51
|
El-Seedi HR, Eid N, Abd El-Wahed AA, Rateb ME, Afifi HS, Algethami AF, Zhao C, Al Naggar Y, Alsharif SM, Tahir HE, Xu B, Wang K, Khalifa SAM. Honey Bee Products: Preclinical and Clinical Studies of Their Anti-inflammatory and Immunomodulatory Properties. Front Nutr 2022; 8:761267. [PMID: 35047540 PMCID: PMC8762236 DOI: 10.3389/fnut.2021.761267] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 11/23/2021] [Indexed: 12/14/2022] Open
Abstract
Inflammation is a defense process triggered when the body faces assaults from pathogens, toxic substances, microbial infections, or when tissue is damaged. Immune and inflammatory disorders are common pathogenic pathways that lead to the progress of various chronic diseases, such as cancer and diabetes. The overproduction of cytokines, such as interleukin (IL)-1β, IL-6, and tumor necrosis factor-α, is an essential parameter in the clinical diagnosis of auto-inflammatory diseases. In this review, the effects of bee products have on inflammatory and autoimmune diseases are discussed with respect to the current literature. The databases of Google Scholar, PubMed, Science Direct, Sci-Finder and clinical trials were screened using different combinations of the following terms: “immunomodulatory”, “anti-inflammatory”, “bee products”, “honey”, “propolis”, “royal jelly”, “bee venom”, “bee pollen”, “bee bread”, “preclinical trials”, “clinical trials”, and “safety”. Honey bee products, including propolis, royal jelly, honey, bee venom, and bee pollen, or their bioactive chemical constituents like polyphenols, demonstrate interesting therapeutic potential in the regulation of inflammatory mediator production as per the increase of TNF-α, IL-1β, IL-6, Il-2, and Il-7, and the decrease of reactive oxygen species (ROS) production. Additionally, improvement in the immune response via activation of B and T lymphocyte cells, both in in vitro, in vivo and in clinical studies was reported. Thus, the biological properties of bee products as anti-inflammatory, immune protective, antioxidant, anti-apoptotic, and antimicrobial agents have prompted further clinical investigation.
Collapse
Affiliation(s)
- Hesham R El-Seedi
- Pharmacognosy Group, Department of Pharmaceutical Biosciences, Biomedical Centre, Uppsala University, Uppsala, Sweden.,International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang, China.,International Joint Research Laboratory of Intelligent Agriculture and Agri-Products Processing, Jiangsu Education Department, Jiangsu University, Zhenjiang, China.,Department of Chemistry, Faculty of Science, Menoufia University, Shebeen El-Kom, Egypt
| | - Nehal Eid
- Department of Chemistry, Faculty of Science, Menoufia University, Shebeen El-Kom, Egypt
| | - Aida A Abd El-Wahed
- Department of Bee Research, Plant Protection Research Institute, Agricultural Research Centre, Giza, Egypt
| | - Mostafa E Rateb
- School of Computing, Engineering & Physical Sciences, University of the West of Scotland, Paisley, United Kingdom
| | - Hanan S Afifi
- Food Research Section, R&D Division, Abu Dhabi Agriculture and Food Safety Authority (ADAFSA), Abu Dhabi, United Arab Emirates
| | | | - Chao Zhao
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yahya Al Naggar
- General Zoology Group, Institute for Biology, Martin Luther University Halle-Wittenberg, Halle, Germany.,Zoology Department, Faculty of Science, Tanta University, Tanta, Egypt
| | - Sultan M Alsharif
- Biology Department, Faculty of Science, Taibah University, Medina, Saudi Arabia
| | | | - Baojun Xu
- Programme of Food Science and Technology, BNU-HKBU United International College, Zhuhai, China
| | - Kai Wang
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shaden A M Khalifa
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| |
Collapse
|
52
|
Insecticidal, Antimalarial, and Antileishmanial Effects of Royal Jelly and Its Three Main Fatty Acids, trans-10-Hydroxy-2-decenoic Acid, 10-Hydroxydecanoic Acid, and Sebacic Acid. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:7425322. [PMID: 35096117 PMCID: PMC8794668 DOI: 10.1155/2022/7425322] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 12/31/2021] [Accepted: 01/04/2022] [Indexed: 12/24/2022]
Abstract
Natural products and their derivatives as an inexpensive, accessible, and useful alternative medicine are broadly applied for the treatment of a wide range of diseases and infectious ones. The present study was designed to evaluate the insecticidal, antimalarial, antileishmanial, and cytotoxic effects of royal jelly and its three main fatty acids (trans-10-hydroxy-2-decenoic acid (10-H2DA), 10-hydroxydecanoic acid (10-HDAA), sebacic acid (1,10-decanedioic acid)). Insecticidal activity of RJ and 10-H2DA, 10-HDAA, and sebacic acid was performed against healthy 4th instar larvae at 25 ± 2°C. Antiplasmodial and antileishmanial effects of RJ and 10-H2DA, 10-HDAA, and sebacic acid were also performed against chloroquine-resistant Plasmodium falciparum K1-strain and Leishmania major amastigotes according to the Malstat method and macrophage model, respectively. In addition, the level of nitric oxide (NO) production in J774-A1 macrophages cells, plasma membrane permeability, and caspase-3-like activity and cytotoxicity effects of RJ and 10-H2DA, 10-HDAA, and sebacic acid against human embryonic kidney 293 (HEK239T cells) were evaluated. Considering the insecticidal activity, the results showed that the lethal concentration 50% value for RJ, 10-H2DA, 10-HDAA, and sebacic acid was 24.6, 31.4, 37.8, and 44.7 μg/mL μg/mL, respectively. RJ, 10-H2DA, 10-HDAA, and sebacic acid showed potent (P < 0.0001) antileishmanial effects with IC50 values ranging from 2.4 to 8.4 μg/mL. Various concentrations of RJ, 10-H2DA, 10-HDAA, and sebacic acid significantly (P < 0.05) increased the production of NO, plasma membrane permeability, and caspase-3-like activity level as a dose-dependent response. Considering the cytotoxicity, SIs > 10 of these compounds exhibited their specificity to parasites and safety against human HEK239T normal cells. The results of the present investigation revealed the promising insecticidal, antimalarial, and antileishmanial effects of RJ and its three main fatty acids (10-H2DA, 10-HDAA, and sebacic acid). However, more studies are required to confirm the mechanisms of action mode of these compounds as well as their efficacy in animal models and clinical settings.
Collapse
|
53
|
Lv M, Lei Q, Yin H, Hu T, Wang S, Dong K, Pan H, Liu Y, Lin Q, Cao Z. In vitro Effects of Prebiotics and Synbiotics on Apis cerana Gut Microbiota. Pol J Microbiol 2022; 70:511-520. [PMID: 34970318 PMCID: PMC8702607 DOI: 10.33073/pjm-2021-049] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 11/27/2021] [Indexed: 11/11/2022] Open
Abstract
This study aimed to investigate in vitro effects of the selected prebiotics alone, and in combination with two potential probiotic Lactobacillus strains on the microbial composition of Apis cerana gut microbiota and acid production. Four prebiotics, inulin, fructo-oligosaccharides, xylo-oligosaccharides, and isomalto-oligosaccharides were chosen, and glucose served as the carbon source. Supplementation of this four prebiotics increased numbers of Bifidobacterium and lactic acid bacteria while decreasing the pH value of in vitro fermentation broth inoculated with A. cerana gut microbiota compared to glucose. Then, two potential probiotics derived from A. cerana gut at different dosages, Lactobacillus helveticus KM7 and Limosilactobacillus reuteri LP4 were added with isomalto-oligosaccharides in fermentation broth inoculated with A. cerana gut microbiota, respectively. The most pronounced impact was observed with isomalto-oligosaccharides. Compared to isomalto-oligosaccharides alone, the combination of isomalto-oligosaccharides with both lactobacilli strains induced the growth of Bifidobacterium, LAB, and total bacteria and reduced the proliferation of Enterococcus and fungi. Consistent with these results, the altered metabolic activity was observed as lowered pH in in vitro culture of gut microbiota supplemented with isomalto-oligosaccharides and lactobacilli strains. The symbiotic impact varied with the types and concentration of Lactobacillus strains and fermentation time. The more effective ability was observed with IMO combined with L. helveticus KM7. These results suggested that isomalto-oligosaccharides could be a potential prebiotic and symbiotic with certain lactobacilli strains on A. cerana gut microbiota.
Collapse
Affiliation(s)
- Mingkui Lv
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, People's Republic of China
| | - Qingzhi Lei
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, People's Republic of China
| | - Huajuan Yin
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, People's Republic of China
| | - Tiannian Hu
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, People's Republic of China
| | - Sifan Wang
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, People's Republic of China
| | - Kun Dong
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, People's Republic of China
| | - Hongbin Pan
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, People's Republic of China.,Yunnan Provincial Key Laboratory of Animal Nutrition and Feed Science, Kunming, People's Republic of China
| | - Yiqiu Liu
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, People's Republic of China
| | - Qiuye Lin
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, People's Republic of China
| | - Zhenhui Cao
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, People's Republic of China.,Yunnan Provincial Key Laboratory of Animal Nutrition and Feed Science, Kunming, People's Republic of China
| |
Collapse
|
54
|
Uddin TM, Chakraborty AJ, Khusro A, Zidan BRM, Mitra S, Emran TB, Dhama K, Ripon MKH, Gajdács M, Sahibzada MUK, Hossain MJ, Koirala N. Antibiotic resistance in microbes: History, mechanisms, therapeutic strategies and future prospects. J Infect Public Health 2021; 14:1750-1766. [PMID: 34756812 DOI: 10.1016/j.jiph.2021.10.020] [Citation(s) in RCA: 350] [Impact Index Per Article: 87.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 10/04/2021] [Accepted: 10/14/2021] [Indexed: 12/22/2022] Open
Abstract
Antibiotics have been used to cure bacterial infections for more than 70 years, and these low-molecular-weight bioactive agents have also been used for a variety of other medicinal applications. In the battle against microbes, antibiotics have certainly been a blessing to human civilization by saving millions of lives. Globally, infections caused by multidrug-resistant (MDR) bacteria are on the rise. Antibiotics are being used to combat diversified bacterial infections. Synthetic biology techniques, in combination with molecular, functional genomic, and metagenomic studies of bacteria, plants, and even marine invertebrates are aimed at unlocking the world's natural products faster than previous methods of antibiotic discovery. There are currently only few viable remedies, potential preventive techniques, and a limited number of antibiotics, thereby necessitating the discovery of innovative medicinal approaches and antimicrobial therapies. MDR is also facilitated by biofilms, which makes infection control more complex. In this review, we have spotlighted comprehensively various aspects of antibiotics viz. overview of antibiotics era, mode of actions of antibiotics, development and mechanisms of antibiotic resistance in bacteria, and future strategies to fight the emerging antimicrobial resistant threat.
Collapse
Affiliation(s)
- Tanvir Mahtab Uddin
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka 1000, Bangladesh.
| | - Arka Jyoti Chakraborty
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka 1000, Bangladesh.
| | - Ameer Khusro
- Research Department of Plant Biology and Biotechnology, Loyola College, Nungambakkam, Chennai, Tamil Nadu, India.
| | - Bm Redwan Matin Zidan
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka 1000, Bangladesh.
| | - Saikat Mitra
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka 1000, Bangladesh.
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong 4381, Bangladesh.
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, Uttar Pradesh, India.
| | - Md Kamal Hossain Ripon
- Department of Pharmacy, Mawlana Bhashani Science and Technology University, Santosh, Tangail 1902, Bangladesh.
| | - Márió Gajdács
- Department of Oral Biology and Experimental Dental Research, Faculty of Dentistry, University of Szeged, 6720 Szeged, Hungary.
| | | | - Md Jamal Hossain
- Department of Pharmacy, State University of Bangladesh, 77 Satmasjid Road, Dhanmondi, Dhaka 1205, Bangladesh.
| | - Niranjan Koirala
- Department of Natural Products Research, Dr. Koirala Research Institute for Biotechnology and Biodiversity, Kathmandu 44600, Nepal.
| |
Collapse
|