51
|
The role of cognitive factors and personality traits in the perception of illusory self-motion (vection). Atten Percept Psychophys 2021; 83:1804-1817. [PMID: 33409903 PMCID: PMC8084801 DOI: 10.3758/s13414-020-02228-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/30/2020] [Indexed: 01/22/2023]
Abstract
Vection is a perceptual phenomenon that describes the visually induced subjective sensation of self-motion in the absence of physical motion. Previous research has discussed the potential involvement of top-down cognitive mechanisms on vection. Here, we quantified how cognitive manipulations such as contextual information (i.e., expectation) and plausibility (i.e., chair configuration) alter vection. We also explored how individual traits such as field dependence, depersonalization, anxiety, and social desirability might be related to vection. Fifty-one healthy adults were exposed to an optic flow stimulus that consisted of horizontally moving black-and-white bars presented on three adjacent monitors to generate circular vection. Participants were divided into three groups and given experimental instructions designed to induce either strong, weak, or no expectation with regard to the intensity of vection. In addition, the configuration of the chair (rotatable or fixed) was modified during the experiment. Vection onset time, duration, and intensity were recorded. Results showed that expectation altered vection intensity, but only when the chair was in the rotatable configuration. Positive correlations for vection measures with field dependence and depersonalization, but no sex-related effects were found. Our results show that vection can be altered by cognitive factors and that individual traits can affect the perception of vection, suggesting that vection is not a purely perceptual phenomenon, but can also be affected by top-down mechanisms.
Collapse
|
52
|
Cortes CAT, Chen HT, Sturnieks DL, Garcia J, Lord SR, Lin CT. Evaluating Balance Recovery Techniques for Users Wearing Head-Mounted Display in VR. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2021; 27:204-215. [PMID: 31295114 DOI: 10.1109/tvcg.2019.2927477] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Room-scale 3D position tracking enables users to explore a virtual environment by physically walking, which improves comfort and the level of immersion. However, when users walk with their eyesight blocked by a head-mounted display, they may unexpectedly lose their balance and fall if they bump into real-world obstacles or unintentionally shift their center of mass outside the margin of stability. This paper evaluates balance recovery methods and intervention timing during the use of VR with the assumption that the onset of a fall is given. Our experiment followed the tether-release protocol during clinical research and induced a fall while a subject was engaged in a secondary 3D object selection task. The experiment employed a two-by-two design that evaluated two assistive techniques, i.e., video-see-through and auditory warning at two different timings, i.e., at fall onset and 500ms prior to fall onset. The data from 17 subjects showed that video-see-through triggered 500 ms before the onset of fall can effectively help users recover from falls. Surprisingly, video-see-through at fall onset has a significant negative impact on balance recovery and produces similar results to those of the baseline condition (no intervention).
Collapse
|
53
|
Kim W, Lee S, Bovik AC. VR Sickness Versus VR Presence: A Statistical Prediction Model. IEEE TRANSACTIONS ON IMAGE PROCESSING : A PUBLICATION OF THE IEEE SIGNAL PROCESSING SOCIETY 2020; 30:559-571. [PMID: 33206603 DOI: 10.1109/tip.2020.3036782] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Although it is well-known that the negative effects of VR sickness, and the desirable sense of presence are important determinants of a user's immersive VR experience, there remains a lack of definitive research outcomes to enable the creation of methods to predict and/or optimize the trade-offs between them. Most VR sickness assessment (VRSA) and VR presence assessment (VRPA) studies reported to date have utilized simple image patterns as probes, hence their results are difficult to apply to the highly diverse contents encountered in general, real-world VR environments. To help fill this void, we have constructed a large, dedicated VR sickness/presence (VR-SP) database, which contains 100 VR videos with associated human subjective ratings. Using this new resource, we developed a statistical model of spatio-temporal and rotational frame difference maps to predict VR sickness. We also designed an exceptional motion feature, which is expressed as the correlation between an instantaneous change feature and averaged temporal features. By adding additional features (visual activity, content features) to capture the sense of presence, we use the new data resource to explore the relationship between VRSA and VRPA. We also show the aggregate VR-SP model is able to predict VR sickness with an accuracy of 90% and VR presence with an accuracy of 75% using the new VR-SP dataset.
Collapse
|
54
|
Fujimoto K, Ashida H. Different Head-Sway Responses to Optic Flow in Sitting and Standing With a Head-Mounted Display. Front Psychol 2020; 11:577305. [PMID: 33123058 PMCID: PMC7573131 DOI: 10.3389/fpsyg.2020.577305] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 09/14/2020] [Indexed: 11/23/2022] Open
Abstract
We investigated postural responses (head displacements) and self-motion perception (vection) to radial and lateral optic flows while sitting and standing by using a head-mounted display. We found that head displacement directions varied across postures. In the standing posture, radial optic flow generally produced the opposed head displacement against the perceived vection direction, consistent with the literature; however, in the sitting posture, the optic flow generally produced the following head displacement in the vection direction. In the standing posture, responses were evident soon after the onset of the optic flow presentation but became less clear in the latter half of a trial. The results, while less clear for lateral flows, were similar for both flow types. Our findings suggest partially distinct processes underlying vection and postural control.
Collapse
Affiliation(s)
- Kanon Fujimoto
- Department of Psychology, Graduate School of Letters, Kyoto University, Kyoto, Japan.,Japan Society for the Promotion of Science, Tokyo, Japan
| | - Hiroshi Ashida
- Department of Psychology, Graduate School of Letters, Kyoto University, Kyoto, Japan
| |
Collapse
|
55
|
Park S, Lee G. Full-immersion virtual reality: Adverse effects related to static balance. Neurosci Lett 2020; 733:134974. [PMID: 32294492 DOI: 10.1016/j.neulet.2020.134974] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 03/29/2020] [Accepted: 04/07/2020] [Indexed: 10/24/2022]
Abstract
The use of virtual reality (VR) is associated with several adverse effects including dizziness, headache, and motion sickness. This study investigates how full-immersion VR games cause changes in static balance with associated adverse effects, and whether a fixed or a changing game background is more likely to contribute to such problems. Static balance and adverse effects (eye fatigue and dizziness) were measured in 15 healthy adults under three conditions: baseline; after a full-immersion virtual reality game (PlayStation 4 Pro and PlayStation® VR headset) with a fixed background (15 min); and after a full-immersion virtual reality game with a unfixed background (15 min). Static balance was measured with an AMTI force plate, while eye fatigue and dizziness were measured with the Virtual Reality Symptom Questionnaire (VRSQ) and the Simulator Sickness Questionnaire (SSQ). It was determined that playing a full-immersion VR game had a negative effect on static balance and produced several adverse effects including eye fatigue and dizziness. Moreover, sway velocity and sway length increased significantly in the game with a moving background compared to both the baseline and the game with a fixed background (p < 0.05); VRSQ and SSQ were also significantly higher in this case. It is thus preferable from the perspective of reducing adverse effects that only fixed-background full-immersion VR games be used in rehabilitative interventions.
Collapse
Affiliation(s)
- SoHu Park
- Department of Physical Therapy, Graduate School of Kyungnam University, 7 Kyungnamdaehak-ro, Masanhappo-gu, Changwon, Gyeongsangnam-do 51767, Republic of Korea
| | - GyuChang Lee
- Department of Physical Therapy, Kyungnam University, 7 Kyungnamdaehak-ro, Masanhappo-gu, Changwon, Gyeongsangnam-do 51767, Republic of Korea.
| |
Collapse
|
56
|
Nie GY, Duh HBL, Liu Y, Wang Y. Analysis on Mitigation of Visually Induced Motion Sickness by Applying Dynamical Blurring on a User's Retina. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2020; 26:2535-2545. [PMID: 30668475 DOI: 10.1109/tvcg.2019.2893668] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Visually induced motion sickness (MS) experienced in a 3D immersive virtual environment (VE) limits the widespread use of virtual reality (VR). This paper studies the effects of a saliency detection-based approach on the reduction of MS when the display on a user's retina is dynamic blurred. In the experiment, forty participants were exposed to a VR experience under a control condition without applying dynamic blurring, and an experimental condition applying dynamic blurring. The experimental results show that the participants under the experimental condition report a statistically significant reduction in the severity of MS symptoms on average during the VR experience compared to those under the control condition, which demonstrates that the proposed approach may alleviate visually induced MS in VR and enable users to remain in a VE for a longer period of time.
Collapse
|
57
|
Picard-Deland C, Pastor M, Solomonova E, Paquette T, Nielsen T. Flying dreams stimulated by an immersive virtual reality task. Conscious Cogn 2020; 83:102958. [DOI: 10.1016/j.concog.2020.102958] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 04/27/2020] [Accepted: 05/18/2020] [Indexed: 12/01/2022]
|
58
|
Effects of synchronised engine sound and vibration presentation on visually induced motion sickness. Sci Rep 2020; 10:7553. [PMID: 32398641 PMCID: PMC7217965 DOI: 10.1038/s41598-020-64302-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 04/15/2020] [Indexed: 11/08/2022] Open
Abstract
Driving simulator usage is often accompanied by motion sickness, and techniques for its prevention are not yet established. To reduce visually induced motion sickness (VIMS), we investigated the effects of synchronised presentation of engine sounds and motorcycle vibration on VIMS. A total of 80 participants experienced a driving scene with a head-mounted display for 5 minutes with or without synchronised presentation of engine sound and vibration. The results showed that VIMS scores, as measured by the Fast Motion Sickness scale, were significantly lower in participants who experienced the driving scene with sounds and vibration than in those who experienced the scene with sounds only, vibration only, or neither. Multiple regression analyses revealed that susceptibility to VIMS consistently explained the severity of VIMS to some extent but not with perceived realism of the virtual reality (VR) scene, sex, and experiences about VR devices and vehicles. This study demonstrated that simultaneous presentation of engine sounds and vibration, which were synchronous to each other and tightly coupled with the visual flow speed, effectively reduces VIMS while experiencing motorcycling simulators. The findings not only improve practical knowledge for reducing VIMS in driving simulators but also provide evidence for understanding the mechanisms of VIMS.
Collapse
|
59
|
Kuiper OX, Bos JE, Diels C, Schmidt EA. Knowing what's coming: Anticipatory audio cues can mitigate motion sickness. APPLIED ERGONOMICS 2020; 85:103068. [PMID: 32174356 DOI: 10.1016/j.apergo.2020.103068] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 01/16/2020] [Accepted: 01/28/2020] [Indexed: 06/10/2023]
Abstract
Being able to anticipate upcoming motion is known to potentially mitigate sickness resulting from provocative motion. We investigated whether auditory cues could increase anticipation and subsequently reduce motion sickness. Participants (N = 20) were exposed on a sled on a rail track to two 15-min conditions. Both were identical in terms of motion, being composed of the same repeated 9 m fore-aft displacements, with a semi-random timing of pauses and direction. The auditory cues were either 1) informative on the timing and direction of the upcoming motion, or 2) non-informative. Illness ratings were recorded at 1-min intervals using a 11-point scale. After exposure, average illness ratings were significantly lower for the condition that contained informative auditory cues, as compared to the condition without informative cues. This knowledge, i.e. that auditory signals can improve anticipation to motion, could be of importance in reducing carsickness in domains such as that of autonomous vehicles.
Collapse
Affiliation(s)
| | - Jelte E Bos
- Vrije Universiteit, Amsterdam, Netherlands; TNO Soesterberg, Netherlands.
| | | | | |
Collapse
|
60
|
Nguyen NT, Takakura H, Nishijo H, Ueda N, Ito S, Fujisaka M, Akaogi K, Shojaku H. Cerebral Hemodynamic Responses to the Sensory Conflict Between Visual and Rotary Vestibular Stimuli: An Analysis With a Multichannel Near-Infrared Spectroscopy (NIRS) System. Front Hum Neurosci 2020; 14:125. [PMID: 32372931 PMCID: PMC7187689 DOI: 10.3389/fnhum.2020.00125] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Accepted: 03/19/2020] [Indexed: 12/11/2022] Open
Abstract
Sensory conflict among visual, vestibular, and somatosensory information induces vertiginous sensation and postural instability. To elucidate the cognitive mechanisms of the integration between the visual and vestibular cues in humans, we analyzed the cortical hemodynamic responses during sensory conflict between visual and horizontal rotatory vestibular stimulation using a multichannel near-infrared spectroscopy (NIRS) system. The subjects sat on a rotatory chair that was accelerated at 3°/s2 for 20 s to the right or left, kept rotating at 60°/s for 80 s, and then decelerated at 3°/s2 for 20 s. The subjects were instructed to watch white stripes projected on a screen surrounding the chair during the acceleration and deceleration periods. The white stripes moved in two ways; in the "congruent" condition, the stripes moved in the opposite direction of chair rotation at 3°/s2 (i.e., natural visual stimulation), whereas in the "incongruent" condition, the stripes moved in the same direction of chair rotation at 3°/s2 (i.e., conflicted visual stimulation). The cortical hemodynamic activity was recorded from the bilateral temporoparietal regions. Statistical analyses using NIRS-SPM software indicated that hemodynamic activity increased in the bilateral temporoparietal junctions (TPJs) and human MT+ complex, including the medial temporal (MT) area and medial superior temporal (MST) area in the incongruent condition. Furthermore, the subjective strength of the vertiginous sensation was negatively correlated with hemodynamic activity in the dorsal part of the supramarginal gyrus (SMG) in and around the intraparietal sulcus (IPS). These results suggest that sensory conflict between the visual and vestibular stimuli promotes cortical cognitive processes in the cortical network consisting of the TPJ, the medial temporal gyrus (MTG), and IPS, which might contribute to self-motion perception to maintain a sense of balance or equilibrioception during sensory conflict.
Collapse
Affiliation(s)
- Nghia Trong Nguyen
- Department of Otorhinolaryngology, Head and Neck Surgery, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Hiromasa Takakura
- Department of Otorhinolaryngology, Head and Neck Surgery, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Hisao Nishijo
- System Emotional Science Laboratory, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Naoko Ueda
- Department of Otorhinolaryngology, Head and Neck Surgery, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Shinsuke Ito
- Department of Otorhinolaryngology, Head and Neck Surgery, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Michiro Fujisaka
- Department of Otorhinolaryngology, Head and Neck Surgery, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Katsuichi Akaogi
- Department of Otorhinolaryngology, Toyama Red Cross Hospital, Toyama, Japan
| | - Hideo Shojaku
- Department of Otorhinolaryngology, Head and Neck Surgery, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| |
Collapse
|
61
|
Wang S, Yin H, Li G, Jia Y, Leng M, Meng Q, Wang C, Chen L. Detection of Mild Cognitive Impairment Based on Virtual Reality: A Scoping Review. Curr Alzheimer Res 2020; 17:126-140. [PMID: 32183674 DOI: 10.2174/1567205017666200317100421] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Revised: 12/09/2019] [Accepted: 02/04/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND To delay the decline in cognition and reduce the incidence of dementia, the precise detection of Mild Cognitive Impairment (MCI) is necessary. The application of Virtual Reality (VR) technology in this detection can overcome the shortage of traditional paper-and-pencil tests. OBJECTIVE This review aimed to summarize the research progress of the detection of MCI using VR. METHODS Eight databases from their inception to November 19, 2019, were systematically searched for studies applying VR in the detection of MCI. A thematic analysis was conducted according to the specific detection purpose and the main corresponding cognitive domains assessed were summarized; characteristics of the VR applications were also summarized. RESULTS Twenty-eight studies were finally included. The detection purposes included discrimination between healthy controls and those with MCI, discrimination between aMCI subtypes, detection of MCI patients at risk of Alzheimer's Disease (AD), and discrimination between MCI and AD. VR tasks assessing spatial memory were applicable for all detection purposes, and the assessment of combinations of memory and executive function seemed more sensitive. Executive function and intentional episodic memory could be assessed to discriminate among healthy controls, individuals with MCI and those with AD. Incidental episodic memory was effective in detecting MCI with hippocampal atrophy. The most common characteristics of the VR applications were the use of semi-immersion, joysticks or gamepad interactions and simple, one-time behavioral assessments. CONCLUSION VR applications are promising in the detection of MCI, but further research is needed for clinical use.
Collapse
Affiliation(s)
- Shuo Wang
- School of Nursing, Jilin University, 965 Xinjiang Street, Changchun, 130000, China
| | - Huiru Yin
- School of Nursing, Jilin University, 965 Xinjiang Street, Changchun, 130000, China
| | - Guichen Li
- School of Nursing, Jilin University, 965 Xinjiang Street, Changchun, 130000, China
| | - Yong Jia
- School of Nursing, Jilin University, 965 Xinjiang Street, Changchun, 130000, China
| | - Minmin Leng
- School of Nursing, Jilin University, 965 Xinjiang Street, Changchun, 130000, China
| | - Qiuyan Meng
- School of Nursing, Jilin University, 965 Xinjiang Street, Changchun, 130000, China
| | - Chunyan Wang
- Senior Officials Inpatient Ward, First Hospital of Jilin University, Changchun, 130000, China
| | - Li Chen
- School of Nursing, Jilin University, 965 Xinjiang Street, Changchun, 130000, China
| |
Collapse
|
62
|
Too Real to Be Virtual: Autonomic and EEG Responses to Extreme Stress Scenarios in Virtual Reality. Behav Neurol 2020; 2020:5758038. [PMID: 32256856 PMCID: PMC7091527 DOI: 10.1155/2020/5758038] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 12/28/2019] [Accepted: 01/20/2020] [Indexed: 02/04/2023] Open
Abstract
The evolution of virtual reality (VR) technologies requires setting boundaries of its use. In this study, 3 female participants were experiencing VR scenarios with stressful content and their activity of the autonomic nervous system and EEG were recorded. It has been discovered that virtual reality can evoke acute stress reactions accompanied by activation of the sympathetic nervous system and a decrease in the activity of the parasympathetic nervous system. The high-stress response is accompanied by a decrease in the power of the EEG, and, on the contrary, the activation of the avoidance reaction is accompanied by an increase in the power of the EEG alpha waves. Therefore, the use of stressful VR content can cause high emotional stress to a user and restrictions should be considered.
Collapse
|
63
|
Weech S, Wall T, Barnett-Cowan M. Reduction of cybersickness during and immediately following noisy galvanic vestibular stimulation. Exp Brain Res 2020; 238:427-437. [PMID: 31938844 DOI: 10.1007/s00221-019-05718-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 12/27/2019] [Indexed: 11/26/2022]
Abstract
The mechanism underlying cybersickness during virtual reality (VR) exposure is still poorly understood, although research has highlighted a causal role for visual-vestibular sensory conflict. Recently established methods for reducing cybersickness include galvanic vestibular stimulation (GVS) to mimic absent vestibular cues in VR, or vibration of the vestibular organs to add noise to the sensory modality. Here, we examined if applying noise to the vestibular system using noisy-current GVS affects sickness severity in VR. Participants were exposed to one of the two VR games that were classified as either moderately or intensely nauseogenic. The VR content lasted for 50 min and was broken down into three blocks: 30 min of gameplay during exposure to either noisy GVS (± 1750 μA) or sham stimulation (0 μA), and 10 min of gameplay before and after this block. We characterized the effects of noisy GVS in terms of post-minus-pre-exposure cybersickness scores. In the intense VR condition, we found a main effect of noisy vestibular stimulation on a verbal cybersickness scale, but not for questionnaire measures of cybersickness. Participants reported lower cybersickness scores during and directly after exposure to GVS. However, this difference was quickly extinguished (~ 3-6 min) after further VR exposure, indicating that sensory adaptation did not persist after stimulation was terminated. In contrast, there were no differences between the sham and GVS group for the moderate VR content. The results show the potential for reducing cybersickness with non-invasive sensory stimulation. We address possible mechanisms for the observed effects, including noise-induced sensory re-weighting.
Collapse
Affiliation(s)
- Séamas Weech
- Department of Kinesiology, University of Waterloo, Waterloo, ON, Canada.
- School of Physical and Occupational Therapy, McGill University, Montreal, QC, Canada.
| | - Travis Wall
- Department of Kinesiology, University of Waterloo, Waterloo, ON, Canada
| | | |
Collapse
|
64
|
Wei Y, Okazaki YO, So RHY, Chu WCW, Kitajo K. Motion sickness-susceptible participants exposed to coherent rotating dot patterns show excessive N2 amplitudes and impaired theta-band phase synchronization. Neuroimage 2019; 202:116028. [PMID: 31326576 DOI: 10.1016/j.neuroimage.2019.116028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 07/10/2019] [Accepted: 07/16/2019] [Indexed: 10/26/2022] Open
Abstract
Visually induced motion sickness (VIMS) can occur via prolonged exposure to visual stimulation that generates the illusion of self-motion (vection). Not everyone is susceptible to VIMS and the neural mechanism underlying susceptibility is unclear. This study explored the differences of electroencephalographic (EEG) signatures between VIMS-susceptible and VIMS-resistant groups. Thirty-two-channel EEG data were recorded from 12 VIMS-susceptible and 15 VIMS-resistant university students while they were watching two patterns of moving dots: (1) a coherent rotation pattern (vection-inducing and potentially VIMS-provoking pattern), and (2) a random movement pattern (non-VIMS-provoking control). The VIMS-susceptible group exhibited a significantly larger increase in the parietal N2 response when exposed to the coherent rotating pattern than when exposed to control patterns. In members of the VIMS-resistant group, before vection onset, global connectivity from all other EEG electrodes to the right-temporal-parietal and to the right-central areas increased, whereas after vection onset the global connectivity to the right-frontal area reduced. Such changes were not observed in the susceptible group. Further, the increases in N2 amplitude and the identified phase synchronization index were significantly correlated with individual motion sickness susceptibility. Results suggest that VIMS susceptibility is associated with systematic impairment of dynamic cortical coordination as captured by the phase synchronization of cortical activities. Analyses of dynamic EEG signatures could be a means to unlock the neural mechanism of VIMS.
Collapse
Affiliation(s)
- Yue Wei
- HKUST-Shenzhen Research Institute, 9 Yuexing First Road, South Area, Hi-tech Park, Nanshan, Shenzhen, 518057, China; Bio-Engineering Graduate Program, School of Engineering, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Yuka O Okazaki
- RIKEN CBS-TOYOTA Collaboration Center, RIKEN Center for Brain Science, Wako, Saitama, 351-0198, Japan
| | - Richard H Y So
- HKUST-Shenzhen Research Institute, 9 Yuexing First Road, South Area, Hi-tech Park, Nanshan, Shenzhen, 518057, China; Department of Industrial Engineering and Decision Analytics, The Hong Kong University of Science and Technology, Hong Kong, China; Bio-Engineering Graduate Program, School of Engineering, The Hong Kong University of Science and Technology, Hong Kong, China.
| | - Winnie C W Chu
- Department of Imaging and Interventional Radiology, Prince of Wales Hospital, Hong Kong, China
| | - Keiichi Kitajo
- RIKEN CBS-TOYOTA Collaboration Center, RIKEN Center for Brain Science, Wako, Saitama, 351-0198, Japan; Division of Neural Dynamics, Department of System Neuroscience, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Aichi, 444-8585, Japan; Department of Physiological Sciences, School of Life Science, The Graduate University for Advanced Studies (SOKENDAI), Okazaki, 444-8585, Japan
| |
Collapse
|
65
|
Litleskare S, Calogiuri G. Camera Stabilization in 360° Videos and Its Impact on Cyber Sickness, Environmental Perceptions, and Psychophysiological Responses to a Simulated Nature Walk: A Single-Blinded Randomized Trial. Front Psychol 2019; 10:2436. [PMID: 31736832 PMCID: PMC6839361 DOI: 10.3389/fpsyg.2019.02436] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 10/14/2019] [Indexed: 11/18/2022] Open
Abstract
Immersive virtual environments (IVEs) technology has emerged as a valuable tool to environmental psychology research in general, and specifically to studies of human–nature interactions. However, virtual reality is known to induce cyber sickness, which limits its application and highlights the need for scientific strategies to optimize virtual experiences. In this study, we assessed the impact of improved camera stability on cyber sickness, presence, and psychophysiological responses to a simulated nature walk. In a single-blinded trial, 50 participants were assigned to watch, using a head-mounted display, one of two 10-min 360° videos showing a first-person nature walk: one video contained small-magnitude scene oscillations associated with cameraman locomotion, while in the other video, the oscillations were drastically reduced thanks to an electric stabilizer and a dolly. Measurements of cyber sickness (in terms of both occurrence and severity of symptoms), perceptions of the IVE (presence and perceived environmental restorativeness), and indicators of psychophysiological responses [affect, enjoyment, and heart rate (HR)] were collected before and/or after the exposure. Compared to the low-stability (LS) condition, in the high-stability (HS) condition, participants reported lower severity of cyber sickness symptoms. The delta values for pre–post changes in affect for the LS video revealed a deterioration of participants’ affect profile with a significant increase in ratings of negative affect and fatigue, and decrease in ratings of positive affect. In contrast, there were no pre–post changes in affect for the HS video. No differences were found between the HS and LS conditions with respect to presence, perceived environmental restorativeness, enjoyment, and HR. Cyber sickness was significantly correlated with all components of affect and enjoyment, but not with presence, perceived environmental restorativeness, or HR. These findings demonstrate that improved camera stability in 360° videos is crucial to reduce cyber sickness symptoms and negative affective responses in IVE users. The lack of associations between improved stability and presence, perceived environmental restorativeness, and HR suggests that other aspects of IVE technology must be taken into account in order to improve virtual experiences of nature.
Collapse
Affiliation(s)
- Sigbjørn Litleskare
- Faculty of Social and Health Sciences, Inland Norway University of Applied Sciences, Elverum, Norway
| | - Giovanna Calogiuri
- Faculty of Social and Health Sciences, Inland Norway University of Applied Sciences, Elverum, Norway
| |
Collapse
|
66
|
Feigl T, Roth D, Gradl S, Wirth M, Latoschik ME, Eskofier BM, Philippsen M, Mutschler C. Sick Moves! Motion Parameters as Indicators of Simulator Sickness. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2019; 25:3146-3157. [PMID: 31425036 DOI: 10.1109/tvcg.2019.2932224] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
We explore motion parameters, more specifically gait parameters, as an objective indicator to assess simulator sickness in Virtual Reality (VR). We discuss the potential relationships between simulator sickness, immersion, and presence. We used two different camera pose (position and orientation) estimation methods for the evaluation of motion tasks in a large-scale VR environment: a simple model and an optimized model that allows for a more accurate and natural mapping of human senses. Participants performed multiple motion tasks (walking, balancing, running) in three conditions: a physical reality baseline condition, a VR condition with the simple model, and a VR condition with the optimized model. We compared these conditions with regard to the resulting sickness and gait, as well as the perceived presence in the VR conditions. The subjective measures confirmed that the optimized pose estimation model reduces simulator sickness and increases the perceived presence. The results further show that both models affect the gait parameters and simulator sickness, which is why we further investigated a classification approach that deals with non-linear correlation dependencies between gait parameters and simulator sickness. We argue that our approach could be used to assess and predict simulator sickness based on human gait parameters and we provide implications for future research.
Collapse
|
67
|
Mohammadi A, Asadi H, Mohamed S, Nelson K, Nahavandi S. Multiobjective and Interactive Genetic Algorithms for Weight Tuning of a Model Predictive Control-Based Motion Cueing Algorithm. IEEE TRANSACTIONS ON CYBERNETICS 2019; 49:3471-3481. [PMID: 29994690 DOI: 10.1109/tcyb.2018.2845661] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Driving simulators are effective tools for training, virtual prototyping, and safety assessment which can minimize the cost and maximize road safety. Despite the aim of a realistic motion generation for the impression of real-world driving, motion simulators are bound in a limited workspace. Motion cueing algorithms (MCAs) aim to plan an acceptable motion feeling for drivers, without infringing the simulated boundaries. Recently, model predictive control (MPC) has been widely used in MCAs; however, the tuning process for finding the best weights of the MPC optimization is still a challenge. As there are several objectives for the optimization without any standard weighting for solution evaluations, a nonbiased scalarization of solutions for the purpose of comparison is impossible. In this paper, a clear method for obtaining the best MPC weighting has been proposed. This method searches for the best tune of MPC cost function weights, reduces the user burden for weight tuning while receiving feedback from the user satisfaction. The MPC-based MCA weights are optimized using a multiobjective genetic algorithm (GA) considering objectives, such as minimization of motion inputs (linear acceleration and angular velocity), input rates, output displacements and the sensed motion errors. Any process based on trial-and-error has been omitted. The adjusted weights have to satisfy a set of predefined conditions related to maximum tolerated error and maximum displacement. The obtained Pareto-front is used for decision making via an interactive GA (IGA), aiming for maximization of the decision maker's satisfaction. A Web interface is developed to interact with the IGA and to influence the region of searching. Simulation results show the superiority of the proposed method compared with the previous empirical tuning method. The sensed motion error is minimized using the proposed method and with the same available workspace, a more realistic motion can be rendered to the driver.
Collapse
|
68
|
Srivastava P, Rimzhim A, Vijay P, Singh S, Chandra S. Desktop VR Is Better Than Non-ambulatory HMD VR for Spatial Learning. Front Robot AI 2019; 6:50. [PMID: 33501066 PMCID: PMC7805926 DOI: 10.3389/frobt.2019.00050] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 06/20/2019] [Indexed: 11/23/2022] Open
Abstract
Use of virtual reality (VR) technology is proliferating for designing and upgrading entertainment devices, and creating virtual environments that could be used for research and training. VR is becoming a strong research tool by providing a tighter control on the experimental environment and by allowing almost limitless possibilities of creating ecologically valid stimuli. However, the enhanced fidelity between the real and virtual worlds that VR provides does not always benefit human performance. For a better understanding, and increasing VR's usability, we need to identify the relevant constituent components of immersive technologies, and differentiate their roles, for example, how visual and interaction fidelity differentially improves human performance. We conducted an experiment to examine how two common VR display modes, head mounted display (HMD) and desktop (DT), would affect spatial learning when we restrict ambulatory locomotion in HMD. This manipulation allowed examining the role of varying visual fidelity with low interaction fidelity. We used a between-group design with 40 naïve participants. They explored a virtual environment and later drew its sketch-map. Our results showed participants spent more time and perceived less motion-sickness and task effort using desktop than HMD VR. With reduced interaction fidelity, the high visual fidelity of HMD as compared to desktop resulted in similar or poorer performance on different spatial learning tasks after accounting for motion-sickness and workload effort. Participants were better in recalling spatial components related to junction and cyclic order of the navigated virtual space in desktop vs. HMD VR, and performed equally well on components related to street segments and object associations. We explain these results in terms of deficient idiothetic information in non-ambulatory HMD and lesser sensory conflicts in desktop mode. Overall, our results highlight the differential effect of visual vs. interaction fidelity on human performance based on using immersive technologies, how such an effect depends on the nature of cognitive and functional behavior users employ, and the higher usability of traditional desktop VR. These results are relevant for developing customized and sustainable virtual reality based human-computer interactions.
Collapse
Affiliation(s)
- Priyanka Srivastava
- Perception and Cognition Group, Cognitive Science Lab, Kohli Research Centre on Intelligent Systems, International Institute of Information Technology-Hyderabad, Hyderabad, India
| | - Anurag Rimzhim
- Department of Psychological Science, Central Connecticut State University, New Britain, CT, United States.,Haskins Laboratories, New Haven, CT, United States
| | - Palash Vijay
- Perception and Cognition Group, Cognitive Science Lab, Kohli Research Centre on Intelligent Systems, International Institute of Information Technology-Hyderabad, Hyderabad, India
| | - Shruti Singh
- Perception and Cognition Group, Cognitive Science Lab, Kohli Research Centre on Intelligent Systems, International Institute of Information Technology-Hyderabad, Hyderabad, India
| | - Sushil Chandra
- Indian Nuclear Medicine and Allied Sciences, Defence Research and Development Organization, New Delhi, India
| |
Collapse
|
69
|
Stróżak P, Augustynowicz P, Ratomska M, Francuz P, Fudali-Czyż A. Vection Attenuates N400 Event-Related Potentials in a Change-Detection Task. Perception 2019; 48:702-730. [DOI: 10.1177/0301006619861882] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Paweł Stróżak
- Department of Experimental Psychology, The John Paul II Catholic University of Lublin, Poland
| | - Paweł Augustynowicz
- Department of Experimental Psychology, The John Paul II Catholic University of Lublin, Poland
| | - Marta Ratomska
- Department of Experimental Psychology, The John Paul II Catholic University of Lublin, Poland
| | - Piotr Francuz
- Department of Experimental Psychology, The John Paul II Catholic University of Lublin, Poland
| | - Agnieszka Fudali-Czyż
- Department of Experimental Psychology, The John Paul II Catholic University of Lublin, Poland
| |
Collapse
|
70
|
Hirota M, Kanda H, Endo T, Miyoshi T, Miyagawa S, Hirohara Y, Yamaguchi T, Saika M, Morimoto T, Fujikado T. Comparison of visual fatigue caused by head-mounted display for virtual reality and two-dimensional display using objective and subjective evaluation. ERGONOMICS 2019; 62:759-766. [PMID: 30773103 DOI: 10.1080/00140139.2019.1582805] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
This study aimed to evaluate objective and subjective visual fatigue experienced before and after performing a visual task while using a head-mounted display for virtual reality (VR-HMD) and two-dimensional (2D) display. Binocular fusion maintenance (BFM) was measured using a binocular open-view Shack-Hartmann wavefront aberrometer equipped with liquid crystal shutters. Twelve healthy subjects performed the BFM test and completed a questionnaire regarding subjective symptoms before and after performing a visual task that induces low visually induced motion sickness (VIMS). BFM (p = .87) and total subjective eye symptom scores (p = .38) were not significantly different between both groups, although these values were significantly lower after the visual task than before the task within both groups (p < .05). These findings suggest that visual fatigue after using a VR-HMD is not significantly different from that after using a 2D display in the presence of low-VIMS VR content. Practitioner summary: Objective and subjective evaluation of visual fatigue were not significantly different with the use of a head-mounted display for virtual reality (VR-HMD) and two-dimensional display. These results should be valuable not only to engineers developing VR content but also to researchers involved in the evaluation of visual fatigue using VR-HMD. Abbreviations: VR: virtual reality; VR-HMD: head-mounted display for virtual reality; BFM: binocular fusion maintenance; BWFA: binocular open-view Shack-Hartmann wavefront aberrometer.
Collapse
Affiliation(s)
- Masakazu Hirota
- a Department of Applied Visual Science , Osaka University Graduate School of Medicine , Suita , Japan
| | - Hiroyuki Kanda
- a Department of Applied Visual Science , Osaka University Graduate School of Medicine , Suita , Japan
| | - Takao Endo
- b Department of Ophthalmology , Osaka University Graduate School of Medicine , Suita , Japan
| | - Tomomitsu Miyoshi
- c Department of Integrative Physiology , Osaka University Graduate School of Medicine , Suita , Japan
| | - Suguru Miyagawa
- a Department of Applied Visual Science , Osaka University Graduate School of Medicine , Suita , Japan
- d Topcon Corporation , Itabashi , Japan
| | | | | | | | - Takeshi Morimoto
- a Department of Applied Visual Science , Osaka University Graduate School of Medicine , Suita , Japan
| | - Takashi Fujikado
- a Department of Applied Visual Science , Osaka University Graduate School of Medicine , Suita , Japan
| |
Collapse
|
71
|
Kim HG, Lim HT, Lee S, Ro YM. VRSA Net: VR Sickness Assessment Considering Exceptional Motion for 360° VR Video. IEEE TRANSACTIONS ON IMAGE PROCESSING : A PUBLICATION OF THE IEEE SIGNAL PROCESSING SOCIETY 2019; 28:1646-1660. [PMID: 30418904 DOI: 10.1109/tip.2018.2880509] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The viewing safety is one of the main issues in viewing virtual reality (VR) content. In particular, VR sickness could occur when watching immersive VR content. To deal with the viewing safety for VR content, objective assessment of VR sickness is of great importance. In this paper, we propose a novel objective VR sickness assessment (VRSA) network based on deep generative model for automatically predicting the VR sickness score. The proposed method takes into account motion patterns of VR videos in which an exceptional motion is a critical factor inducing excessive VR sickness in human motion perception. The proposed VRSA network consists of two parts, which are VR video generator and VR sickness score predictor. By training the VR video generator with common videos with non-exceptional motion, the generator learns the tolerance of VR sickness in human motion perception. As a result, the difference between the original and the generated videos by the VR video generator could represent exceptional motion of VR video causing VR sickness. In the VR sickness score predictor, the VR sickness score is predicted by projecting the difference between the original and the generated videos onto the subjective score space. For the evaluation of VR sickness assessment, we built a new dataset which consists of 360° videos (stimuli), corresponding physiological signals, and subjective questionnaires from subjective assessment experiments. Experimental results demonstrated that the proposed VRSA network achieved a high correlation with human perceptual score for VR sickness.
Collapse
|
72
|
Weech S, Kenny S, Barnett-Cowan M. Presence and Cybersickness in Virtual Reality Are Negatively Related: A Review. Front Psychol 2019; 10:158. [PMID: 30778320 PMCID: PMC6369189 DOI: 10.3389/fpsyg.2019.00158] [Citation(s) in RCA: 195] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 01/16/2019] [Indexed: 12/21/2022] Open
Abstract
In order to take advantage of the potential offered by the medium of virtual reality (VR), it will be essential to develop an understanding of how to maximize the desirable experience of "presence" in a virtual space ("being there"), and how to minimize the undesirable feeling of "cybersickness" (a constellation of discomfort symptoms experienced in VR). Although there have been frequent reports of a possible link between the observer's sense of presence and the experience of bodily discomfort in VR, the amount of literature that discusses the nature of the relationship is limited. Recent research has underlined the possibility that these variables have shared causes, and that both factors may be manipulated with a single approach. This review paper summarizes the concepts of presence and cybersickness and highlights the strengths and gaps in our understanding about their relationship. We review studies that have measured the association between presence and cybersickness, and conclude that the balance of evidence favors a negative relationship between the two factors which is driven principally by sensory integration processes. We also discuss how system immersiveness might play a role in modulating both presence and cybersickness. However, we identify a serious absence of high-powered studies that aim to reveal the nature of this relationship. Based on this evidence we propose recommendations for future studies investigating presence, cybersickness, and other related factors.
Collapse
Affiliation(s)
- Séamas Weech
- Department of Kinesiology, University of Waterloo, Waterloo, ON, Canada
- The Games Institute, University of Waterloo, Waterloo, ON, Canada
| | - Sophie Kenny
- The Games Institute, University of Waterloo, Waterloo, ON, Canada
| | - Michael Barnett-Cowan
- Department of Kinesiology, University of Waterloo, Waterloo, ON, Canada
- The Games Institute, University of Waterloo, Waterloo, ON, Canada
| |
Collapse
|
73
|
Weech S, Varghese JP, Barnett-Cowan M. Estimating the sensorimotor components of cybersickness. J Neurophysiol 2018; 120:2201-2217. [PMID: 30044672 PMCID: PMC6295542 DOI: 10.1152/jn.00477.2018] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 07/17/2018] [Indexed: 11/22/2022] Open
Abstract
The user base of the virtual reality (VR) medium is growing, and many of these users will experience cybersickness. Accounting for the vast interindividual variability in cybersickness forms a pivotal step in solving the issue. Most studies of cybersickness focus on a single factor (e.g., balance, sex, or vection), while other contributors are overlooked. Here, we characterize the complex relationship between cybersickness and several measures of sensorimotor processing. In a single session, we conducted a battery of tests of balance control, vection responses, and vestibular sensitivity to self-motion. Following this, we measured cybersickness after VR exposure. We constructed a principal components regression model using the measures of sensorimotor processing. The model significantly predicted 37% of the variability in cybersickness measures, with 16% of this variance being accounted for by a principal component that represented balance control measures. The strongest predictor was participants' sway path length during vection, which was inversely related to cybersickness [ r(28) = -0.53, P = 0.002] and uniquely accounted for 7.5% of the variance in cybersickness scores across participants. Vection strength reports and measures of vestibular sensitivity were not significant predictors of cybersickness. We discuss the possible role of sensory reweighting in cybersickness that is suggested by these results, and we identify other factors that may account for the remaining variance in cybersickness. The results reiterate that the relationship between balance control and cybersickness is anything but straightforward. NEW & NOTEWORTHY The advent of consumer virtual reality provides a pressing need for interventions that combat sickness in simulated environments (cybersickness). This research builds on multiple theories of cybersickness etiology to develop a predictive model that distinguishes between individuals who are/are not likely to experience cybersickness. In the future this approach can be adapted to provide virtual reality users with curated content recommendations based on more efficient measurements of sensorimotor processing.
Collapse
Affiliation(s)
- Séamas Weech
- Department of Kinesiology, University of Waterloo , Waterloo, Ontario , Canada
| | | | | |
Collapse
|
74
|
Campos J, Ramkhalawansingh R, Pichora-Fuller MK. Hearing, self-motion perception, mobility, and aging. Hear Res 2018; 369:42-55. [DOI: 10.1016/j.heares.2018.03.025] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 02/20/2018] [Accepted: 03/29/2018] [Indexed: 11/30/2022]
|
75
|
Inhibition of vection by grasping an object. Exp Brain Res 2018; 236:3215-3221. [DOI: 10.1007/s00221-018-5375-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 09/06/2018] [Indexed: 10/28/2022]
|
76
|
Wei Y, Zheng J, So RHY. Allocating less attention to central vision during vection is correlated with less motion sickness. ERGONOMICS 2018; 61:933-946. [PMID: 29325490 DOI: 10.1080/00140139.2018.1427805] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 01/09/2018] [Indexed: 06/07/2023]
Abstract
Visually induced motion sickness (VIMS) is a common discomfort response associated with vection-provoking stimuli. It has been suggested that susceptibility to VIMS depends on the ability to regulate visual performance during vection. To test this, 29 participants, with VIMS susceptibility assessed by Motion Sickness Susceptibility Questionnaire, were recruited to undergo three series of sustained attention to response tests (SARTs) while watching dot pattern stimuli known to provoke roll-vection. In general, SARTs performance was impaired in the central visual field (CVF), but improved in peripheral visual field (PVF), suggesting the reallocation of attention during vection. Moreover, VIMS susceptibility was negatively correlated with the effect sizes, suggesting that participants who were less susceptible to VIMS showed better performance in attention re-allocation. Finally, when trained to re-allocation attention from the CVF to the PVF, participants experienced more stable vection. Findings provide a better understanding of VIMS and shed light on possible preventive measures. Practitioner Summary: Allocating less visual attention to central visual field during visual motion stimulation is associated with stronger vection and higher resistance to motion sickness. Virtual reality application designers may utilise the location of visual tasks to strengthen and stabilise vection, while reducing the potential of visually induced motion sickness.
Collapse
Affiliation(s)
- Yue Wei
- a Bio-Engineering Program, School of Engineering , HKUST , Hong Kong , PR China
- c Computational Ergonomics Laboratory , HKUST-Shenzhen Research Institute , Shenzhen , PR China
| | - Jiayue Zheng
- a Bio-Engineering Program, School of Engineering , HKUST , Hong Kong , PR China
- c Computational Ergonomics Laboratory , HKUST-Shenzhen Research Institute , Shenzhen , PR China
| | - Richard H Y So
- a Bio-Engineering Program, School of Engineering , HKUST , Hong Kong , PR China
- b Department of Industrial Engineering and Logistics Management , The Hong Kong University of Science and Technology , Hong Kong , PR China
- c Computational Ergonomics Laboratory , HKUST-Shenzhen Research Institute , Shenzhen , PR China
| |
Collapse
|
77
|
Taylor N, Layland A. Comparison study of the use of 360-degree video and non-360-degree video simulation and cybersickness symptoms in undergraduate healthcare curricula. BMJ SIMULATION & TECHNOLOGY ENHANCED LEARNING 2018; 5:170-173. [PMID: 35514941 DOI: 10.1136/bmjstel-2018-000356] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 06/01/2018] [Accepted: 06/04/2018] [Indexed: 11/04/2022]
Abstract
The increasing use of emerging technologies in healthcare simulation, particularly virtual reality, has caused in increase in both use and misuse. It is the exploration and study of these types of technology that are key to their success-or failure-in simulation learning and teaching. Therefore, this exploratory study evaluated the most common perceived side effect of virtual reality, that of cybersickness. A total of n=60 undergraduate healthcare students participated in one of four identical learning outcome simulation events, using different simulation techniques. This study compared these four common simulation tools, high-fidelity manikin, standardised patient, video case study and 360-degree virtual reality video, and analysed the self-reported cybersickness symptoms. The results show that some virtual reality tools, in this case 360-degree video, are no more likely to provoke cybersickness symptoms than the other simulation methods used in this study. In addition, virtual reality is reported as less fatiguing than other methods of simulation learning. Virtual reality technologies may be a useful addition to the spectrum of simulation tools and techniques currently in use. This study suggests that there is no greater risk of cybersickness symptoms and this potential barrier to use is not borne out by this study.
Collapse
Affiliation(s)
- Natasha Taylor
- Faculty of Health and Life Sciences, Coventry University, Coventry, UK
| | - Adam Layland
- Faculty of Health and Life Sciences, Coventry University, Coventry, UK
| |
Collapse
|
78
|
Takeuchi N, Mori T, Suzukamo Y, Izumi SI. Modulation of Excitability in the Temporoparietal Junction Relieves Virtual Reality Sickness. CYBERPSYCHOLOGY BEHAVIOR AND SOCIAL NETWORKING 2018; 21:381-387. [PMID: 29792509 DOI: 10.1089/cyber.2017.0499] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Virtual reality (VR) immersion often provokes subjective discomfort and postural instability, so called VR sickness. The neural mechanism of VR sickness is speculated to be related to visual-vestibular information mismatch and/or postural instability. However, the approaches proposed to relieve VR sickness through modulation of brain activity are poorly understood. Using transcranial direct current stimulation (tDCS), we aimed to investigate whether VR sickness could be relieved by the modulation of cortical excitability in the temporoparietal junction (TPJ), which is known to be involved in processing of both vestibular and visual information. Twenty healthy subjects received tDCS over right TPJ before VR immersion. The order of the three types of tDCS (anodal, cathodal, and sham) was counterbalanced across subjects. We evaluated the subjective symptoms, heart rate, and center of pressure at baseline, after tDCS, and after VR immersion. VR immersion using head-mounted displays provoked subjective discomfort and postural instability. However, anodal tDCS over right TPJ ameliorated subjective disorientation symptoms and postural instability induced by VR immersion compared with sham condition. The amelioration of VR sickness by anodal tDCS over the right TPJ might result from relief of the sensory conflict and/or facilitation of vestibular function. Our result not only has potential clinical implications for the neuromodulation approach of VR sickness but also implies a causal role of the TPJ in VR sickness.
Collapse
Affiliation(s)
- Naoyuki Takeuchi
- 1 Department of Physical Medicine and Rehabilitation, Tohoku University Graduate School of Medicine , Sendai, Japan
| | - Takayuki Mori
- 1 Department of Physical Medicine and Rehabilitation, Tohoku University Graduate School of Medicine , Sendai, Japan
| | - Yoshimi Suzukamo
- 1 Department of Physical Medicine and Rehabilitation, Tohoku University Graduate School of Medicine , Sendai, Japan
| | - Shin-Ichi Izumi
- 1 Department of Physical Medicine and Rehabilitation, Tohoku University Graduate School of Medicine , Sendai, Japan
| |
Collapse
|
79
|
The search for instantaneous vection: An oscillating visual prime reduces vection onset latency. PLoS One 2018; 13:e0195886. [PMID: 29791445 PMCID: PMC5965835 DOI: 10.1371/journal.pone.0195886] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 03/30/2018] [Indexed: 11/29/2022] Open
Abstract
Typically it takes up to 10 seconds or more to induce a visual illusion of self-motion (“vection”). However, for this vection to be most useful in virtual reality and vehicle simulation, it needs to be induced quickly, if not immediately. This study examined whether vection onset latency could be reduced towards zero using visual display manipulations alone. In the main experiments, visual self-motion simulations were presented to observers via either a large external display or a head-mounted display (HMD). Priming observers with visually simulated viewpoint oscillation for just ten seconds before the main self-motion display was found to markedly reduce vection onset latencies (and also increase ratings of vection strength) in both experiments. As in earlier studies, incorporating this simulated viewpoint oscillation into the self-motion displays themselves was also found to improve vection. Average onset latencies were reduced from 8-9s in the no oscillating control condition to as little as 4.6 s (for external displays) or 1.7 s (for HMDs) in the combined oscillation condition (when both the visual prime and the main self-motion display were oscillating). As these display manipulations did not appear to increase the likelihood or severity of motion sickness in the current study, they could possibly be used to enhance computer generated simulation experiences and training in the future, at no additional cost.
Collapse
|
80
|
Padmanaban N, Ruban T, Sitzmann V, Norcia AM, Wetzstein G. Towards a Machine-Learning Approach for Sickness Prediction in 360° Stereoscopic Videos. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2018; 24:1594-1603. [PMID: 29553929 DOI: 10.1109/tvcg.2018.2793560] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Virtual reality systems are widely believed to be the next major computing platform. There are, however, some barriers to adoption that must be addressed, such as that of motion sickness - which can lead to undesirable symptoms including postural instability, headaches, and nausea. Motion sickness in virtual reality occurs as a result of moving visual stimuli that cause users to perceive self-motion while they remain stationary in the real world. There are several contributing factors to both this perception of motion and the subsequent onset of sickness, including field of view, motion velocity, and stimulus depth. We verify first that differences in vection due to relative stimulus depth remain correlated with sickness. Then, we build a dataset of stereoscopic 3D videos and their corresponding sickness ratings in order to quantify their nauseogenicity, which we make available for future use. Using this dataset, we train a machine learning algorithm on hand-crafted features (quantifying speed, direction, and depth as functions of time) from each video, learning the contributions of these various features to the sickness ratings. Our predictor generally outperforms a naïve estimate, but is ultimately limited by the size of the dataset. However, our result is promising and opens the door to future work with more extensive datasets. This and further advances in this space have the potential to alleviate developer and end user concerns about motion sickness in the increasingly commonplace virtual world.
Collapse
|
81
|
Kuiper OX, Bos JE, Diels C. Looking forward: In-vehicle auxiliary display positioning affects carsickness. APPLIED ERGONOMICS 2018; 68:169-175. [PMID: 29409631 DOI: 10.1016/j.apergo.2017.11.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 11/03/2017] [Accepted: 11/04/2017] [Indexed: 06/07/2023]
Abstract
Carsickness is associated with a mismatch between actual and anticipated sensory signals. Occupants of automated vehicles, especially when using a display, are at higher risk of becoming carsick than drivers of conventional vehicles. This study aimed to evaluate the impact of positioning of in-vehicle displays, and subsequent available peripheral vision, on carsickness of passengers. We hypothesized that increased peripheral vision during display use would reduce carsickness. Seated in the front passenger seat 18 participants were driven a 15-min long slalom on two occasions while performing a continuous visual search-task. The display was positioned either at 1) eye-height in front of the windscreen, allowing peripheral view on the outside world, and 2) the height of the glove compartment, allowing only limited view on the outside world. Motion sickness was reported at 1-min intervals. Using a display at windscreen height resulted in less carsickness compared to a display at glove compartment height.
Collapse
Affiliation(s)
- Ouren X Kuiper
- VU University, Faculty of Behavioural and Movement Sciences, Amsterdam Movement Sciences, Amsterdam, The Netherlands.
| | - Jelte E Bos
- VU University, Faculty of Behavioural and Movement Sciences, Amsterdam Movement Sciences, Amsterdam, The Netherlands; TNO Perceptual and Cognitive Systems, Soesterberg, The Netherlands
| | - Cyriel Diels
- Coventry University, Centre for Mobility and Transport, Coventry, UK
| |
Collapse
|
82
|
Gallagher M, Ferrè ER. Cybersickness: a Multisensory Integration Perspective. Multisens Res 2018; 31:645-674. [PMID: 31264611 DOI: 10.1163/22134808-20181293] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 01/05/2018] [Indexed: 11/19/2022]
Abstract
In the past decade, there has been a rapid advance in Virtual Reality (VR) technology. Key to the user's VR experience are multimodal interactions involving all senses. The human brain must integrate real-time vision, hearing, vestibular and proprioceptive inputs to produce the compelling and captivating feeling of immersion in a VR environment. A serious problem with VR is that users may develop symptoms similar to motion sickness, a malady called cybersickness. At present the underlying cause of cybersickness is not yet fully understood. Cybersickness may be due to a discrepancy between the sensory signals which provide information about the body's orientation and motion: in many VR applications, optic flow elicits an illusory sensation of motion which tells users that they are moving in a certain direction with certain acceleration. However, since users are not actually moving, their proprioceptive and vestibular organs provide no cues of self-motion. These conflicting signals may lead to sensory discrepancies and eventually cybersickness. Here we review the current literature to develop a conceptual scheme for understanding the neural mechanisms of cybersickness. We discuss an approach to cybersickness based on sensory cue integration, focusing on the dynamic re-weighting of visual and vestibular signals for self-motion.
Collapse
Affiliation(s)
- Maria Gallagher
- Department of Psychology, Royal Holloway University of London, Egham, UK
| | | |
Collapse
|
83
|
Palmisano S, Arcioni B, Stapley PJ. Predicting vection and visually induced motion sickness based on spontaneous postural activity. Exp Brain Res 2017; 236:315-329. [DOI: 10.1007/s00221-017-5130-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 11/09/2017] [Indexed: 02/06/2023]
|
84
|
Abstract
Visually induced illusions of self-motion are often referred to as vection. This article developed and tested a model of responding to visually induced vection. We first constructed a mathematical model based on well-documented characteristics of vection and human behavioral responses to this illusion. We then conducted 10,000 virtual trial simulations using this Oscillating Potential Vection Model (OPVM). OPVM was used to generate simulated vection onset, duration, and magnitude responses for each of these trials. Finally, we compared the properties of OPVM's simulated vection responses with real responses obtained in seven different laboratory-based vection experiments. The OPVM output was found to compare favorably with the empirically obtained vection data.
Collapse
Affiliation(s)
- Takeharu Seno
- Faculty of Design, Kyushu University, Minami-ku, Fukuoka, Japan
| |
Collapse
|
85
|
|
86
|
Nooij SAE, Pretto P, Oberfeld D, Hecht H, Bülthoff HH. Vection is the main contributor to motion sickness induced by visual yaw rotation: Implications for conflict and eye movement theories. PLoS One 2017; 12:e0175305. [PMID: 28380077 PMCID: PMC5381945 DOI: 10.1371/journal.pone.0175305] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 03/23/2017] [Indexed: 11/18/2022] Open
Abstract
This study investigated the role of vection (i.e., a visually induced sense of self-motion), optokinetic nystagmus (OKN), and inadvertent head movements in visually induced motion sickness (VIMS), evoked by yaw rotation of the visual surround. These three elements have all been proposed as contributing factors in VIMS, as they can be linked to different motion sickness theories. However, a full understanding of the role of each factor is still lacking because independent manipulation has proven difficult in the past. We adopted an integrative approach to the problem by obtaining measures of potentially relevant parameters in four experimental conditions and subsequently combining them in a linear mixed regression model. To that end, participants were exposed to visual yaw rotation in four separate sessions. Using a full factorial design, the OKN was manipulated by a fixation target (present/absent), and vection strength by introducing a conflict in the motion direction of the central and peripheral field of view (present/absent). In all conditions, head movements were minimized as much as possible. Measured parameters included vection strength, vection variability, OKN slow phase velocity, OKN frequency, the number of inadvertent head movements, and inadvertent head tilt. Results show that VIMS increases with vection strength, but that this relation varies among participants (R2 = 0.48). Regression parameters for vection variability, head and eye movement parameters were not significant. These results may seem to be in line with the Sensory Conflict theory on motion sickness, but we argue that a more detailed definition of the exact nature of the conflict is required to fully appreciate the relationship between vection and VIMS.
Collapse
Affiliation(s)
- Suzanne A. E. Nooij
- Department of Human Perception Cognition and Action, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
- * E-mail:
| | - Paolo Pretto
- Department of Human Perception Cognition and Action, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
| | - Daniel Oberfeld
- Department of Experimental Psychology, Johannes Gutenberg-Universität, Mainz, Germany
| | - Heiko Hecht
- Department of Experimental Psychology, Johannes Gutenberg-Universität, Mainz, Germany
| | - Heinrich H. Bülthoff
- Department of Human Perception Cognition and Action, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
| |
Collapse
|
87
|
Motion sickness increases functional connectivity between visual motion and nausea-associated brain regions. Auton Neurosci 2016; 202:108-113. [PMID: 28245927 DOI: 10.1016/j.autneu.2016.10.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2016] [Revised: 08/25/2016] [Accepted: 10/15/2016] [Indexed: 11/21/2022]
Abstract
The brain networks supporting nausea not yet understood. We previously found that while visual stimulation activated primary (V1) and extrastriate visual cortices (MT+/V5, coding for visual motion), increasing nausea was associated with increasing sustained activation in several brain areas, with significant co-activation for anterior insula (aIns) and mid-cingulate (MCC) cortices. Here, we hypothesized that motion sickness also alters functional connectivity between visual motion and previously identified nausea-processing brain regions. Subjects prone to motion sickness and controls completed a motion sickness provocation task during fMRI/ECG acquisition. We studied changes in connectivity between visual processing areas activated by the stimulus (MT+/V5, V1), right aIns and MCC when comparing rest (BASELINE) to peak nausea state (NAUSEA). Compared to BASELINE, NAUSEA reduced connectivity between right and left V1 and increased connectivity between right MT+/V5 and aIns and between left MT+/V5 and MCC. Additionally, the change in MT+/V5 to insula connectivity was significantly associated with a change in sympathovagal balance, assessed by heart rate variability analysis. No state-related connectivity changes were noted for the control group. Increased connectivity between a visual motion processing region and nausea/salience brain regions may reflect increased transfer of visual/vestibular mismatch information to brain regions supporting nausea perception and autonomic processing. We conclude that vection-induced nausea increases connectivity between nausea-processing regions and those activated by the nauseogenic stimulus. This enhanced low-frequency coupling may support continual, slowly evolving nausea perception and shifts toward sympathetic dominance. Disengaging this coupling may be a target for biobehavioral interventions aimed at reducing motion sickness severity.
Collapse
|
88
|
Takakura H, Nishijo H, Ishikawa A, Shojaku H. Cerebral Hemodynamic Responses During Dynamic Posturography: Analysis with a Multichannel Near-Infrared Spectroscopy System. Front Hum Neurosci 2015; 9:620. [PMID: 26635574 PMCID: PMC4647449 DOI: 10.3389/fnhum.2015.00620] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 10/29/2015] [Indexed: 11/13/2022] Open
Abstract
To investigate cortical roles in standing balance, cortical hemodynamic activity was recorded from the right hemisphere using near-infrared spectroscopy (NIRS) while subjects underwent the sensory organization test (SOT) protocol that systematically disrupts sensory integration processes (i.e., somatosensory or visual inputs or both). Eleven healthy men underwent the SOT during NIRS recording. Group statistical analyses were performed based on changes in oxygenated hemoglobin concentration in 10 different cortical regions of interest and on a general linear analysis with NIRS statistical parametric mapping. The statistical analyses indicated significant activation in the right frontal operculum (f-Op), right parietal operculum (p-Op), and right superior temporal gyrus (STG), right posterior parietal cortex (PPC), right dorsal and ventral premotor cortex (PMC), and the supplementary motor area (SMA) under various conditions. The activation patterns in response to specific combinations of SOT conditions suggested that (1) f-Op, p-Op, and STG are essential for sensory integration when standing balance is perturbed; (2) the SMA is involved in the execution of volitional action and establishment of new motor programs to maintain postural balance; and (3) the PPC and PMC are involved in the updating and computation of spatial reference frames during instances of sensory conflict between vestibular and visual information.
Collapse
Affiliation(s)
- Hiromasa Takakura
- Department of Otorhinolaryngology, Head and Neck Surgery, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama , Toyama , Japan
| | - Hisao Nishijo
- System Emotional Science, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama , Toyama , Japan
| | - Akihiro Ishikawa
- R&D Department, Medical Systems Division, Shimadzu, Co., Ltd. , Kyoto , Japan
| | - Hideo Shojaku
- Department of Otorhinolaryngology, Head and Neck Surgery, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama , Toyama , Japan
| |
Collapse
|
89
|
Riecke BE, Feuereissen D, Rieser JJ, McNamara TP. More than a cool illusion? Functional significance of self-motion illusion (circular vection) for perspective switches. Front Psychol 2015; 6:1174. [PMID: 26321989 PMCID: PMC4531211 DOI: 10.3389/fpsyg.2015.01174] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 07/26/2015] [Indexed: 11/30/2022] Open
Abstract
Self-motion can facilitate perspective switches and “automatic spatial updating” and help reduce disorientation in applications like virtual reality (VR). However, providing physical motion through moving-base motion simulators or free-space walking areas comes with high cost and technical complexity. This study provides first evidence that merely experiencing an embodied illusion of self-motion (“circular vection”) can provide similar behavioral benefits as actual self-motion: Blindfolded participants were asked to imagine facing new perspectives in a well-learned room, and point to previously learned objects. Merely imagining perspective switches while stationary yielded worst performance. When perceiving illusory self-rotation to the novel perspective, however, performance improved significantly and yielded performance similar to actual rotation. Circular vection was induced by combining rotating sound fields (“auditory vection”) and biomechanical vection from stepping along a carrousel-like rotating floor platter. In sum, illusory self-motion indeed facilitated perspective switches and thus spatial orientation, similar to actual self-motion, thus providing first compelling evidence of the functional significance and behavioral relevance of vection. This could ultimately enable us to complement the prevailing introspective vection measures with behavioral indicators, and guide the design for more affordable yet effective VR simulators that intelligently employ multi-modal self-motion illusions to reduce the need for costly physical observer motion.
Collapse
Affiliation(s)
- Bernhard E Riecke
- Space Lab, School of Interactive Arts and Technology, Simon Fraser University, Surrey Campus Surrey, Canada ; Cognitive Science, Simon Fraser University, Burnaby Campus Burnaby, Canada ; Psychological Sciences, Vanderbilt University Nashville, TN, USA
| | - Daniel Feuereissen
- Space Lab, School of Interactive Arts and Technology, Simon Fraser University, Surrey Campus Surrey, Canada ; Psychological Sciences, Vanderbilt University Nashville, TN, USA
| | - John J Rieser
- Psychological Sciences, Vanderbilt University Nashville, TN, USA
| | - Timothy P McNamara
- Department of Psychology, Psychological Sciences, Vanderbilt University Nashville, TN, USA
| |
Collapse
|
90
|
Riecke BE, Jordan JD. Comparing the effectiveness of different displays in enhancing illusions of self-movement (vection). Front Psychol 2015; 6:713. [PMID: 26082735 PMCID: PMC4450174 DOI: 10.3389/fpsyg.2015.00713] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Accepted: 05/13/2015] [Indexed: 11/13/2022] Open
Abstract
Illusions of self-movement (vection) can be used in virtual reality (VR) and other applications to give users the embodied sensation that they are moving when physical movement is unfeasible or too costly. Whereas a large body of vection literature studied how various parameters of the presented visual stimulus affect vection, little is known how different display types might affect vection. As a step toward addressing this gap, we conducted three experiments to compare vection and usability parameters between commonly used VR displays, ranging from stereoscopic projection and 3D TV to high-end head-mounted display (HMD, NVIS SX111) and recent low-cost HMD (Oculus Rift). The last experiment also compared these two HMDs in their native full field of view (FOV) and a reduced, matched FOV of 72° × 45°. Participants moved along linear and curvilinear paths in the virtual environment, reported vection onset time, and rated vection intensity at the end of each trial. In addition, user ratings on immersion, motion sickness, vection, and overall preference were recorded retrospectively and compared between displays. Unexpectedly, there were no significant effects of display on vection measures. Reducing the FOV for the HMDs (from full to 72° × 45°) decreased vection onset latencies, but did not affect vection intensity. As predicted, curvilinear paths yielded earlier and more intense vection. Although vection has often been proposed to predict or even cause motion sickness, we observed no correlation for any of the displays studied. In conclusion, perceived self-motion and other user experience measures proved surprisingly tolerant toward changes in display type as long as the FOV was roughly matched. This suggests that display choice for vection research and VR applications can be largely based on other considerations as long as the provided FOV is sufficiently large.
Collapse
Affiliation(s)
- Bernhard E Riecke
- iSpace Lab, School of Interactive Arts and Technology, Simon Fraser University , Surrey, BC, Canada
| | - Jacqueline D Jordan
- iSpace Lab, School of Interactive Arts and Technology, Simon Fraser University , Surrey, BC, Canada
| |
Collapse
|
91
|
García-Betances RI, Arredondo Waldmeyer MT, Fico G, Cabrera-Umpiérrez MF. A succinct overview of virtual reality technology use in Alzheimer's disease. Front Aging Neurosci 2015; 7:80. [PMID: 26029101 PMCID: PMC4428215 DOI: 10.3389/fnagi.2015.00080] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 04/26/2015] [Indexed: 12/20/2022] Open
Abstract
We provide a brief review and appraisal of recent and current virtual reality (VR) technology for Alzheimer’s disease (AD) applications. We categorize them according to their intended purpose (e.g., diagnosis, patient cognitive training, caregivers’ education, etc.), focus feature (e.g., spatial impairment, memory deficit, etc.), methodology employed (e.g., tasks, games, etc.), immersion level, and passive or active interaction. Critical assessment indicates that most of them do not yet take full advantage of virtual environments with high levels of immersion and interaction. Many still rely on conventional 2D graphic displays to create non-immersive or semi-immersive VR scenarios. Important improvements are needed to make VR a better and more versatile assessment and training tool for AD. The use of the latest display technologies available, such as emerging head-mounted displays and 3D smart TV technologies, together with realistic multi-sensorial interaction devices, and neuro-physiological feedback capacity, are some of the most beneficial improvements this mini-review suggests. Additionally, it would be desirable that such VR applications for AD be easily and affordably transferable to in-home and nursing home environments.
Collapse
Affiliation(s)
- Rebeca I García-Betances
- Life Supporting Technologies (LifeSTech), ETSI Telecomunicaciones, Universidad Politécnica de Madrid , Madrid , Spain
| | | | - Giuseppe Fico
- Life Supporting Technologies (LifeSTech), ETSI Telecomunicaciones, Universidad Politécnica de Madrid , Madrid , Spain
| | | |
Collapse
|