
Purpose Although the role of signal transducers and activators of transcription (STAT3) in cachexia due to the association of circulating IL-6 and muscle wasting has been extensively demonstrated, the effect of resistance training on STAT3 in mediating muscle atrophy in tumor-bearing mice is unknown. The aim of this study is to investigate the effects of resistance exercise training on inflammatory cytokines and oxidative-mediated STAT3 activation and muscle loss prevention in tumor-bearing mice. Methods Male Swiss mice were inoculated with Ehrlich tumor cells and exposed or not exposed to resistance exercise protocol of ladder climbing. Skeletal muscle STAT3 protein content was measured, compared between groups, and tested for possible association with plasma interleukins and local oxidative stress markers. Components of the ubiquitin-proteasome and autophagy pathways were assessed by real-time PCR or immunoblotting. Results Resistance training prevented STAT3 excessive activation in skeletal muscle mediated by the overabundance of plasma IL-6 and muscle oxidative stress. These mechanisms contributed to preventing the increased key genes and proteins of ubiquitin-proteasome and autophagy pathways in tumor-bearing mice, such as Atrogin-1, LC3B-II, and Beclin-1. Beyond preventing muscle atrophy, RT also prevented strength loss and impaired locomotor capacity, hallmarks of sarcopenia. Conclusion Our results suggest that STAT3 inhibition is central in resistance exercise protective effects against cancer-induced muscle atrophy and strength loss.
Collapse
Affiliation(s)
| | - Paola Sanches Cella
- Department of Physical Education, State University of Londrina, Londrina, Brazil
| | - Poliana Camila Marinello
- Department of Physical Education, State University of Londrina, Londrina, Brazil
- Department of General Pathology, State University of Londrina, Londrina, Brazil
| | | | - Camila de Souza Padilha
- Department of Physical Education, State University of Londrina, Londrina, Brazil
- Department of Physical Education, State University of São Paulo (UNESP), Presidente Prudente, Brazil
| | | | - Felipe Arruda Moura
- Department of Physical Education, State University of Londrina, Londrina, Brazil
| | | | - Rubens Cecchini
- Department of General Pathology, State University of Londrina, Londrina, Brazil
| | | | - Rafael Deminice
- Department of Physical Education, State University of Londrina, Londrina, Brazil
- *Correspondence: Rafael Deminice, ; orcid.org/0000-0002-9246-1079
| |
Collapse
|
52
|
Chen S, He Z, Xie W, Chen X, Lin Z, Ma J, Liu Z, Yang S, Wang Y. Ginsenoside Rh2 attenuates CDAHFD-induced liver fibrosis in mice by improving intestinal microbial composition and regulating LPS-mediated autophagy. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 101:154121. [PMID: 35489327 DOI: 10.1016/j.phymed.2022.154121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 03/26/2022] [Accepted: 04/17/2022] [Indexed: 05/17/2023]
Abstract
BACKGROUND Nowadays, liver diseases are threatening more and more people all over the world and one of the main causes is liver fibrosis. However, there is no effective way to reverse liver fibrosis. PURPOSE To investigate whether ginsenoside Rh2 (G-Rh2) can alleviate liver fibrosis and elucidate its underlying mechanism. METHODS In vivo and in vitro methods were adopted in this research. Choline-deficient, L-amino acid-defined, high-fat diet (CDAHFD) was used to feed mice to induce liver fibrosis, and HSC-T6 cells were used to establish an LPS-induced model of liver fibrosis. Through histopathological staining, hematoxylin-eosin (H&E) staining, western blot analysis, intestinal bacteria 16SrRNA sequencing, and other technical means, the research explored whether G-Rh2 possesses anti-fibrotic activity. RESULTS G-Rh2 could notably alleviate CDAHFD-induced liver fibrosis in mice. In particular, it could alleviate liver injury and reduce plasma lipopolysaccharide (LPS) levels. Additionally, G-Rh2 could repair intestinal injury as well as regulate intestinal microbial diversity and composition. HSC-T6 cells could be activated and autophagy could be induced further by LPS in vitro. After being treated with G-Rh2, autophagy was restrained and activation of hepatic stellate cells (HSCs) was controlled. Deeper research showed that G-Rh2 restrained the activation of HSCs via stimulating the AKT-mTOR signaling pathway, restraining autophagy. CONCLUSION The results of our studies clearly suggest that G-Rh2 repairs intestinal injury, improves intestinal microbial composition, reduces plasma LPS levels, and activates the AKT-mTOR signaling pathway to restrain LPS-mediated autophagy, thus playing an important role in anti-hepatic fibrosis. G-Rh2 was found to have the potential to effectively alleviate liver fibrosis.
Collapse
Affiliation(s)
- Siyu Chen
- College of Chinese Medicinal Materials, JiLin Agricultural University, Changchun,130118, China
| | - Ziwei He
- College of Chinese Medicinal Materials, JiLin Agricultural University, Changchun,130118, China
| | - Wei Xie
- School of Pharmaceutical Sciences, WenZhou Medical University, Wenzhou 325035, China
| | - Xuan Chen
- College of Chinese Medicinal Materials, JiLin Agricultural University, Changchun,130118, China
| | - Zhuofeng Lin
- School of Pharmaceutical Sciences, WenZhou Medical University, Wenzhou 325035, China
| | - Jisheng Ma
- School of Pharmaceutical Sciences, WenZhou Medical University, Wenzhou 325035, China
| | - Zhi Liu
- College of Chinese Medicinal Materials, JiLin Agricultural University, Changchun,130118, China
| | - Shihai Yang
- College of Chinese Medicinal Materials, JiLin Agricultural University, Changchun,130118, China; Laboratory for cultivation and breeding of medicinal plants of National Administrition of Traditional Chinese Medicine, JiLin Agricultural University, Changchun,130118, China.
| | - Yanfang Wang
- College of Chinese Medicinal Materials, JiLin Agricultural University, Changchun,130118, China; Laboratory for cultivation and breeding of medicinal plants of National Administrition of Traditional Chinese Medicine, JiLin Agricultural University, Changchun,130118, China.
| |
Collapse
|
53
|
Goto-Inoue N, Morisasa M, Kimura K, Mori T, Furuichi Y, Manabe Y, Fujii NL. Mass spectrometry imaging reveals local metabolic changes in skeletal muscle due to chronic training. Biosci Biotechnol Biochem 2022; 86:730-738. [PMID: 35285857 DOI: 10.1093/bbb/zbac037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 03/09/2022] [Indexed: 11/13/2022]
Abstract
Muscle atrophy is a major health problem that needs effective prevention and treatment approaches. Chronic exercise, an effective treatment strategy for atrophy, promotes muscle hypertrophy, which leads to dynamic metabolic changes; however, the metabolic changes vary among myofiber types. To investigate local metabolic changes due to chronic exercise, we utilized comprehensive proteome and mass spectrometry (MS) imaging analyses. Our training model exhibited hypertrophic features only in glycolytic myofibers. The proteome analyses demonstrated that exercise promoted anabolic pathways, such as protein synthesis, and significant changes in lipid metabolism, but not in glucose metabolism. Furthermore, the fundamental energy sources, glycogen, neutral lipids, and ATP, were sensitive to exercise, and the changes in these sources differed between glycolytic and oxidative myofibers. MS imaging revealed that the lipid composition differs among myofibers; arachidonic acid might be an effective target for promoting lipid metabolism during muscle hypertrophy in oxidative myofibers.
Collapse
Affiliation(s)
- Naoko Goto-Inoue
- Department of Marine Science and Resources, College of Bioresource Sciences, Nihon University, 1866 Kameino, Fujisawa, Kanagawa, Japan
| | - Mizuki Morisasa
- Department of Marine Science and Resources, College of Bioresource Sciences, Nihon University, 1866 Kameino, Fujisawa, Kanagawa, Japan
| | - Keisuke Kimura
- Department of Marine Science and Resources, College of Bioresource Sciences, Nihon University, 1866 Kameino, Fujisawa, Kanagawa, Japan
| | - Tsukasa Mori
- Department of Marine Science and Resources, College of Bioresource Sciences, Nihon University, 1866 Kameino, Fujisawa, Kanagawa, Japan
| | - Yasuro Furuichi
- Health Promotion Sciences, Tokyo Metropolitan University, 1-1 Minamiosawa Hachioji, Tokyo, Japan
| | - Yasuko Manabe
- Health Promotion Sciences, Tokyo Metropolitan University, 1-1 Minamiosawa Hachioji, Tokyo, Japan
| | - Nobuharu L Fujii
- Health Promotion Sciences, Tokyo Metropolitan University, 1-1 Minamiosawa Hachioji, Tokyo, Japan
| |
Collapse
|
54
|
Apoptosis-Inducing Factor Deficiency Induces Tissue-Specific Alterations in Autophagy: Insights from a Preclinical Model of Mitochondrial Disease and Exercise Training Effects. Antioxidants (Basel) 2022; 11:antiox11030510. [PMID: 35326160 PMCID: PMC8944439 DOI: 10.3390/antiox11030510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/01/2022] [Accepted: 03/03/2022] [Indexed: 02/04/2023] Open
Abstract
We analyzed the effects of apoptosis-inducing factor (AIF) deficiency, as well as those of an exercise training intervention on autophagy across tissues (heart, skeletal muscle, cerebellum and brain), that are primarily affected by mitochondrial diseases, using a preclinical model of these conditions, the Harlequin (Hq) mouse. Autophagy markers were analyzed in: (i) 2, 3 and 6 month-old male wild-type (WT) and Hq mice, and (ii) WT and Hq male mice that were allocated to an exercise training or sedentary group. The exercise training started upon onset of the first symptoms of ataxia in Hq mice and lasted for 8 weeks. Higher content of autophagy markers and free amino acids, and lower levels of sarcomeric proteins were found in the skeletal muscle and heart of Hq mice, suggesting increased protein catabolism. Leupeptin-treatment demonstrated normal autophagic flux in the Hq heart and the absence of mitophagy. In the cerebellum and brain, a lower abundance of Beclin 1 and ATG16L was detected, whereas higher levels of the autophagy substrate p62 and LAMP1 levels were observed in the cerebellum. The exercise intervention did not counteract the autophagy alterations found in any of the analyzed tissues. In conclusion, AIF deficiency induces tissue-specific alteration of autophagy in the Hq mouse, with accumulation of autophagy markers and free amino acids in the heart and skeletal muscle, but lower levels of autophagy-related proteins in the cerebellum and brain. Exercise intervention, at least if starting when muscle atrophy and neurological symptoms are already present, is not sufficient to mitigate autophagy perturbations.
Collapse
|
55
|
Exercise and Training Regulation of Autophagy Markers in Human and Rat Skeletal Muscle. Int J Mol Sci 2022; 23:ijms23052619. [PMID: 35269762 PMCID: PMC8910616 DOI: 10.3390/ijms23052619] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/20/2022] [Accepted: 02/25/2022] [Indexed: 02/05/2023] Open
Abstract
Autophagy is a key intracellular mechanism by which cells degrade old or dysfunctional proteins and organelles. In skeletal muscle, evidence suggests that exercise increases autophagosome content and autophagy flux. However, the exercise-induced response seems to differ between rodents and humans, and little is known about how different exercise prescription parameters may affect these results. The present study utilised skeletal muscle samples obtained from four different experimental studies using rats and humans. Here, we show that, following exercise, in the soleus muscle of Wistar rats, there is an increase in LC3B-I protein levels immediately after exercise (+109%), and a subsequent increase in LC3B-II protein levels 3 h into the recovery (+97%), despite no change in Map1lc3b mRNA levels. Conversely, in human skeletal muscle, there is an immediate exercise-induced decrease in LC3B-II protein levels (−24%), independent of whether exercise is performed below or above the maximal lactate steady state, which returns to baseline 3.5 h following recovery, while no change in LC3B-I protein levels or MAP1LC3B mRNA levels is observed. SQSTM1/p62 protein and mRNA levels did not change in either rats or humans following exercise. By employing an ex vivo autophagy flux assay previously used in rodents we demonstrate that the exercise-induced decrease in LC3B-II protein levels in humans does not reflect a decreased autophagy flux. Instead, effect size analyses suggest a modest-to-large increase in autophagy flux following exercise that lasts up to 24 h. Our findings suggest that exercise-induced changes in autophagosome content markers differ between rodents and humans, and that exercise-induced decreases in LC3B-II protein levels do not reflect autophagy flux level.
Collapse
|
56
|
Bonilauri B, Dallagiovanna B. Microproteins in skeletal muscle: hidden keys in muscle physiology. J Cachexia Sarcopenia Muscle 2022; 13:100-113. [PMID: 34850602 PMCID: PMC8818594 DOI: 10.1002/jcsm.12866] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 10/01/2021] [Accepted: 10/12/2021] [Indexed: 11/10/2022] Open
Abstract
Recent advances in the transcriptomics, translatomics, and proteomics have led us to the exciting new world of functional endogenous microproteins. These microproteins have a small size and are derived from small open reading frames (smORFs) of RNAs previously annotated as non-coding (e.g. lncRNAs and circRNAs) as well as from untranslated regions and canonical mRNAs. The presence of these microproteins reveals a much larger translatable portion of the genome, shifting previously defined dogmas and paradigms. These findings affect our view of organisms as a whole, including skeletal muscle tissue. Emerging evidence demonstrates that several smORF-derived microproteins play crucial roles during muscle development (myogenesis), maintenance, and regeneration, as well as lipid and glucose metabolism and skeletal muscle bioenergetics. These microproteins are also involved in processes including physical activity capacity, cellular stress, and muscular-related diseases (i.e. myopathy, cachexia, atrophy, and muscle wasting). Given the role of these small proteins as important key regulators of several skeletal muscle processes, there are rich prospects for the discovery of new microproteins and possible therapies using synthetic microproteins.
Collapse
Affiliation(s)
- Bernardo Bonilauri
- Laboratory of Basic Biology of Stem Cells (LABCET)Carlos Chagas Institute ‐ Fiocruz‐PRCuritibaParanáBrazil
| | - Bruno Dallagiovanna
- Laboratory of Basic Biology of Stem Cells (LABCET)Carlos Chagas Institute ‐ Fiocruz‐PRCuritibaParanáBrazil
| |
Collapse
|
57
|
Xie X, Shu R, Yu C, Fu Z, Li Z. Mammalian AKT, the Emerging Roles on Mitochondrial Function in Diseases. Aging Dis 2022; 13:157-174. [PMID: 35111368 PMCID: PMC8782557 DOI: 10.14336/ad.2021.0729] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 07/29/2021] [Indexed: 01/21/2023] Open
Abstract
Mitochondrial dysfunction may play a crucial role in various diseases due to its roles in the regulation of energy production and cellular metabolism. Serine/threonine kinase (AKT) is a highly recognized antioxidant, immunomodulatory, anti-proliferation, and endocrine modulatory molecule. Interestingly, increasing studies have revealed that AKT can modulate mitochondria-mediated apoptosis, redox states, dynamic balance, autophagy, and metabolism. AKT thus plays multifaceted roles in mitochondrial function and is involved in the modulation of mitochondria-related diseases. This paper reviews the protective effects of AKT and its potential mechanisms of action in relation to mitochondrial function in various diseases.
Collapse
Affiliation(s)
- Xiaoxian Xie
- 1College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Ruonan Shu
- 1College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Chunan Yu
- 1College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Zhengwei Fu
- 1College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Zezhi Li
- 2Department of Psychiatry, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
58
|
Li-Li F, Bo-Wen L, Yue X, Zhen-Jun T, Meng-Xin C. Aerobic exercise and resistance exercise alleviate skeletal muscle atrophy through IGF-1/IGF-1R-PI3K/Akt pathway in mice with myocardial infarction. Am J Physiol Cell Physiol 2021; 322:C164-C176. [PMID: 34852207 DOI: 10.1152/ajpcell.00344.2021] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
OBJECTIVES Myocardial infarction (MI)-induced heart failure (HF) is commonly accompanied with profound effects on skeletal muscle. With the process of MI-induced HF, perturbations in skeletal muscle contribute to muscle atrophy. Exercise is viewed as a feasible strategy to prevent muscle atrophy. The aims of this study were to investigate whether exercise could alleviate MI-induced skeletal muscle atrophy via insulin-like growth factor 1 (IGF-1) pathway in mice. MATERIALS AND METHODS Male C57/BL6 mice were used to establish the MI model and divided into three groups: sedentary MI group, MI with aerobic exercise group and MI with resistance exercise group, sham-operated group was used as control. Exercise-trained animals were subjected to four-weeks of aerobic exercise (AE) or resistance exercise (RE). Cardiac function, muscle weight, myofiber size, levels of IGF-1 signaling and proteins related to myogenesis, protein synthesis and degradation and cell apoptosis in gastrocnemius muscle were detected. And H2O2-treated C2C12 cells were intervened with recombinant human IGF-1, IGF-1R inhibitor NVP-AEW541 and PI3K inhibitor LY294002 to explore the mechanism. Results:Exercises up-regulated the IGF-1/IGF-1R-phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt) signaling, increased the expressions of Pax7, myogenic regulatory factors (MRFs) and protein synthesis, reduced protein degradation and cell apoptosis in MI-mice. In vitro, IGF-1 up-regulated the levels of Pax7 and MRFs, mTOR and P70S6K, reduced MuRF1, MAFbx and inhibited cell apoptosis via IGF-1R-PI3K/Akt pathway. CONCLUSION AE and RE, safely and effectively, alleviate skeletal muscle atrophy by regulating the levels of myogenesis, protein degradation and cells apoptosis in mice with MI via activating IGF-1/IGF-1R-PI3K/Akt pathway.
Collapse
Affiliation(s)
- Feng Li-Li
- Institute of Sports Biology, College of Physical Education, Shaanxi Normal University, Xi'an, China
| | - Li Bo-Wen
- Institute of Sports Biology, College of Physical Education, Shaanxi Normal University, Xi'an, China.,College of Education, Physical Education Department, Zhejiang University, China
| | - Xi Yue
- Institute of Sports Biology, College of Physical Education, Shaanxi Normal University, Xi'an, China
| | - Tian Zhen-Jun
- Institute of Sports Biology, College of Physical Education, Shaanxi Normal University, Xi'an, China
| | - Cai Meng-Xin
- Institute of Sports Biology, College of Physical Education, Shaanxi Normal University, Xi'an, China
| |
Collapse
|
59
|
Effects of high-intensity interval training on mitochondrial supercomplex assembly and biogenesis, mitophagy, and the AMP-activated protein kinase pathway in the soleus muscle of aged female rats. Exp Gerontol 2021; 158:111648. [PMID: 34861356 DOI: 10.1016/j.exger.2021.111648] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 11/11/2021] [Accepted: 11/28/2021] [Indexed: 12/24/2022]
Abstract
PURPOSE Exercise helps improve mitochondrial function to combat sarcopenia. Certain parts of the mitochondrial respiratory chain complex can form a higher-order structure called "supercomplex" to reduce the production of reactive oxygen species and improve muscle mass. The effect of exercise on the assembly of the mitochondrial supercomplex is still unclear. The aim of this study was to investigate the effects of long-term high-intensity interval training (HIIT) on mitochondrial biogenesis, mitophagy, and mitochondrial supercomplexes (mitoSCs) assembly in aging soleus muscle. METHODS Female Sprague-Dawley rats (n = 36) were randomly divided into four groups: young sedentary (Y-SED, 8 months old, n = 12), old sedentary (O-SED, 26 months old, n = 12), moderate-intensity continuous training (MICT, from 18 to 26 months old, n = 12), and HIIT (from 18 to 26 months old, n = 12). Rats in the MICT and HIIT groups were subjected to an 8-month training program. Real-time fluorescent quantitative polymerase chain reaction was used to measure the expression of the antioxidative factors, inflammatory factors, and mitochondrial fusion- and division-related genes. Western blotting was used to detect the expression of mitochondrial biogenesis and mitophagy markers and AMP-activated protein kinase (AMPK) pathway proteins. Enzyme-linked immunosorbent assays were used to determine serum irisin contents. Blue native polyacrylamide gel electrophoresis was used to assess the formation of mitochondrial supercomplexes. RESULTS Compared with the Y-SED group, the soleus muscle and mitochondria in the O-SED group showed reduced expression of mitophagy- and mitochondrial biogenesis-related proteins. In the HIIT group, the expression of autophagy-related proteins in the soleus muscle and mitochondria was significantly increased compared with that in the MICT group. Serum irisin and mitochondrial fusion protein levels significantly decreased with age. Superoxide dismutase 2 protein levels and AMPK pathway protein expression were significantly increased in the HIIT group compared with those in the other groups. Additionally, the expression levels of mitoSCs and the mRNA levels of interleukin-15 and optical atrophy 1 increased in the HIIT group compared with that in the MICT group. CONCLUSION Compared with MICT, HIIT activated the AMPK pathway to upregulate mitochondrial biogenesis- and mitophagy-related proteins, and promote the assembly and formation of mitoSCs to improve the mitochondrial function of aging soleus muscles.
Collapse
|
60
|
Bae JH, Seo DY, Lee SH, Shin C, Jamrasi P, Han J, Song W. Effects of exercise on AKT/PGC1-α/FOXO3a pathway and muscle atrophy in cisplatin-administered rat skeletal muscle. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2021; 25:585-592. [PMID: 34697269 PMCID: PMC8552830 DOI: 10.4196/kjpp.2021.25.6.585] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/19/2021] [Accepted: 08/26/2021] [Indexed: 01/06/2023]
Abstract
Cisplatin has been reported to cause side effects such as muscle wasting in
humans and rodents. The physiological mechanisms involved in preventing muscle
wasting, such as the regulation of AKT, PGC1-α, and autophagy-related
factor FOXO3a by MuRF 1 and Atrogin-1, remain unclear following different types
of exercise and in various skeletal muscle types. Eight-week-old male Wistar
rats (n = 34) were assigned to one of four groups: control (CON, n = 6),
cisplatin injection (1 mg/kg) without exercise (CC, n = 8), cisplatin (1 mg/kg)
+ resistance exercise (CRE, n = 9) group, and cisplatin (1 mg/kg) + aerobic
exercise (CAE, n = 11). The CRE group performed progressive ladder exercise
(starting with 10% of body weight on a 1-m ladder with 2-cm-interval grids, at
85°) for 8 weeks. The CAE group exercised by treadmill running (20 m/min
for 60 min daily, 4 times/week) for 8 weeks. Compared with the CC group, the
levels of the autophagy-related factors BNIP3, Beclin 1, LC3-II/I ratio, p62,
and FOXO3a in the gastrocnemius and soleus muscles were significantly decreased
in the CRE and CAE groups. The CRE and CAE groups further showed significantly
decreased MuRF 1 and Atrogin-1 levels and increased phosphorylation of AKT,
FOXO3a, and PGC1-α. These results suggest that both ladder and aerobic
exercise directly affected muscle wasting by modulating the
AKT/PGC1-α/FOXO3a signaling pathways regardless of the skeletal muscle
type.
Collapse
Affiliation(s)
- Jun Hyun Bae
- Health and Exercise Science Laboratory, Institute of Sports Science, Seoul National University, Seoul 08826, Korea
| | - Dae Yun Seo
- National ResearchLaboratory for Mitochondrial Signaling, Department of Physiology, College of Medicine, Smart Marine Therapeutics Center, Cardiovascular and Metabolic Disease Center, Inje University
| | - Sang Ho Lee
- Department of Taekwondo, Dong-A University, Busan 49315, Korea
| | - Chaeyoung Shin
- Health and Exercise Science Laboratory, Institute of Sports Science, Seoul National University, Seoul 08826, Korea
| | - Parivash Jamrasi
- Health and Exercise Science Laboratory, Institute of Sports Science, Seoul National University, Seoul 08826, Korea
| | - Jin Han
- National ResearchLaboratory for Mitochondrial Signaling, Department of Physiology, College of Medicine, Smart Marine Therapeutics Center, Cardiovascular and Metabolic Disease Center, Inje University
| | - Wook Song
- Health and Exercise Science Laboratory, Institute of Sports Science, Seoul National University, Seoul 08826, Korea.,Institute of Aging, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
61
|
Gorza L, Germinario E, Tibaudo L, Vitadello M, Tusa C, Guerra I, Bondì M, Salmaso S, Caliceti P, Vitiello L, Danieli-Betto D. Chronic Systemic Curcumin Administration Antagonizes Murine Sarcopenia and Presarcopenia. Int J Mol Sci 2021; 22:ijms222111789. [PMID: 34769220 PMCID: PMC8584127 DOI: 10.3390/ijms222111789] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 10/28/2021] [Accepted: 10/29/2021] [Indexed: 12/28/2022] Open
Abstract
Curcumin administration attenuates muscle disuse atrophy, but its effectiveness against aging-induced, selective loss of mass or force (presarcopenia or asthenia/dynopenia), or combined loss (sarcopenia), remains controversial. A new systemic curcumin treatment was developed and tested in 18-month-old C57BL6J and C57BL10ScSn male mice. The effects on survival, liver toxicity, loss of muscle mass and force, and satellite cell responsivity and commitment were evaluated after 6-month treatment. Although only 24-month-old C57BL10ScSn mice displayed age-related muscle impairment, curcumin significantly increased survival of both strains (+20–35%), without signs of liver toxicity. Treatment prevented sarcopenia in soleus and presarcopenia in EDL of C57BL10ScSn mice, whereas it did not affect healthy-aged muscles of C57BL6J. Curcumin-treated old C57BL10ScSn soleus preserved type-1 myofiber size and increased type-2A one, whereas EDL maintained adult values of total myofiber number and fiber-type composition. Mechanistically, curcumin only partially prevented the age-related changes in protein level and subcellular distribution of major costamere components and regulators. Conversely, it affected satellite cells, by maintaining adult levels of myofiber maturation in old regenerating soleus and increasing percentage of isolated, MyoD-positive satellite cells from old hindlimb muscles. Therefore, curcumin treatment successfully prevents presarcopenia and sarcopenia development by improving satellite cell commitment and recruitment.
Collapse
Affiliation(s)
- Luisa Gorza
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy; (E.G.); (M.V.); (C.T.); (I.G.); (M.B.); (D.D.-B.)
- Correspondence:
| | - Elena Germinario
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy; (E.G.); (M.V.); (C.T.); (I.G.); (M.B.); (D.D.-B.)
| | - Lucia Tibaudo
- Department of Biology, University of Padova, 35131 Padova, Italy; (L.T.); (L.V.)
| | - Maurizio Vitadello
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy; (E.G.); (M.V.); (C.T.); (I.G.); (M.B.); (D.D.-B.)
| | - Chiara Tusa
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy; (E.G.); (M.V.); (C.T.); (I.G.); (M.B.); (D.D.-B.)
| | - Irene Guerra
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy; (E.G.); (M.V.); (C.T.); (I.G.); (M.B.); (D.D.-B.)
| | - Michela Bondì
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy; (E.G.); (M.V.); (C.T.); (I.G.); (M.B.); (D.D.-B.)
| | - Stefano Salmaso
- Department of Pharmaceutical Sciences, University of Padova, 35131 Padova, Italy; (S.S.); (P.C.)
| | - Paolo Caliceti
- Department of Pharmaceutical Sciences, University of Padova, 35131 Padova, Italy; (S.S.); (P.C.)
| | - Libero Vitiello
- Department of Biology, University of Padova, 35131 Padova, Italy; (L.T.); (L.V.)
| | - Daniela Danieli-Betto
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy; (E.G.); (M.V.); (C.T.); (I.G.); (M.B.); (D.D.-B.)
| |
Collapse
|
62
|
Redox Signaling and Sarcopenia: Searching for the Primary Suspect. Int J Mol Sci 2021; 22:ijms22169045. [PMID: 34445751 PMCID: PMC8396474 DOI: 10.3390/ijms22169045] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/17/2021] [Accepted: 08/19/2021] [Indexed: 12/16/2022] Open
Abstract
Sarcopenia, the age-related decline in muscle mass and function, derives from multiple etiological mechanisms. Accumulative research suggests that reactive oxygen species (ROS) generation plays a critical role in the development of this pathophysiological disorder. In this communication, we review the various signaling pathways that control muscle metabolic and functional integrity such as protein turnover, cell death and regeneration, inflammation, organismic damage, and metabolic functions. Although no single pathway can be identified as the most crucial factor that causes sarcopenia, age-associated dysregulation of redox signaling appears to underlie many deteriorations at physiological, subcellular, and molecular levels. Furthermore, discord of mitochondrial homeostasis with aging affects most observed problems and requires our attention. The search for the primary suspect of the fundamental mechanism for sarcopenia will likely take more intense research for the secret of this health hazard to the elderly to be unlocked.
Collapse
|
63
|
Orhan C, Sahin E, Er B, Tuzcu M, Lopes AP, Sahin N, Juturu V, Sahin K. Effects of Exercise Combined with Undenatured Type II Collagen on Endurance Capacity, Antioxidant Status, Muscle Lipogenic Genes and E3 Ubiquitin Ligases in Rats. Animals (Basel) 2021; 11:851. [PMID: 33802919 PMCID: PMC8002679 DOI: 10.3390/ani11030851] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/11/2021] [Accepted: 03/15/2021] [Indexed: 12/22/2022] Open
Abstract
The current study aimed to investigate the effect of exercise combined with undenatured type II collagen (UCII) administration on endurance capacity, lipid metabolism, inflammation, and antioxidant status in rats. Twenty-one male Wistar albino rats were divided into three groups as follows: (1) Sedentary control, (2) Exercise (E), (3) Exercise + UCII (4 mg/kg BW/day; E + UCII). The findings showed that the exhaustive running time in the UCII group was significantly prolonged compared to that of the non-supplemented group (p < 0.001). When compared to the control group, total serum cholesterol (TC, p < 0.05) and triglyceride (TG, p < 0.05) levels decreased, while creatinine kinase (CK) levels increased in the E group (p < 0.001). Serum creatinine kinase levels were reduced in the E + UCII group compared to the E group (p < 0.01). Serum lactate, myoglobin (p < 0.01), and osteocalcin levels (p < 0.01) increased significantly in exercised rats compared to sedentary control rats, while serum lactate (p < 0.01) and myoglobin (p < 0.0001) levels decreased in the E + UCII group compared to control. Additionally, UCII supplementation caused significant increases in antioxidant enzyme activities [SOD (p < 0.01) and GSH-Px (p < 0.05)] and decreases in malondialdehyde (MDA) and tumor necrosis factor (TNF-α) levels (p < 0.001). Muscle lipogenic protein (SREBP-1c, ACLY, LXR, and FAS) levels were lower in the E + UCII group than in other groups. In addition, UCII supplementation decreased muscle MAFbx, MuRF-1, myostatin and increased MyoD levels in exercised rats. Moreover, the E + UCII group had lower muscle inflammatory markers [TNF-α (p < 0.0001) and IL-1β (p < 0.01)] than the control group. These results suggest exercise combined with UCII (4 mg/kg BW/day) modulates lipid, muscle, and antioxidant status in rats.
Collapse
Affiliation(s)
- Cemal Orhan
- Animal Nutrition Department, Veterinary Faculty, University of Firat, 23119 Elazig, Turkey; (C.O.); (E.S.); (N.S.)
| | - Emre Sahin
- Animal Nutrition Department, Veterinary Faculty, University of Firat, 23119 Elazig, Turkey; (C.O.); (E.S.); (N.S.)
| | - Besir Er
- Division of Biology, Science Faculty, Firat University, 23119 Elazig, Turkey; (B.E.); (M.T.)
| | - Mehmet Tuzcu
- Division of Biology, Science Faculty, Firat University, 23119 Elazig, Turkey; (B.E.); (M.T.)
| | - Andrey P. Lopes
- Department of Development & Innovation, Lonza, Rio de Janeiro 22793, Brazil;
| | - Nurhan Sahin
- Animal Nutrition Department, Veterinary Faculty, University of Firat, 23119 Elazig, Turkey; (C.O.); (E.S.); (N.S.)
| | - Vijaya Juturu
- Department of Research & Development, Lonza, Morristown, NJ 07960, USA;
| | - Kazim Sahin
- Animal Nutrition Department, Veterinary Faculty, University of Firat, 23119 Elazig, Turkey; (C.O.); (E.S.); (N.S.)
| |
Collapse
|