51
|
Zoom in on Antibody Aggregates: A Potential Pitfall in the Search of Rare EV Populations. Biomedicines 2021; 9:biomedicines9020206. [PMID: 33670624 PMCID: PMC7923005 DOI: 10.3390/biomedicines9020206] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/29/2021] [Accepted: 02/08/2021] [Indexed: 11/16/2022] Open
Abstract
High-resolution flow cytometers (hFCM) are used for the detection of extracellular vesicles (EV) in various biological fluids. Due to the increased sensitivity of hFCM, new artifacts with the potential of interfering with data interpretation are introduced, such as detection of antibody aggregates. The aim of this study was to investigate the extent of aggregates in labels commonly used for the characterization of EVs by hFCM. Furthermore, we aimed to compare the efficacy of centrifugation and filtering treatments to remove aggregates, as well as to quantify the effect of the treatments in reducing aggregates. For this purpose, we labeled phosphate buffered saline (PBS) with fluorescently conjugated protein labels and antibodies after submitting them to 5, 10, or 30 min centrifugation, filtering or washed filtering. We investigated samples by hFCM and quantified the amount of aggregates found in PBS labeled with untreated and pre-treated labels. We found a varying amount of aggregates in all labels investigated, and further that filtering is most efficient in removing all but the smallest aggregates. Filtering protein labels can reduce the extent of aggregates; however, how much remains depends on the specific labels and their combination. Therefore, it is still necessary to include appropriate controls in a hFCM study of EVs.
Collapse
|
52
|
Prabakaran R, Rawat P, Thangakani AM, Kumar S, Gromiha MM. Protein aggregation: in silico algorithms and applications. Biophys Rev 2021; 13:71-89. [PMID: 33747245 PMCID: PMC7930180 DOI: 10.1007/s12551-021-00778-w] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 01/01/2021] [Indexed: 01/08/2023] Open
Abstract
Protein aggregation is a topic of immense interest to the scientific community due to its role in several neurodegenerative diseases/disorders and industrial importance. Several in silico techniques, tools, and algorithms have been developed to predict aggregation in proteins and understand the aggregation mechanisms. This review attempts to provide an essence of the vast developments in in silico approaches, resources available, and future perspectives. It reviews aggregation-related databases, mechanistic models (aggregation-prone region and aggregation propensity prediction), kinetic models (aggregation rate prediction), and molecular dynamics studies related to aggregation. With a multitude of prediction models related to aggregation already available to the scientific community, the field of protein aggregation is rapidly maturing to tackle new applications.
Collapse
Affiliation(s)
- R. Prabakaran
- Department of Biotechnology, Indian Institute of Technology Madras, Chennai, Tamil Nadu India
| | - Puneet Rawat
- Department of Biotechnology, Indian Institute of Technology Madras, Chennai, Tamil Nadu India
| | - A. Mary Thangakani
- Department of Biotechnology, Indian Institute of Technology Madras, Chennai, Tamil Nadu India
| | - Sandeep Kumar
- Biotherapeutics Discovery, Boehringer Ingelheim Pharmaceutical Inc., Ridgefield, CT USA
| | - M. Michael Gromiha
- Department of Biotechnology, Indian Institute of Technology Madras, Chennai, Tamil Nadu India
- School of Computing, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Kanagawa Japan
| |
Collapse
|
53
|
Le Gall CM, van der Schoot JMS, Ramos-Tomillero I, Khalily MP, van Dalen FJ, Wijfjes Z, Smeding L, van Dalen D, Cammarata A, Bonger KM, Figdor CG, Scheeren FA, Verdoes M. Dual Site-Specific Chemoenzymatic Antibody Fragment Conjugation Using CRISPR-Based Hybridoma Engineering. Bioconjug Chem 2021; 32:301-310. [PMID: 33476135 PMCID: PMC7898269 DOI: 10.1021/acs.bioconjchem.0c00673] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
![]()
Functionalized antibodies
and antibody fragments have found applications
in the fields of biomedical imaging, theranostics, and antibody–drug
conjugates (ADC). In addition, therapeutic and theranostic approaches
benefit from the possibility to deliver more than one type of cargo
to target cells, further challenging stochastic labeling strategies.
Thus, bioconjugation methods to reproducibly obtain defined homogeneous
conjugates bearing multiple different cargo molecules, without compromising
target affinity, are in demand. Here, we describe a straightforward
CRISPR/Cas9-based strategy to rapidly engineer hybridoma cells to
secrete Fab′ fragments bearing two distinct site-specific labeling
motifs, which can be separately modified by two different sortase
A mutants. We show that sequential genetic editing of the heavy chain
(HC) and light chain (LC) loci enables the generation of a stable
cell line that secretes a dual tagged Fab′ molecule (DTFab′),
which can be easily isolated. To demonstrate feasibility, we functionalized
the DTFab′ with two distinct cargos in a site-specific manner.
This technology platform will be valuable in the development of multimodal
imaging agents, theranostics, and next-generation ADCs.
Collapse
Affiliation(s)
- Camille M Le Gall
- Department of Tumour Immunology, Radboud Institute for Molecular Life Sciences, Geert Grooteplein Zuid 28, 6525 GA, Nijmegen, The Netherlands.,Oncode Institute, Geert Grooteplein Zuid 28, 6525 GA, Nijmegen, The Netherlands
| | - Johan M S van der Schoot
- Department of Tumour Immunology, Radboud Institute for Molecular Life Sciences, Geert Grooteplein Zuid 28, 6525 GA, Nijmegen, The Netherlands.,Oncode Institute, Geert Grooteplein Zuid 28, 6525 GA, Nijmegen, The Netherlands
| | - Iván Ramos-Tomillero
- Department of Tumour Immunology, Radboud Institute for Molecular Life Sciences, Geert Grooteplein Zuid 28, 6525 GA, Nijmegen, The Netherlands.,Institute for Chemical Immunology, Geert Grooteplein Zuid 28, 6525 GA, Nijmegen, Netherlands
| | - Melek Parlak Khalily
- Department of Synthetic Organic Chemistry, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands
| | - Floris J van Dalen
- Department of Tumour Immunology, Radboud Institute for Molecular Life Sciences, Geert Grooteplein Zuid 28, 6525 GA, Nijmegen, The Netherlands
| | - Zacharias Wijfjes
- Department of Tumour Immunology, Radboud Institute for Molecular Life Sciences, Geert Grooteplein Zuid 28, 6525 GA, Nijmegen, The Netherlands.,Institute for Chemical Immunology, Geert Grooteplein Zuid 28, 6525 GA, Nijmegen, Netherlands
| | - Liyan Smeding
- Department of Tumour Immunology, Radboud Institute for Molecular Life Sciences, Geert Grooteplein Zuid 28, 6525 GA, Nijmegen, The Netherlands
| | - Duco van Dalen
- Department of Tumour Immunology, Radboud Institute for Molecular Life Sciences, Geert Grooteplein Zuid 28, 6525 GA, Nijmegen, The Netherlands
| | - Anna Cammarata
- Department of Tumour Immunology, Radboud Institute for Molecular Life Sciences, Geert Grooteplein Zuid 28, 6525 GA, Nijmegen, The Netherlands
| | - Kimberly M Bonger
- Institute for Chemical Immunology, Geert Grooteplein Zuid 28, 6525 GA, Nijmegen, Netherlands.,Department of Synthetic Organic Chemistry, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands
| | - Carl G Figdor
- Department of Tumour Immunology, Radboud Institute for Molecular Life Sciences, Geert Grooteplein Zuid 28, 6525 GA, Nijmegen, The Netherlands.,Oncode Institute, Geert Grooteplein Zuid 28, 6525 GA, Nijmegen, The Netherlands.,Institute for Chemical Immunology, Geert Grooteplein Zuid 28, 6525 GA, Nijmegen, Netherlands
| | - Ferenc A Scheeren
- Department of Medical Oncology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | - Martijn Verdoes
- Department of Tumour Immunology, Radboud Institute for Molecular Life Sciences, Geert Grooteplein Zuid 28, 6525 GA, Nijmegen, The Netherlands.,Institute for Chemical Immunology, Geert Grooteplein Zuid 28, 6525 GA, Nijmegen, Netherlands
| |
Collapse
|
54
|
Mimura Y, Saldova R, Mimura-Kimura Y, Rudd PM, Jefferis R. Micro-Heterogeneity of Antibody Molecules. EXPERIENTIA SUPPLEMENTUM (2012) 2021; 112:1-26. [PMID: 34687006 DOI: 10.1007/978-3-030-76912-3_1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Therapeutic monoclonal antibodies (mAbs) are mostly of the IgG class and constitute highly efficacious biopharmaceuticals for a wide range of clinical indications. Full-length IgG mAbs are large proteins that are subject to multiple posttranslational modifications (PTMs) during biosynthesis, purification, or storage, resulting in micro-heterogeneity. The production of recombinant mAbs in nonhuman cell lines may result in loss of structural fidelity and the generation of variants having altered stability, biological activities, and/or immunogenic potential. Additionally, even fully human therapeutic mAbs are of unique specificity, by design, and, consequently, of unique structure; therefore, structural elements may be recognized as non-self by individuals within an outbred human population to provoke an anti-therapeutic/anti-drug antibody (ATA/ADA) response. Consequently, regulatory authorities require that the structure of a potential mAb drug product is comprehensively characterized employing state-of-the-art orthogonal analytical technologies; the PTM profile may define a set of critical quality attributes (CQAs) for the drug product that must be maintained, employing quality by design parameters, throughout the lifetime of the drug. Glycosylation of IgG-Fc, at Asn297 on each heavy chain, is an established CQA since its presence and fine structure can have a profound impact on efficacy and safety. The glycoform profile of serum-derived IgG is highly heterogeneous while mAbs produced in mammalian cells in vitro is less heterogeneous and can be "orchestrated" depending on the cell line employed and the culture conditions adopted. Thus, the gross structure and PTM profile of a given mAb, established for the drug substance gaining regulatory approval, have to be maintained for the lifespan of the drug. This review outlines our current understanding of common PTMs detected in mAbs and endogenous IgG and the relationship between a variant's structural attribute and its impact on clinical performance.
Collapse
Affiliation(s)
- Yusuke Mimura
- Department of Clinical Research, National Hospital Organization Yamaguchi Ube Medical Center, Ube, Japan.
| | - Radka Saldova
- NIBRT GlycoScience Group, National Institute for Bioprocessing Research and Training, Mount Merrion, Blackrock, Co Dublin, Ireland
- UCD School of Medicine, College of Health and Agricultural Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Yuka Mimura-Kimura
- Department of Clinical Research, National Hospital Organization Yamaguchi Ube Medical Center, Ube, Japan
| | - Pauline M Rudd
- NIBRT GlycoScience Group, National Institute for Bioprocessing Research and Training, Mount Merrion, Blackrock, Co Dublin, Ireland
- Bioprocessing Technology Institute, Singapore, Singapore
| | - Roy Jefferis
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, UK
| |
Collapse
|
55
|
Lai PK, Fernando A, Cloutier TK, Kingsbury JS, Gokarn Y, Halloran KT, Calero-Rubio C, Trout BL. Machine Learning Feature Selection for Predicting High Concentration Therapeutic Antibody Aggregation. J Pharm Sci 2020; 110:1583-1591. [PMID: 33346034 DOI: 10.1016/j.xphs.2020.12.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 11/25/2020] [Accepted: 12/11/2020] [Indexed: 02/03/2023]
Abstract
Protein aggregation can hinder the development, safety and efficacy of therapeutic antibody-based drugs. Developing a predictive model that evaluates aggregation behaviors during early stage development is therefore desirable. Machine learning is a widely used tool to train models that predict data with different attributes. However, most machine learning techniques require more data than is typically available in antibody development. In this work, we describe a rational feature selection framework to develop accurate models with a small number of features. We applied this framework to predict aggregation behaviors of 21 approved monospecific monoclonal antibodies at high concentration (150 mg/mL), yielding a correlation coefficient of 0.71 on validation tests with only two features using a linear model. The nearest neighbors and support vector regression models further improved the performance, which have correlation coefficients of 0.86 and 0.80, respectively. This framework can be extended to train other models that predict different physical properties.
Collapse
Affiliation(s)
- Pin-Kuang Lai
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Amendra Fernando
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Theresa K Cloutier
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | - Yatin Gokarn
- Biologics Development, Sanofi, Framingham, MA, USA
| | | | | | - Bernhardt L Trout
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
56
|
Local environment effects on charged mutations for developing aggregation-resistant monoclonal antibodies. Sci Rep 2020; 10:21191. [PMID: 33273506 PMCID: PMC7713239 DOI: 10.1038/s41598-020-78136-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 11/11/2020] [Indexed: 11/10/2022] Open
Abstract
Protein aggregation is a major concern in biotherapeutic applications of monoclonal antibodies. Introducing charged mutations is among the promising strategies to improve aggregation resistance. However, the impact of such mutations on solubilizing activity depends largely on the inserting location, whose mechanism is still not well understood. Here, we address this issue from a solvation viewpoint, and this is done by analyzing how the change in solvation free energy upon charged mutation is composed of individual contributions from constituent residues. To this end, we perform molecular dynamics simulations for a number of antibody mutants and carry out the residue-wise decomposition of the solvation free energy. We find that, in addition to the previously identified “global” principle emphasizing the key role played by the protein total net charge, a local net charge within \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\sim$$\end{document}∼15 Å from the mutation site exerts significant effects. For example, when the net charge of an antibody is positive, the global principle states that introducing a positively charged mutation will lead to more favorable solvation. Our finding further adds that an even more optimal mutation can be done at the site around which more positively charged residues and fewer negatively charged residues are present. Such a “local” design principle accounts for the location dependence of charged mutations, and will be useful in producing aggregation-resistant antibodies.
Collapse
|
57
|
Li W, Schäfer A, Kulkarni SS, Liu X, Martinez DR, Chen C, Sun Z, Leist SR, Drelich A, Zhang L, Ura ML, Berezuk A, Chittori S, Leopold K, Mannar D, Srivastava SS, Zhu X, Peterson EC, Tseng CT, Mellors JW, Falzarano D, Subramaniam S, Baric RS, Dimitrov DS. High Potency of a Bivalent Human V H Domain in SARS-CoV-2 Animal Models. Cell 2020; 183:429-441.e16. [PMID: 32941803 PMCID: PMC7473018 DOI: 10.1016/j.cell.2020.09.007] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 08/11/2020] [Accepted: 08/31/2020] [Indexed: 12/14/2022]
Abstract
Novel COVID-19 therapeutics are urgently needed. We generated a phage-displayed human antibody VH domain library from which we identified a high-affinity VH binder ab8. Bivalent VH, VH-Fc ab8, bound with high avidity to membrane-associated S glycoprotein and to mutants found in patients. It potently neutralized mouse-adapted SARS-CoV-2 in wild-type mice at a dose as low as 2 mg/kg and exhibited high prophylactic and therapeutic efficacy in a hamster model of SARS-CoV-2 infection, possibly enhanced by its relatively small size. Electron microscopy combined with scanning mutagenesis identified ab8 interactions with all three S protomers and showed how ab8 neutralized the virus by directly interfering with ACE2 binding. VH-Fc ab8 did not aggregate and did not bind to 5,300 human membrane-associated proteins. The potent neutralization activity of VH-Fc ab8 combined with good developability properties and cross-reactivity to SARS-CoV-2 mutants provide a strong rationale for its evaluation as a COVID-19 therapeutic.
Collapse
Affiliation(s)
- Wei Li
- Center for Antibody Therapeutics, Division of Infectious Diseases, Department of Medicine, University of Pittsburgh Medical School, 3550 Terrace St., Pittsburgh, PA 15261, USA.
| | - Alexandra Schäfer
- Department of Epidemiology, University of North Carolina at Chapel Hill, 135 Dauer Drive, 3109 Michael Hooker Research Center, Chapel Hill, NC 27599, USA
| | - Swarali S Kulkarni
- Vaccine and Infectious Disease Organization-International Vaccine Centre, and the Department of Veterinary Microbiology, University of Saskatchewan, 117 Veterinary Road, Saskatoon, SK S7N 5E3, Canada
| | - Xianglei Liu
- Center for Antibody Therapeutics, Division of Infectious Diseases, Department of Medicine, University of Pittsburgh Medical School, 3550 Terrace St., Pittsburgh, PA 15261, USA
| | - David R Martinez
- Department of Epidemiology, University of North Carolina at Chapel Hill, 135 Dauer Drive, 3109 Michael Hooker Research Center, Chapel Hill, NC 27599, USA
| | - Chuan Chen
- Center for Antibody Therapeutics, Division of Infectious Diseases, Department of Medicine, University of Pittsburgh Medical School, 3550 Terrace St., Pittsburgh, PA 15261, USA
| | - Zehua Sun
- Center for Antibody Therapeutics, Division of Infectious Diseases, Department of Medicine, University of Pittsburgh Medical School, 3550 Terrace St., Pittsburgh, PA 15261, USA
| | - Sarah R Leist
- Department of Epidemiology, University of North Carolina at Chapel Hill, 135 Dauer Drive, 3109 Michael Hooker Research Center, Chapel Hill, NC 27599, USA
| | - Aleksandra Drelich
- Department of Microbiology and Immunology, Centers for Biodefense and Emerging Diseases, Galveston National Laboratory, 301 University Blvd., Galveston, TX 77550, USA
| | - Liyong Zhang
- Center for Antibody Therapeutics, Division of Infectious Diseases, Department of Medicine, University of Pittsburgh Medical School, 3550 Terrace St., Pittsburgh, PA 15261, USA
| | - Marcin L Ura
- Abound Bio, 1401 Forbes Ave., Pittsburgh, PA 15219, USA
| | - Alison Berezuk
- Department of Biochemistry and Molecular Biology, University of British Columbia, Life Sciences Centre, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada
| | - Sagar Chittori
- Department of Biochemistry and Molecular Biology, University of British Columbia, Life Sciences Centre, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada
| | - Karoline Leopold
- Department of Biochemistry and Molecular Biology, University of British Columbia, Life Sciences Centre, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada
| | - Dhiraj Mannar
- Department of Biochemistry and Molecular Biology, University of British Columbia, Life Sciences Centre, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada
| | - Shanti S Srivastava
- Department of Biochemistry and Molecular Biology, University of British Columbia, Life Sciences Centre, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada
| | - Xing Zhu
- Department of Biochemistry and Molecular Biology, University of British Columbia, Life Sciences Centre, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada
| | | | - Chien-Te Tseng
- Department of Microbiology and Immunology, Centers for Biodefense and Emerging Diseases, Galveston National Laboratory, 301 University Blvd., Galveston, TX 77550, USA
| | - John W Mellors
- Center for Antibody Therapeutics, Division of Infectious Diseases, Department of Medicine, University of Pittsburgh Medical School, 3550 Terrace St., Pittsburgh, PA 15261, USA; Abound Bio, 1401 Forbes Ave., Pittsburgh, PA 15219, USA
| | - Darryl Falzarano
- Vaccine and Infectious Disease Organization-International Vaccine Centre, and the Department of Veterinary Microbiology, University of Saskatchewan, 117 Veterinary Road, Saskatoon, SK S7N 5E3, Canada
| | - Sriram Subramaniam
- Department of Biochemistry and Molecular Biology, University of British Columbia, Life Sciences Centre, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada
| | - Ralph S Baric
- Department of Epidemiology, University of North Carolina at Chapel Hill, 135 Dauer Drive, 3109 Michael Hooker Research Center, Chapel Hill, NC 27599, USA
| | - Dimiter S Dimitrov
- Center for Antibody Therapeutics, Division of Infectious Diseases, Department of Medicine, University of Pittsburgh Medical School, 3550 Terrace St., Pittsburgh, PA 15261, USA; Abound Bio, 1401 Forbes Ave., Pittsburgh, PA 15219, USA.
| |
Collapse
|
58
|
Alfaleh MA, Alsaab HO, Mahmoud AB, Alkayyal AA, Jones ML, Mahler SM, Hashem AM. Phage Display Derived Monoclonal Antibodies: From Bench to Bedside. Front Immunol 2020; 11:1986. [PMID: 32983137 PMCID: PMC7485114 DOI: 10.3389/fimmu.2020.01986] [Citation(s) in RCA: 143] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 07/23/2020] [Indexed: 12/12/2022] Open
Abstract
Monoclonal antibodies (mAbs) have become one of the most important classes of biopharmaceutical products, and they continue to dominate the universe of biopharmaceutical markets in terms of approval and sales. They are the most profitable single product class, where they represent six of the top ten selling drugs. At the beginning of the 1990s, an in vitro antibody selection technology known as antibody phage display was developed by John McCafferty and Sir. Gregory Winter that enabled the discovery of human antibodies for diverse applications, particularly antibody-based drugs. They created combinatorial antibody libraries on filamentous phage to be utilized for generating antigen specific antibodies in a matter of weeks. Since then, more than 70 phage–derived antibodies entered clinical studies and 14 of them have been approved. These antibodies are indicated for cancer, and non-cancer medical conditions, such as inflammatory, optical, infectious, or immunological diseases. This review will illustrate the utility of phage display as a powerful platform for therapeutic antibodies discovery and describe in detail all the approved mAbs derived from phage display.
Collapse
Affiliation(s)
- Mohamed A Alfaleh
- Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia.,Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Hashem O Alsaab
- Department of Pharmaceutics and Pharmaceutical Technology, College of Pharmacy, Taif University, Taif, Saudi Arabia
| | - Ahmad Bakur Mahmoud
- College of Applied Medical Sciences, Taibah University, Medina, Saudi Arabia
| | - Almohanad A Alkayyal
- Department of Medical Laboratory Technology, University of Tabuk, Tabuk, Saudi Arabia
| | - Martina L Jones
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, Australia.,Australian Research Council Training Centre for Biopharmaceutical Innovation, The University of Queensland, Brisbane, QLD, Australia
| | - Stephen M Mahler
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, Australia.,Australian Research Council Training Centre for Biopharmaceutical Innovation, The University of Queensland, Brisbane, QLD, Australia
| | - Anwar M Hashem
- Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Medical Microbiology and Parasitology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
59
|
Tian Z, Xu L, Zhang N, Qian F. First-order nucleation and subsequent growth promote liquid-liquid phase separation of a model IgG1 mAb. Int J Pharm 2020; 588:119681. [PMID: 32721563 DOI: 10.1016/j.ijpharm.2020.119681] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 07/06/2020] [Accepted: 07/19/2020] [Indexed: 12/27/2022]
Abstract
Although protein aggregation is commonly encountered during the manufacturing and storage of bio-therapeutics, the actual aggregation mechanism remains unclear, and little has been reported about the protein aggregation kinetics from time zero under particular solution conditions. In this study, we used real-time dynamic light scattering (DLS) to continuously monitor the time-dependent evolution of the Z-average hydrodynamic radius of a model IgG1 (JM2) immediately after the JM2 solution was subjected to various low temperatures (0-4 °C). We observed that JM2 aggregated to form nuclei first, and then it subsequently grew to small liquid droplets via a two-step, first-order, reversible process without causing irreversible structural changes: a slow first step defined as the "nucleation" step, wherein nuclei formed slowly until reaching a transitional time point (tonset), and a much faster second step initiated after tonset and the nucleus size of the protein increased rapidly, which eventually caused liquid droplet formation and liquid-liquid phase separation (LLPS). The "nucleation" rate constant (Knucleation) and particle growth rate constant (Kgrowth), as well as tonset, were found to be temperature, pH and concentration dependent. The aggregation of JM2 could be universally described by these two-step first-order kinetics: under conditions where JM2 aggregated very slowly, the second step was not observed within the experimental time scale, while under conditions where JM2 aggregated very rapidly, the first step could not be recorded. We believe that these three parameters, Knucleation, Kgrowth, and tonset, can be used to quantify and compare the aggregation kinetics of JM2 under different solution and temperature conditions and, furthermore, serve as a theoretical base to account for the key characteristics of the aggregation kinetics of JM2 and other protein therapeutics under conditions of interest.
Collapse
Affiliation(s)
- Zhou Tian
- School of Pharmaceutical Sciences, Beijing Advanced Innovation Center for Structural Biology, and Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100084, PR China
| | - Long Xu
- Biotherapeutics Development, Janssen Research & Development, Johnson & Johnson, Shanghai, PR China
| | - Ning Zhang
- Biotherapeutics Development, Janssen Research & Development, Johnson & Johnson, Shanghai, PR China
| | - Feng Qian
- School of Pharmaceutical Sciences, Beijing Advanced Innovation Center for Structural Biology, and Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100084, PR China.
| |
Collapse
|
60
|
Kenaan A, Li K, Barth I, Johnson S, Song J, Krauss TF. Guided mode resonance sensor for the parallel detection of multiple protein biomarkers in human urine with high sensitivity. Biosens Bioelectron 2020; 153:112047. [PMID: 31999559 DOI: 10.1016/j.bios.2020.112047] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 01/16/2020] [Accepted: 01/22/2020] [Indexed: 10/25/2022]
Abstract
The rising cost of global healthcare provision and new approaches to managing disease are driving the development of low-cost biosensing modalities, such as label-free photonic methods based on dielectric resonances. Here, we use the combined sensing and imaging capability of a guided mode resonance (GMR) sensor to detect multiple biomarkers (troponin, procalcitonin and C-Reactive Protein) in parallel in undiluted urine samples. A key requirement of such a biosensor is the simple and direct functionalization with suitable antibodies to ensure the disease-specific detection of protein biomarkers. Here, antibodies were immobilized using a succinimidyl-[(N-maleimidopropionamido)-hexaethyleneglycol] ester (SM(PEG)6) spacer. The polyethylene glycol (PEG) chemistry enables low detection limits of 10 pg mL-1 or better for all protein biomarkers, while minimizing non-specific binding compared to more commonly used strategies such as (3-Aminopropyl)triethoxysilane (APTES) or dextran. Our approach supports the vision of a simple yet highly sensitive diagnostic platform that could be used for pre-screening patients for a wide range of diseases at point-of-care, thereby relieving the pressure on overstretched healthcare services.
Collapse
Affiliation(s)
- Ahmad Kenaan
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Research Centre for Intelligent Diagnosis and Treatment, Instrument, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering.Shanghai Jiao Tong University, Shanghai, 200240, PR China; Department of Physics, University of York, York, YO10 5DD, UK
| | - Kezheng Li
- Department of Physics, University of York, York, YO10 5DD, UK
| | - Isabel Barth
- Department of Physics, University of York, York, YO10 5DD, UK
| | - Steven Johnson
- Department of Electronic Engineering, University of York, York, YO10 5DD, UK.
| | - Jie Song
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Research Centre for Intelligent Diagnosis and Treatment, Instrument, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering.Shanghai Jiao Tong University, Shanghai, 200240, PR China.
| | - Thomas F Krauss
- Department of Physics, University of York, York, YO10 5DD, UK.
| |
Collapse
|
61
|
Alfaleh MA, Alsaab HO, Mahmoud AB, Alkayyal AA, Jones ML, Mahler SM, Hashem AM. Phage Display Derived Monoclonal Antibodies: From Bench to Bedside. Front Immunol 2020. [PMID: 32983137 DOI: 10.3389/fimmu.2020.01986/bibtex] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023] Open
Abstract
Monoclonal antibodies (mAbs) have become one of the most important classes of biopharmaceutical products, and they continue to dominate the universe of biopharmaceutical markets in terms of approval and sales. They are the most profitable single product class, where they represent six of the top ten selling drugs. At the beginning of the 1990s, an in vitro antibody selection technology known as antibody phage display was developed by John McCafferty and Sir. Gregory Winter that enabled the discovery of human antibodies for diverse applications, particularly antibody-based drugs. They created combinatorial antibody libraries on filamentous phage to be utilized for generating antigen specific antibodies in a matter of weeks. Since then, more than 70 phage-derived antibodies entered clinical studies and 14 of them have been approved. These antibodies are indicated for cancer, and non-cancer medical conditions, such as inflammatory, optical, infectious, or immunological diseases. This review will illustrate the utility of phage display as a powerful platform for therapeutic antibodies discovery and describe in detail all the approved mAbs derived from phage display.
Collapse
Affiliation(s)
- Mohamed A Alfaleh
- Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
- Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Hashem O Alsaab
- Department of Pharmaceutics and Pharmaceutical Technology, College of Pharmacy, Taif University, Taif, Saudi Arabia
| | - Ahmad Bakur Mahmoud
- College of Applied Medical Sciences, Taibah University, Medina, Saudi Arabia
| | - Almohanad A Alkayyal
- Department of Medical Laboratory Technology, University of Tabuk, Tabuk, Saudi Arabia
| | - Martina L Jones
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, Australia
- Australian Research Council Training Centre for Biopharmaceutical Innovation, The University of Queensland, Brisbane, QLD, Australia
| | - Stephen M Mahler
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, Australia
- Australian Research Council Training Centre for Biopharmaceutical Innovation, The University of Queensland, Brisbane, QLD, Australia
| | - Anwar M Hashem
- Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Medical Microbiology and Parasitology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
62
|
Abstract
Interchain disulfide bonds of antibodies can be reduced by agents such as TCEP or DTT to form reactive cysteine residues. These endogenous cysteines are used for conjugation to biologically active drugs either directly or via linkers to prepare antibody drug conjugates (ADCs). The anti-notch 3 ADC described here is being evaluated in the early clinical development program as a potential treatment for a variety of cancers. The ADC is composed of an IgG1 mAb that is conjugated by endogenous cysteines to a cytotoxic microtubulin inhibitor via a maleimide-containing linker. The endogenous cysteine residues are produced by partial reduction of the mAb with TCEP reducing agent. The conjugation results in the formation of a mixture of 2, 4, 6, and 8 loaded ADC species. In addition to the desired product, several product-related impurities such as aggregates are generated during the conjugation reaction. The product- and process-related impurities are separated from the monomeric ADC by column chromatography and ultrafiltration-diafiltration techniques. The temperature of TCEP reduction step has an impact on the level of aggregates produced in the reaction. The temperature also impacts the isomeric composition of the 4 loaded ADC species.
Collapse
|
63
|
Goulet DR, Atkins WM. Considerations for the Design of Antibody-Based Therapeutics. J Pharm Sci 2020; 109:74-103. [PMID: 31173761 PMCID: PMC6891151 DOI: 10.1016/j.xphs.2019.05.031] [Citation(s) in RCA: 158] [Impact Index Per Article: 31.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 05/02/2019] [Accepted: 05/29/2019] [Indexed: 02/06/2023]
Abstract
Antibody-based proteins have become an important class of biologic therapeutics, due in large part to the stability, specificity, and adaptability of the antibody framework. Indeed, antibodies not only have the inherent ability to bind both antigens and endogenous immune receptors but also have proven extremely amenable to protein engineering. Thus, several derivatives of the monoclonal antibody format, including bispecific antibodies, antibody-drug conjugates, and antibody fragments, have demonstrated efficacy for treating human disease, particularly in the fields of immunology and oncology. Reviewed here are considerations for the design of antibody-based therapeutics, including immunological context, therapeutic mechanisms, and engineering strategies. First, characteristics of antibodies are introduced, with emphasis on structural domains, functionally important receptors, isotypic and allotypic differences, and modifications such as glycosylation. Then, aspects of therapeutic antibody design are discussed, including identification of antigen-specific variable regions, choice of expression system, use of multispecific formats, and design of antibody derivatives based on fragmentation, oligomerization, or conjugation to other functional moieties. Finally, strategies to enhance antibody function through protein engineering are reviewed while highlighting the impact of fundamental biophysical properties on protein developability.
Collapse
Affiliation(s)
- Dennis R Goulet
- Department of Medicinal Chemistry, University of Washington, Seattle, Washington 98195.
| | - William M Atkins
- Department of Medicinal Chemistry, University of Washington, Seattle, Washington 98195
| |
Collapse
|
64
|
Goyon A, Kim M, Dai L, Cornell C, Jacobson F, Guillarme D, Stella C. Streamlined Characterization of an Antibody–Drug Conjugate by Two-Dimensional and Four-Dimensional Liquid Chromatography/Mass Spectrometry. Anal Chem 2019; 91:14896-14903. [DOI: 10.1021/acs.analchem.9b02454] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Alexandre Goyon
- School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, CMU, Rue Michel-Servet, 1, 1206 Geneva, Switzerland
| | - Michael Kim
- Protein Analytical Chemistry, Genentech, 1 DNA Way, South San Francisco, California 94080, United States
| | - Lu Dai
- Protein Analytical Chemistry, Genentech, 1 DNA Way, South San Francisco, California 94080, United States
| | - Christopher Cornell
- Protein Analytical Chemistry, Genentech, 1 DNA Way, South San Francisco, California 94080, United States
| | - Fred Jacobson
- Protein Analytical Chemistry, Genentech, 1 DNA Way, South San Francisco, California 94080, United States
| | - Davy Guillarme
- School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, CMU, Rue Michel-Servet, 1, 1206 Geneva, Switzerland
| | - Cinzia Stella
- Protein Analytical Chemistry, Genentech, 1 DNA Way, South San Francisco, California 94080, United States
| |
Collapse
|
65
|
A mesophilic cysteine-less split intein for protein trans-splicing applications under oxidizing conditions. Proc Natl Acad Sci U S A 2019; 116:22164-22172. [PMID: 31611397 DOI: 10.1073/pnas.1909825116] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Split intein-mediated protein trans-splicing has found extensive applications in chemical biology, protein chemistry, and biotechnology. However, an enduring limitation of all well-established split inteins has been the requirement to carry out the reaction in a reducing environment due to the presence of 1 or 2 catalytic cysteines that need to be in a reduced state for splicing to occur. The concomitant exposure of the fused proteins to reducing agents severely limits the scope of protein trans-splicing by excluding proteins sensitive to reducing conditions, such as those containing critical disulfide bonds. Here we report the discovery, characterization, and engineering of a completely cysteine-less split intein (CL intein) that is capable of efficient trans-splicing at ambient temperatures, without a denaturation step, and in the absence of reducing agents. We demonstrate its utility for the site-specific chemical modification of nanobodies and an antibody Fc fragment by N- and C-terminal trans-splicing with short peptide tags (CysTag) that consist of only a few amino acids and have been prelabeled on a single cysteine using classical cysteine bioconjugation. We also synthesized the short N-terminal fragment of the atypically split CL intein by solid-phase peptide synthesis. Furthermore, using the CL intein in combination with a nanobody-epitope pair as a high-affinity mediator, we showed chemical labeling of the extracellular domain of a cell surface receptor on living mammalian cells with a short CysTag containing a synthetic fluorophore. The CL intein thus greatly expands the scope of applications for protein trans-splicing.
Collapse
|
66
|
Nishinami S, Kameda T, Arakawa T, Shiraki K. Hydantoin and Its Derivatives Reduce the Viscosity of Concentrated Antibody Formulations by Inhibiting Associations via Hydrophobic Amino Acid Residues. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.9b01739] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Suguru Nishinami
- Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573, Japan
| | - Tomoshi Kameda
- Artificial Intelligence Research Center, Advanced Industrial Science and Technology (AIST), 2-4-7 Aomi, Koto, Tokyo 135-0064, Japan
| | - Tsutomu Arakawa
- a Division of KBI Biopharma, Alliance Protein Laboratories, San Diego, California 92121, United States
| | - Kentaro Shiraki
- Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573, Japan
| |
Collapse
|
67
|
Toes R, Pisetsky DS. Pathogenic effector functions of ACPA: Where do we stand? Ann Rheum Dis 2019; 78:716-721. [PMID: 31005898 DOI: 10.1136/annrheumdis-2019-215337] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 03/20/2019] [Accepted: 03/20/2019] [Indexed: 01/20/2023]
Affiliation(s)
- René Toes
- Department of Rheumatology, Leiden University Medical Center, Leiden, The Netherlands
| | - David S Pisetsky
- Department of Medicine, Duke University Medical Center and Medical Research Service, VA Medical Center, Durham, North Carolina, USA
| |
Collapse
|
68
|
Hanck-Silva G, Fatori Trevizan LN, Petrilli R, de Lima FT, Eloy JO, Chorilli M. A Critical Review of Properties and Analytical/Bioanalytical Methods for Characterization of Cetuximab. Crit Rev Anal Chem 2019; 50:125-135. [DOI: 10.1080/10408347.2019.1581984] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Gilmar Hanck-Silva
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | | | - Raquel Petrilli
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, São Paulo, Brazil
| | - Felipe Tita de Lima
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | - Josimar O. Eloy
- College of Pharmacy, Dentistry and Nursing, Federal University of Ceará (UFC), Fortaleza, Ceará, Brazil
| | - Marlus Chorilli
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| |
Collapse
|
69
|
Patel A, Gupta V, Hickey J, Nightlinger NS, Rogers RS, Siska C, Joshi SB, Seaman MS, Volkin DB, Kerwin BA. Coformulation of Broadly Neutralizing Antibodies 3BNC117 and PGT121: Analytical Challenges During Preformulation Characterization and Storage Stability Studies. J Pharm Sci 2018; 107:3032-3046. [PMID: 30176252 PMCID: PMC6269598 DOI: 10.1016/j.xphs.2018.08.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 05/20/2018] [Accepted: 08/14/2018] [Indexed: 01/16/2023]
Abstract
In this study, we investigated analytical challenges associated with the formulation of 2 anti-HIV broadly neutralizing antibodies (bnAbs), 3BNC117 and PGT121, both separately at 100 mg/mL and together at 50 mg/mL each. The bnAb formulations were characterized for relative solubility and conformational stability followed by accelerated and real-time stability studies. Although the bnAbs were stable during 4°C storage, incubation at 40°C differentiated their stability profiles. Specific concentration-dependent aggregation rates at 30°C and 40°C were measured by size exclusion chromatography for the individual bnAbs with the mixture showing intermediate behavior. Interestingly, although the relative ratio of the 2 bnAbs remained constant at 4°C, the ratio of 3BNC117 to PGT121 increased in the dimer that formed during storage at 40°C. A mass spectrometry-based multiattribute method, identified and quantified differences in modifications of the Fab regions for each bnAb within the mixture including clipping, oxidation, deamidation, and isomerization sites. Each bnAb showed slight differences in the levels and sites of lysine residue glycations. Together, these data demonstrate the ability to differentiate degradation products from individual antibodies within the bnAb mixture, and that degradation rates are influenced not only by the individual bnAb concentrations but also by the mixture concentration.
Collapse
Affiliation(s)
- Ashaben Patel
- Department of Pharmaceutical Chemistry, Macromolecule and Vaccine Stabilization Center, University of Kansas, 2030 Becker Drive, Lawrence, Kansas 66047
| | - Vineet Gupta
- Department of Pharmaceutical Chemistry, Macromolecule and Vaccine Stabilization Center, University of Kansas, 2030 Becker Drive, Lawrence, Kansas 66047
| | - John Hickey
- Department of Pharmaceutical Chemistry, Macromolecule and Vaccine Stabilization Center, University of Kansas, 2030 Becker Drive, Lawrence, Kansas 66047
| | - Nancy S Nightlinger
- Just Biotherapeutics Inc., 401 Terry Avenue North, Seattle, Washington 98109
| | - Richard S Rogers
- Just Biotherapeutics Inc., 401 Terry Avenue North, Seattle, Washington 98109
| | - Christine Siska
- Just Biotherapeutics Inc., 401 Terry Avenue North, Seattle, Washington 98109
| | - Sangeeta B Joshi
- Department of Pharmaceutical Chemistry, Macromolecule and Vaccine Stabilization Center, University of Kansas, 2030 Becker Drive, Lawrence, Kansas 66047
| | - Michael S Seaman
- Beth Israel Deaconess Medical Center, Boston, Massachusetts 02215
| | - David B Volkin
- Department of Pharmaceutical Chemistry, Macromolecule and Vaccine Stabilization Center, University of Kansas, 2030 Becker Drive, Lawrence, Kansas 66047.
| | - Bruce A Kerwin
- Just Biotherapeutics Inc., 401 Terry Avenue North, Seattle, Washington 98109.
| |
Collapse
|
70
|
An in-silico method for identifying aggregation rate enhancer and mitigator mutations in proteins. Int J Biol Macromol 2018; 118:1157-1167. [DOI: 10.1016/j.ijbiomac.2018.06.102] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 06/19/2018] [Accepted: 06/20/2018] [Indexed: 12/27/2022]
|
71
|
Sankar K, Krystek SR, Carl SM, Day T, Maier JKX. AggScore: Prediction of aggregation-prone regions in proteins based on the distribution of surface patches. Proteins 2018; 86:1147-1156. [PMID: 30168197 DOI: 10.1002/prot.25594] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 07/12/2018] [Accepted: 08/24/2018] [Indexed: 02/02/2023]
Abstract
Protein aggregation is a phenomenon that has attracted considerable attention within the pharmaceutical industry from both a developability standpoint (to ensure stability of protein formulations) and from a research perspective for neurodegenerative diseases. Experimental identification of aggregation behavior in proteins can be expensive; and hence, the development of accurate computational approaches is crucial. The existing methods for predicting protein aggregation rely mostly on the primary sequence and are typically trained on amyloid-like proteins. However, the training bias toward beta amyloid peptides may worsen prediction accuracy of such models when applied to larger protein systems. Here, we present a novel algorithm to identify aggregation-prone regions in proteins termed "AggScore" that is based entirely on three-dimensional structure input. The method uses the distribution of hydrophobic and electrostatic patches on the surface of the protein, factoring in the intensity and relative orientation of the respective surface patches into an aggregation propensity function that has been trained on a benchmark set of 31 adnectin proteins. AggScore can accurately identify aggregation-prone regions in several well-studied proteins and also reliably predict changes in aggregation behavior upon residue mutation. The method is agnostic to an amyloid-specific aggregation context and thus may be applied to globular proteins, small peptides and antibodies.
Collapse
Affiliation(s)
| | - Stanley R Krystek
- Molecular Discovery Technologies, Bristol-Myers Squibb, Princeton, New Jersey
| | - Stephen M Carl
- Discovery Pharmaceutics and Analytical Sciences and Pharmaceutical Candidate Optimization, Bristol-Myers Squibb, Princeton, New Jersey
| | - Tyler Day
- Schrödinger Inc., New York, New York
| | | |
Collapse
|
72
|
Lebozec K, Jandrot-Perrus M, Avenard G, Favre-Bulle O, Billiald P. Quality and cost assessment of a recombinant antibody fragment produced from mammalian, yeast and prokaryotic host cells: A case study prior to pharmaceutical development. N Biotechnol 2018; 44:31-40. [DOI: 10.1016/j.nbt.2018.04.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 03/31/2018] [Accepted: 04/20/2018] [Indexed: 12/29/2022]
|
73
|
Ettah I, Ashton L. Engaging with Raman Spectroscopy to Investigate Antibody Aggregation. Antibodies (Basel) 2018; 7:E24. [PMID: 31544876 PMCID: PMC6640673 DOI: 10.3390/antib7030024] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 07/04/2018] [Accepted: 07/04/2018] [Indexed: 11/24/2022] Open
Abstract
In the last decade, a number of studies have successfully demonstrated Raman spectroscopy as an emerging analytical technique for monitoring antibody aggregation, especially in the context of drug development and formulation. Raman spectroscopy is a robust method for investigating protein conformational changes, even in highly concentrated antibody solutions. It is non-destructive, reproducible and can probe samples in an aqueous environment. In this review, we focus on the application and challenges associated with using Raman spectroscopy as a tool to study antibody aggregates.
Collapse
Affiliation(s)
- Ilokugbe Ettah
- Department of Chemistry, Lancaster University, Lancaster, Lancashire LA1 4YB, UK.
| | - Lorna Ashton
- Department of Chemistry, Lancaster University, Lancaster, Lancashire LA1 4YB, UK.
| |
Collapse
|
74
|
Adiutori R, Aarum J, Zubiri I, Bremang M, Jung S, Sheer D, Pike I, Malaspina A. The proteome of neurofilament-containing protein aggregates in blood. Biochem Biophys Rep 2018; 14:168-177. [PMID: 29872749 PMCID: PMC5986704 DOI: 10.1016/j.bbrep.2018.04.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 03/15/2018] [Accepted: 04/26/2018] [Indexed: 11/24/2022] Open
Abstract
Protein aggregation in biofluids is a poorly understood phenomenon. Under normal physiological conditions, fluid-borne aggregates may contain plasma or cell proteins prone to aggregation. Recent observations suggest that neurofilaments (Nf), the building blocks of neurons and a biomarker of neurodegeneration, are included in high molecular weight complexes in circulation. The composition of these Nf-containing hetero-aggregates (NCH) may change in systemic or organ-specific pathologies, providing the basis to develop novel disease biomarkers. We have tested ultracentrifugation (UC) and a commercially available protein aggregate binder, Seprion PAD-Beads (SEP), for the enrichment of NCH from plasma of healthy individuals, and then characterised the Nf content of the aggregate fractions using gel electrophoresis and their proteome by mass spectrometry (MS). Western blot analysis of fractions obtained by UC showed that among Nf isoforms, neurofilament heavy chain (NfH) was found within SDS-stable high molecular weight aggregates. Shotgun proteomics of aggregates obtained with both extraction techniques identified mostly cell structural and to a lesser extent extra-cellular matrix proteins, while functional analysis revealed pathways involved in inflammatory response, phagosome and prion-like protein behaviour. UC aggregates were specifically enriched with proteins involved in endocrine, metabolic and cell-signalling regulation. We describe the proteome of neurofilament-containing aggregates isolated from healthy individuals biofluids using different extraction methods.
Collapse
Affiliation(s)
- Rocco Adiutori
- Centre for Neuroscience and Trauma, Queen Mary University of London, Blizard Institute, Barts and The School of Medicine and Dentistry, London, United Kingdom
| | - Johan Aarum
- Centre for Genomics and Child Health, Queen Mary University of London, Blizard Institute, Barts and The London School of Medicine and Dentistry, London, United Kingdom
| | - Irene Zubiri
- Centre for Neuroscience and Trauma, Queen Mary University of London, Blizard Institute, Barts and The School of Medicine and Dentistry, London, United Kingdom
| | - Michael Bremang
- Proteome Sciences Plc, Hamilton House, Mabledon Place, London, United Kingdom
| | - Stephan Jung
- ProteomeSciencesR&DGmbH&Co.KG, Frankfurt, Germany
| | - Denise Sheer
- Centre for Genomics and Child Health, Queen Mary University of London, Blizard Institute, Barts and The London School of Medicine and Dentistry, London, United Kingdom
| | - Ian Pike
- Proteome Sciences Plc, Hamilton House, Mabledon Place, London, United Kingdom
| | - Andrea Malaspina
- Centre for Neuroscience and Trauma, Queen Mary University of London, Blizard Institute, Barts and The School of Medicine and Dentistry, London, United Kingdom
| |
Collapse
|
75
|
Vivier D, Sharma SK, Zeglis BM. Understanding the in vivo fate of radioimmunoconjugates for nuclear imaging. J Labelled Comp Radiopharm 2018; 61:672-692. [PMID: 29665104 PMCID: PMC6432633 DOI: 10.1002/jlcr.3628] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 03/16/2018] [Accepted: 04/03/2018] [Indexed: 12/17/2022]
Abstract
Over the past 25 years, antibodies have emerged as extraordinarily promising vectors for the delivery of radionuclides to tumors for nuclear imaging. While radioimmunoconjugates often produce very high activity concentrations in target tissues, they also are frequently characterized by elevated activity concentrations in healthy organs as well. The root of this background uptake lies in the complex network of biological interactions between the radioimmunoconjugate and the subject. In this review, we seek to provide an overview of these interactions and thus paint a general picture of the in vivo fate of radioimmunoconjugates. To cover the entire story, we have divided our discussion into 2 parts. First, we will address the path of the entire radioimmunoconjugate as it travels through the body. And second, we will cover the fate of the radionuclide itself, as its course can diverge from the antibody under certain circumstances. Ultimately, our goal is to provide the nuclear imaging field with a resource covering these important-yet often underestimated-pathways.
Collapse
Affiliation(s)
- Delphine Vivier
- Department of Chemistry, Hunter College and the Graduate Center of the City University of New York, New York, NY, USA
| | - Sai Kiran Sharma
- Department of Radiology and the Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Brian M. Zeglis
- Department of Chemistry, Hunter College and the Graduate Center of the City University of New York, New York, NY, USA
- Department of Radiology and the Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Radiology, Weill Cornell Medical College, New York, NY, USA
| |
Collapse
|
76
|
Kastelic M, Vlachy V. Theory for the Liquid-Liquid Phase Separation in Aqueous Antibody Solutions. J Phys Chem B 2018; 122:5400-5408. [PMID: 29338267 PMCID: PMC5980754 DOI: 10.1021/acs.jpcb.7b11458] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
This study presents the theory for liquid-liquid phase separation for systems of molecules modeling monoclonal antibodies. Individual molecule is depicted as an assembly of seven hard spheres, organized to mimic the Y-shaped antibody. We consider the antibody-antibody interactions either through Fab, Fab' (two Fab fragments may be different), or Fc domain. Interaction between these three domains of the molecule (hereafter denoted as A, B, and C, respectively) is modeled by a short-range square-well attraction. To obtain numerical results for the model under study, we adapt Wertheim's thermodynamic perturbation theory. We use this model to calculate the liquid-liquid phase separation curve and the second virial coefficient B2. Various interaction scenarios are examined to see how the strength of the site-site interactions and their range shape the coexistence curve. In the asymmetric case, where an attraction between two sites is favored and the interaction energies for the other sites kept constant, critical temperature first increases and than strongly decreases. Some more microscopic information, for example, the probability for the particular two sites to be connected, has been calculated. Analysis of the experimental liquid-liquid phase diagrams, obtained from literature, is presented. In addition, we calculate the second virial coefficient under conditions leading to the liquid-liquid phase separation and present this quantity on the graph B2 versus protein concentration.
Collapse
Affiliation(s)
| | - Vojko Vlachy
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, SI-1000 Ljubljana, Slovenia
| |
Collapse
|
77
|
Karlberg M, von Stosch M, Glassey J. Exploiting mAb structure characteristics for a directed QbD implementation in early process development. Crit Rev Biotechnol 2018. [DOI: 10.1080/07388551.2017.1421899] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Micael Karlberg
- School of Chemical Engineering and Advanced Materials, Newcastle University, Newcastle upon Tyne, UK
| | - Moritz von Stosch
- School of Chemical Engineering and Advanced Materials, Newcastle University, Newcastle upon Tyne, UK
| | - Jarka Glassey
- School of Chemical Engineering and Advanced Materials, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
78
|
Nadkarni DV, Jiang Q, Friese O, Bazhina N, Meng H, Guo J, Kutlik R, Borgmeyer J. Process Development and Structural Characterization of an Anti-Notch 3 Antibody–Drug Conjugate. Org Process Res Dev 2018. [DOI: 10.1021/acs.oprd.7b00337] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
79
|
Li W, Zhu Z, Chen W, Feng Y, Dimitrov DS. Crystallizable Fragment Glycoengineering for Therapeutic Antibodies Development. Front Immunol 2017; 8:1554. [PMID: 29181010 PMCID: PMC5693878 DOI: 10.3389/fimmu.2017.01554] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 10/31/2017] [Indexed: 11/23/2022] Open
Abstract
Monoclonal antibody (mAb)-based therapeutics are the fastest growing class of human pharmaceuticals. They are typically IgG1 molecules with N-glycans attached to the N297 residue on crystallizable fragment (Fc). Different Fc glycoforms impact their effector function, pharmacokinetics, stability, aggregation, safety, and immunogenicity. Fc glycoforms affect mAbs effector functions including antibody-dependent cell-mediated cytotoxicity (ADCC) and complement-dependent cytotoxicity (CDC) by modulating the Fc-FcγRs and Fc-C1q interactions. While the terminal galactose enhances CDC activity, the fucose significantly decreases ADCC. Defucosylated immunoglobulin Gs (IgGs) are thus highly pursued as next-generation therapeutic mAbs with potent ADCC at reduced doses. A plethora of cell glycoengineering and chemoenzymatic glycoengineering strategies is emerging to produce IgGs with homogenous glycoforms especially without core fucose. The chemoenzymatic glycosylation remodeling also offers useful avenues for site-specific conjugations of small molecule drugs onto mAbs. Herein, we review the current progress of IgG-Fc glycoengineering. We begin with the discussion of the structures of IgG N-glycans and biosynthesis followed by reviewing the impact of IgG glycoforms on antibody effector functions and the current Fc glycoengineering strategies with emphasis on Fc defucosylation. Furthermore, we briefly discuss two novel therapeutic mAbs formats: aglycosylated mAbs and Fc glycan specific antibody-drug conjugates (ADCs). The advances in the understanding of Fc glycobiology and development of novel glycoengineering technologies have facilitated the generation of therapeutic mAbs with homogenous glycoforms and improved therapeutic efficacy.
Collapse
Affiliation(s)
- Wei Li
- Protein Interactions Section, Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, United States
| | - Zhongyu Zhu
- Protein Interactions Section, Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, United States
| | - Weizao Chen
- Protein Interactions Section, Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, United States
| | - Yang Feng
- Protein Interactions Section, Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, United States
| | - Dimiter S. Dimitrov
- Protein Interactions Section, Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, United States
| |
Collapse
|
80
|
Fate of a Stressed Therapeutic Antibody Tracked by Fluorescence Correlation Spectroscopy: Folded Monomers Survive Aggregation. J Phys Chem B 2017; 121:8085-8093. [DOI: 10.1021/acs.jpcb.7b05603] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
81
|
Yageta S, Shibuya R, Imamura H, Honda S. Conformational and Colloidal Stabilities of Human Immunoglobulin G Fc and Its Cyclized Variant: Independent and Compensatory Participation of Domains in Aggregation of Multidomain Proteins. Mol Pharm 2017; 14:699-711. [DOI: 10.1021/acs.molpharmaceut.6b00983] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Seiki Yageta
- Department of Computational
Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8562, Japan
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology, AIST Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan
| | - Risa Shibuya
- Department of Computational
Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8562, Japan
| | - Hiroshi Imamura
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology, AIST Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan
| | - Shinya Honda
- Department of Computational
Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8562, Japan
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology, AIST Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan
| |
Collapse
|