51
|
Tan M, Cheng D, Yang Y, Zhang G, Qin M, Chen J, Chen Y, Jiang M. Co-expression network analysis of the transcriptomes of rice roots exposed to various cadmium stresses reveals universal cadmium-responsive genes. BMC PLANT BIOLOGY 2017; 17:194. [PMID: 29115926 PMCID: PMC5678563 DOI: 10.1186/s12870-017-1143-y] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2017] [Accepted: 10/30/2017] [Indexed: 05/18/2023]
Abstract
BACKGROUND The migration of cadmium (Cd) from contaminated soil to rice is a cause for concern. However, the molecular mechanism underlying the response of rice roots to various Cd stresses remains to be clarified from the viewpoint of the co-expression network at a system-wide scale. RESULTS We employed a comparative RNAseq-based approach to identify early Cd-responsive differentially expressed genes (DEGs) in rice 'Nipponbare' seedling roots after 1 h of high-Cd treatment. A multiplicity of the identified 1772 DEGs were implicated in hormone signaling and transcriptional regulation, particularly NACs and WRKYs were all upregulated under Cd stress. All of the 6 Cd-upregulated ABC transporters were pleiotropic drug resistance proteins (PDRs), whereas all of the 6 ZRT/IRT-like proteins (ZIPs) were consistently downregulated by Cd treatment. To further confirm our results of this early transcriptomic response to Cd exposure, we then conducted weighted gene co-expression network analysis (WGCNA) to re-analyze our RNAseq data in combination with other 11 previously published RNAseq datasets for rice roots exposed to diverse concentrations of Cd for extended treatment periods. This integrative approach identified 271 transcripts as universal Cd-regulated DEGs that are key components of the Cd treatment coupled co-expression module. A global view of the 164 transcripts with annotated functions in pathway networks revealed several Cd-upregulated key functional genes, including transporter ABCG36/OsPDR9, 12-oxo-phytodienoic acid reductases (OPRs) for JA synthesis, and ZIM domain proteins JAZs in JA signaling, as well as OsWRKY10, NAC, and ZFP transcription factors. More importantly, 104 of these, including ABCG36/OsPDR9, OsNAC3, as well as several orthologs in group metalloendoproteinase, plastocyanin-like domain containing proteins and pectin methylesterase inhibitor, may respond specifically to various Cd pressures, after subtracting the 60 general stress-responsive genes reported to be commonly upregulated following multiple stresses. CONCLUSION An integrative approach was implemented to identify DEGs and co-expression network modules in response to various Cd pressures, and 104 of the 164 annotatable universal Cd-responsive DEGs may specifically respond to various Cd pressures. These results provide insight into the universal molecular mechanisms beneath the Cd response in rice roots, and suggest many promising targets for improving the rice acclimation process against Cd toxicity.
Collapse
Affiliation(s)
- Mingpu Tan
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Dan Cheng
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Yuening Yang
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Guoqiang Zhang
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Mengjie Qin
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Jun Chen
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Yahua Chen
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Mingyi Jiang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
52
|
Hu S, Yu Y, Chen Q, Mu G, Shen Z, Zheng L. OsMYB45 plays an important role in rice resistance to cadmium stress. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2017; 264:1-8. [PMID: 28969789 DOI: 10.1016/j.plantsci.2017.08.002] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 07/24/2017] [Accepted: 08/06/2017] [Indexed: 05/04/2023]
Abstract
Cadmium (Cd) is one of the most toxic heavy metal elements in nature, and it causes serious damage to plant cells. Here, we report that a transcription factor OsMYB45 is involved in Cd stress response in rice. OsMYB45 is highly expressed in rice leaves, husks, stamens, pistils, and lateral roots, and its expression is induced by Cd stress. OsMYB45 fused to green fluorescent protein localized to the cell nucleus in onion epidermal cells. Mutation of OsMYB45 resulted in hypersensitivity to Cd treatment, and the concentration of H2O2 in the leaves of mutant nearly doubled, while catalase (CAT) activity was halved compared with the wild-type. Moreover, gene expression analysis indicated that OsCATA and OsCATC expression is significantly lower in the mutant than in the wild-type. In addition, overexpression of OsMYB45 in the mutant complemented the mutant phenotype. Taken together, OsMYB45 plays an important role in tolerance to Cd stress in rice.
Collapse
Affiliation(s)
- Shubao Hu
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Yao Yu
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Qiuhong Chen
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Guangmao Mu
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhenguo Shen
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Luqing Zheng
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
53
|
Wang J, Yu N, Mu G, Shinwari KI, Shen Z, Zheng L. Screening for Cd-Safe Cultivars of Chinese Cabbage and a Preliminary Study on the Mechanisms of Cd Accumulation. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2017; 14:E395. [PMID: 28387709 PMCID: PMC5409596 DOI: 10.3390/ijerph14040395] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 03/22/2017] [Accepted: 03/29/2017] [Indexed: 11/16/2022]
Abstract
With the rapid progress of industrialization, the effects of environmental contamination on plant toxicity, and subsequently on human health, is a growing concern. For example, the heavy metal pollution of soil such as that caused by cadmium (Cd) is a serious threat. Therefore, screening for pollution-safe edible plants is an essential approach for growing plants under heavy metal-contaminated soils. In the current study, 35 Chinese cabbage (Brassica pekinensis L.) cultivars were selected with the aim of screening for Cd-safe cultivars (CSCs), analyzing their safety, and exploring the mechanism of Cd accumulation. Our field-culture experiments revealed that the Cd content in the edible parts of the cultivars were varied and were determined to possibly be CSCs. Hydroponics experiments were used to simulate six different degrees of soil contamination (high and low Cd concentrations) on possible CSCs. The results indicated a significant difference (p < 0.05) in Cd concentration in the cultivars, and verified the safety of these possible CSCs. The analyses of the transport coefficient and expression levels showed that the differences in Cd accumulation among the Chinese cabbage cultivars were related to the expression of genes involved in absorption and transport rather than a root-to-shoot translocation limitation.
Collapse
Affiliation(s)
- Jingjie Wang
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China.
| | - Nan Yu
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China.
| | - Guangmao Mu
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China.
| | - Kamran I Shinwari
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China.
| | - Zhenguo Shen
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China.
| | - Luqing Zheng
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China.
| |
Collapse
|
54
|
Present Scenario of Long Non-Coding RNAs in Plants. Noncoding RNA 2017; 3:ncrna3020016. [PMID: 29657289 PMCID: PMC5831932 DOI: 10.3390/ncrna3020016] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Revised: 03/03/2017] [Accepted: 03/20/2017] [Indexed: 12/13/2022] Open
Abstract
Small non-coding RNAs have been extensively studied in plants over the last decade. In contrast, genome-wide identification of plant long non-coding RNAs (lncRNAs) has recently gained momentum. LncRNAs are now being recognized as important players in gene regulation, and their potent regulatory roles are being studied comprehensively in eukaryotes. LncRNAs were first reported in humans in 1992. Since then, research in animals, particularly in humans, has rapidly progressed, and a vast amount of data has been generated, collected, and organized using computational approaches. Additionally, numerous studies have been conducted to understand the roles of these long RNA species in several diseases. However, the status of lncRNA investigation in plants lags behind that in animals (especially humans). Efforts are being made in this direction using computational tools and high-throughput sequencing technologies, such as the lncRNA microarray technique, RNA-sequencing (RNA-seq), RNA capture sequencing, (RNA CaptureSeq), etc. Given the current scenario, significant amounts of data have been produced regarding plant lncRNAs, and this amount is likely to increase in the subsequent years. In this review we have documented brief information about lncRNAs and their status of research in plants, along with the plant-specific resources/databases for information retrieval on lncRNAs.
Collapse
|
55
|
Comprehensive Analysis of Rice Laccase Gene (OsLAC) Family and Ectopic Expression of OsLAC10 Enhances Tolerance to Copper Stress in Arabidopsis. Int J Mol Sci 2017; 18:ijms18020209. [PMID: 28146098 PMCID: PMC5343771 DOI: 10.3390/ijms18020209] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 01/13/2017] [Indexed: 02/02/2023] Open
Abstract
Laccases are encoded by a multigene family and widely distributed in plant genomes where they play roles oxidizing monolignols to produce higher-order lignin involved in plant development and stress responses. We identified 30 laccase genes (OsLACs) from rice, which can be divided into five subfamilies, mostly expressed during early development of the endosperm, growing roots, and stems. OsLACs can be induced by hormones, salt, drought, and heavy metals stresses. The expression level of OsLAC10 increased 1200-fold after treatment with 20 μM Cu for 12 h. The laccase activities of OsLAC10 were confirmed in an Escherichia coli expression system. Lignin accumulation increased in the roots of Arabidopsis over-expressing OsLAC10 (OsLAC10-OX) compared to wild-type controls. After growth on 1/2 Murashige and Skoog (MS) medium containing toxic levels of Cu for seven days, roots of the OsLAC10-OX lines were significantly longer than those of the wild type. Compared to control plants, the Cu concentration decreased significantly in roots of the OsLAC10-OX line under hydroponic conditions. These results provided insights into the evolutionary expansion and functional divergence of OsLAC family. In addition, OsLAC10 is likely involved in lignin biosynthesis, and reduces the uptake of Cu into roots required for Arabidopsis to develop tolerance to Cu.
Collapse
|
56
|
Fu YB, Yang MH, Zeng F, Biligetu B. Searching for an Accurate Marker-Based Prediction of an Individual Quantitative Trait in Molecular Plant Breeding. FRONTIERS IN PLANT SCIENCE 2017; 8:1182. [PMID: 28729875 PMCID: PMC5498511 DOI: 10.3389/fpls.2017.01182] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 06/20/2017] [Indexed: 05/09/2023]
Abstract
Molecular plant breeding with the aid of molecular markers has played an important role in modern plant breeding over the last two decades. Many marker-based predictions for quantitative traits have been made to enhance parental selection, but the trait prediction accuracy remains generally low, even with the aid of dense, genome-wide SNP markers. To search for more accurate trait-specific prediction with informative SNP markers, we conducted a literature review on the prediction issues in molecular plant breeding and on the applicability of an RNA-Seq technique for developing function-associated specific trait (FAST) SNP markers. To understand whether and how FAST SNP markers could enhance trait prediction, we also performed a theoretical reasoning on the effectiveness of these markers in a trait-specific prediction, and verified the reasoning through computer simulation. To the end, the search yielded an alternative to regular genomic selection with FAST SNP markers that could be explored to achieve more accurate trait-specific prediction. Continuous search for better alternatives is encouraged to enhance marker-based predictions for an individual quantitative trait in molecular plant breeding.
Collapse
Affiliation(s)
- Yong-Bi Fu
- Plant Gene Resources of Canada, Saskatoon Research and Development Centre, Agriculture and Agri-Food Canada, SaskatoonSK, Canada
- *Correspondence: Yong-Bi Fu,
| | - Mo-Hua Yang
- Plant Gene Resources of Canada, Saskatoon Research and Development Centre, Agriculture and Agri-Food Canada, SaskatoonSK, Canada
- College of Forestry, Central South University of Forestry and TechnologyChangsha, China
| | - Fangqin Zeng
- Plant Gene Resources of Canada, Saskatoon Research and Development Centre, Agriculture and Agri-Food Canada, SaskatoonSK, Canada
| | - Bill Biligetu
- Department of Plant Sciences, University of Saskatchewan, SaskatoonSK, Canada
| |
Collapse
|
57
|
Hong C, Cheng D, Zhang G, Zhu D, Chen Y, Tan M. The role of ZmWRKY4 in regulating maize antioxidant defense under cadmium stress. Biochem Biophys Res Commun 2016; 482:1504-1510. [PMID: 27956180 DOI: 10.1016/j.bbrc.2016.12.064] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 12/08/2016] [Indexed: 11/18/2022]
Abstract
WRKY transcription factors act as positive regulators in abiotic stress responses by activation of the cellular antioxidant systems. However, there are few reports on the response of WRKY genes to cadmium (Cd) stress. In this study, the role of maize ZmWRKY4 in regulating antioxidant enzymes in Cd stress was investigated. The results indicated that Cd induced up-regulation of the expression and the activities of ZmWRKY4 and superoxide dismutase (SOD) and ascorbate peroxidase (APX). Transient expression and RNA interference (RNAi) silencing of ZmWRKY4 in maize mesophyll protoplasts further revealed that ZmWRKY4 was required for the abscisic acid (ABA)-induced increase in expression and activity of SOD and APX. Overexpression of ZmWRKY4 in protoplasts upregulated the expression and the activities of antioxidant enzymes, whereas ABA induced increases in the expression and the activities of antioxidant enzymes were blocked by the RNAi silencing of ZmWRKY4. Bioinformatic analysis indicated that ZmSOD4 and ZmcAPX both harbored two W-boxes, binding motif for WRKY transcription factors, in their promoter region. Intriguingly, ZmWRKY4 belongs to group I WRKYs with two WRKY domains. Moreover, the synchronized expression patterns indicate that ZmWRKY4 might play a critical role in either regulating the ZmSOD4 and ZmcAPX expression or cooperating with them in response to stress and phytohormone.
Collapse
Affiliation(s)
- Changyong Hong
- College of Life Sciences, Nanjing Agricultural University, 210095 Nanjing, China
| | - Dan Cheng
- College of Life Sciences, Nanjing Agricultural University, 210095 Nanjing, China
| | - Guoqiang Zhang
- College of Life Sciences, Nanjing Agricultural University, 210095 Nanjing, China
| | - Dandan Zhu
- College of Life Sciences, Nanjing Agricultural University, 210095 Nanjing, China
| | - Yahua Chen
- College of Life Sciences, Nanjing Agricultural University, 210095 Nanjing, China
| | - Mingpu Tan
- College of Life Sciences, Nanjing Agricultural University, 210095 Nanjing, China.
| |
Collapse
|
58
|
Farooq MA, Detterbeck A, Clemens S, Dietz KJ. Silicon-induced reversibility of cadmium toxicity in rice. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:3573-85. [PMID: 27122572 PMCID: PMC4892736 DOI: 10.1093/jxb/erw175] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Silicon (Si) modulates tolerance to abiotic stresses, but little is known about the reversibility of stress effects by supplementing previously stressed plants with Si. This is surprising since recovery experiments might allow mechanisms of Si-mediated amelioration to be addressed. Rice was exposed to 10 µM CdCl2 for 4 d in hydroponics, followed by 0.6mM Si(OH)4 supplementation for 4 d. Si reversed the effects of Cd, as reflected in plant growth, photosynthesis, elemental composition, and some biochemical parameters. Cd-dependent deregulation of nutrient homeostasis was partially reversed by Si supply. Photosynthetic recovery within 48h following Si supply, coupled with strong stimulation of the ascorbate-glutathione system, indicates efficient activation of defense. The response was further verified by transcript analyses with emphasis on genes encoding members of the stress-associated protein (SAP) family. The transcriptional response to Cd was mostly reversed following Si supply. Reprogramming of the Cd response was obvious for Phytochelatin synthase 1, SAP1 , SAP14, and the transcription factor genes AP2/Erf020, Hsf31, and NAC6 whose transcript levels were strongly activated in roots of Cd-stressed rice, but down-regulated in the presence of Si. These findings, together with changes in biochemical parameters, highlight the significance of Si in growth recovery of Cd-stressed rice and indicate a decisive role for readjusting cell redox homeostasis.
Collapse
Affiliation(s)
- Muhammad Ansar Farooq
- Biochemistry and Physiology of Plants, Faculty of Biology, W5-134, Bielefeld University, University Street 25, D-33501 Bielefeld, Germany
| | - Amelie Detterbeck
- Department of Plant Physiology, University of Bayreuth, University Street 30, D-95440 Bayreuth, Germany
| | - Stephan Clemens
- Department of Plant Physiology, University of Bayreuth, University Street 30, D-95440 Bayreuth, Germany
| | - Karl-Josef Dietz
- Biochemistry and Physiology of Plants, Faculty of Biology, W5-134, Bielefeld University, University Street 25, D-33501 Bielefeld, Germany
| |
Collapse
|
59
|
Yue R, Lu C, Qi J, Han X, Yan S, Guo S, Liu L, Fu X, Chen N, Yin H, Chi H, Tie S. Transcriptome Analysis of Cadmium-Treated Roots in Maize (Zea mays L.). FRONTIERS IN PLANT SCIENCE 2016; 7:1298. [PMID: 27630647 PMCID: PMC5006096 DOI: 10.3389/fpls.2016.01298] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 08/15/2016] [Indexed: 05/05/2023]
Abstract
Cadmium (Cd) is a heavy metal and is highly toxic to all plant species. However, the underlying molecular mechanism controlling the effects of auxin on the Cd stress response in maize is largely unknown. In this study, the transcriptome produced by maize 'Zheng 58' root responses to Cd stress was sequenced using Illumina sequencing technology. In our study, six RNA-seq libraries yielded a total of 244 million clean short reads and 30.37 Gb of sequence data. A total of 6342 differentially expressed genes (DEGs) were grouped into 908 Gene Ontology (GO) categories and 198 Kyoto Encyclopedia of Genes and Genomes terms. GO term enrichment analysis indicated that various auxin signaling pathway-related GO terms were significantly enriched in DEGs. Comparison of the transcript abundances for auxin biosynthesis, transport, and downstream response genes revealed a universal expression response under Cd treatment. Furthermore, our data showed that free indole-3-acetic acid (IAA) levels were significantly reduced; but IAA oxidase activity was up-regulated after Cd treatment in maize roots. The analysis of Cd activity in maize roots under different Cd and auxin conditions confirmed that auxin affected Cd accumulation in maize seedlings. These results will improve our understanding of the complex molecular mechanisms underlying the response to Cd stress in maize roots.
Collapse
Affiliation(s)
- Runqing Yue
- Food Crops Research Institute, Henan Academy of Agricultural SciencesZhengzhou, China
- The Henan Provincial Key Laboratory of Maize BiologyZhengzhou, China
| | - Caixia Lu
- Food Crops Research Institute, Henan Academy of Agricultural SciencesZhengzhou, China
- The Henan Provincial Key Laboratory of Maize BiologyZhengzhou, China
| | - Jianshuang Qi
- Food Crops Research Institute, Henan Academy of Agricultural SciencesZhengzhou, China
- The Henan Provincial Key Laboratory of Maize BiologyZhengzhou, China
| | - Xiaohua Han
- Food Crops Research Institute, Henan Academy of Agricultural SciencesZhengzhou, China
- The Henan Provincial Key Laboratory of Maize BiologyZhengzhou, China
| | - Shufeng Yan
- Food Crops Research Institute, Henan Academy of Agricultural SciencesZhengzhou, China
- The Henan Provincial Key Laboratory of Maize BiologyZhengzhou, China
| | - Shulei Guo
- Food Crops Research Institute, Henan Academy of Agricultural SciencesZhengzhou, China
- The Henan Provincial Key Laboratory of Maize BiologyZhengzhou, China
| | - Lu Liu
- Food Crops Research Institute, Henan Academy of Agricultural SciencesZhengzhou, China
- The Henan Provincial Key Laboratory of Maize BiologyZhengzhou, China
| | - Xiaolei Fu
- Food Crops Research Institute, Henan Academy of Agricultural SciencesZhengzhou, China
- The Henan Provincial Key Laboratory of Maize BiologyZhengzhou, China
| | - Nana Chen
- Food Crops Research Institute, Henan Academy of Agricultural SciencesZhengzhou, China
- The Henan Provincial Key Laboratory of Maize BiologyZhengzhou, China
| | - Haiyan Yin
- Food Crops Research Institute, Henan Academy of Agricultural SciencesZhengzhou, China
- The Henan Provincial Key Laboratory of Maize BiologyZhengzhou, China
| | - Haifeng Chi
- Food Crops Research Institute, Henan Academy of Agricultural SciencesZhengzhou, China
- The Henan Provincial Key Laboratory of Maize BiologyZhengzhou, China
| | - Shuanggui Tie
- Food Crops Research Institute, Henan Academy of Agricultural SciencesZhengzhou, China
- The Henan Provincial Key Laboratory of Maize BiologyZhengzhou, China
- *Correspondence: Shuanggui Tie,
| |
Collapse
|