51
|
Hernández-Lemus E, Martínez-García M. Pathway-Based Drug-Repurposing Schemes in Cancer: The Role of Translational Bioinformatics. Front Oncol 2021; 10:605680. [PMID: 33520715 PMCID: PMC7841291 DOI: 10.3389/fonc.2020.605680] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Accepted: 11/24/2020] [Indexed: 12/11/2022] Open
Abstract
Cancer is a set of complex pathologies that has been recognized as a major public health problem worldwide for decades. A myriad of therapeutic strategies is indeed available. However, the wide variability in tumor physiology, response to therapy, added to multi-drug resistance poses enormous challenges in clinical oncology. The last years have witnessed a fast-paced development of novel experimental and translational approaches to therapeutics, that supplemented with computational and theoretical advances are opening promising avenues to cope with cancer defiances. At the core of these advances, there is a strong conceptual shift from gene-centric emphasis on driver mutations in specific oncogenes and tumor suppressors-let us call that the silver bullet approach to cancer therapeutics-to a systemic, semi-mechanistic approach based on pathway perturbations and global molecular and physiological regulatory patterns-we will call this the shrapnel approach. The silver bullet approach is still the best one to follow when clonal mutations in driver genes are present in the patient, and when there are targeted therapies to tackle those. Unfortunately, due to the heterogeneous nature of tumors this is not the common case. The wide molecular variability in the mutational level often is reduced to a much smaller set of pathway-based dysfunctions as evidenced by the well-known hallmarks of cancer. In such cases "shrapnel gunshots" may become more effective than "silver bullets". Here, we will briefly present both approaches and will abound on the discussion on the state of the art of pathway-based therapeutic designs from a translational bioinformatics and computational oncology perspective. Further development of these approaches depends on building collaborative, multidisciplinary teams to resort to the expertise of clinical oncologists, oncological surgeons, and molecular oncologists, but also of cancer cell biologists and pharmacologists, as well as bioinformaticians, computational biologists and data scientists. These teams will be capable of engaging on a cycle of analyzing high-throughput experiments, mining databases, researching on clinical data, validating the findings, and improving clinical outcomes for the benefits of the oncological patients.
Collapse
Affiliation(s)
- Enrique Hernández-Lemus
- Computational Genomics Division, National Institute of Genomic Medicine, Mexico City, Mexico
- Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Mireya Martínez-García
- Sociomedical Research Unit, National Institute of Cardiology “Ignacio Chávez”, Mexico City, Mexico
| |
Collapse
|
52
|
Antiproliferative effect, alteration of cancer cell cycle progression and potential MET kinase inhibition induced by 3,4-dihydropyrimidin-2(1H)-one C5 amide derivatives. Eur J Pharmacol 2021; 894:173850. [PMID: 33428899 DOI: 10.1016/j.ejphar.2021.173850] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 12/12/2020] [Accepted: 01/05/2021] [Indexed: 12/24/2022]
Abstract
Cancer continues to be the second leading cause of death worldwide. Discovery of novel therapeutic agents has crucial importance for improvement of our medical management capabilities. Dysregulation of the MET receptor tyrosine kinase pathway plays an important role in cancer progression, making this receptor an attractive molecular target for anticancer drug discovery. In this study, twenty-seven 3,4-dihydropyrimidin-2(1H)-one C5 amide derivatives were synthesized and their cancer cell growth inhibitory activity was examined against MCF-7, HT-29 and MOLT-4 cells and also NIH/3T3 non-cancer cells by MTT assay. The antiproliferative effect of the most potent derivatives were tested against MET-dependent EBC-1 and MKN-45, lung and gastric cancer cell lines, respectively. MET kinase inhibition was measured by a Homogenous Time Resolved Fluorescence (HTRF) Assay. The influence of the test compounds on cell cycle was examined by RNase/PI flow cytometric assay. A number of compounds exhibited considerable antiproliferative effects against breast and colon cancer and leukemia cell lines, relatively sparing non-cancer cells. Some derivatives bearing benzothiazolyl carboxamide moiety at C5 position (15, 21, 23, 31, and 37) showed the highest activities with IC50 values as low as 10.9 μM. These compounds showed antiproliferative effects also against MET-amplified cells and dose-dependently inhibited MET kinase activity. They also induced G0/G1 cell cycle arrest at lower doses and apoptosis at higher doses. Molecular docking and dynamics simulation studies confirmed the interaction of compound 23 with the active site of the MET receptor. These findings demonstrate that 3,4-dihydropyrimidin-2(1H)-one analogues may represent promising targeted anticancer agents.
Collapse
|
53
|
Edraki N, Jamei MH, Haghighijoo Z, Kayani Z, Raufi E, Eskandari M, Firouzi M, Sadeghpour H, Miri R, Khoshneviszadeh M, Firuzi O. Phenanthrotriazine Derivatives Containing Arylidine Hydrazone Moieties as Novel Potential c-Met Inhibitors with Anticancer Effect. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2021; 20:516-531. [PMID: 34904005 PMCID: PMC8653689 DOI: 10.22037/ijpr.2021.114371.14835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Cancer is the second cause of death in the world and the discovery of novel anticancer agents is of vital importance to provide better therapeutic options for cancer patients. In this study, a new series of 12 arylidene hydrazone phenanthrotriazine derivatives were designed, synthesized, and tested in-vitro for antiproliferative activity against three cancer cell lines including colorectal cancer (HT-29), breast cancer (MCF-7) and leukemia (MOLT-4) cells and also against Vero normal cells. The effect of derivatives on cell cycle and apoptosis induction were studied by flow cytometric propidium iodide/RNase assay and Hoechst 33258 staining, respectively, while docking analysis was used to investigate the interactions of synthesized derivatives with the c-Met receptor kinase domain. Some compounds showed considerable antiproliferative activity against tested cancer cells. The most potent derivative was 9k bearing pyrrole moiety with IC50 values of 14.3, 4.7 and 1.7 µM against HT-29, MCF-7 and MOLT-4 cells, respectively, while it showed negligible activity against Vero normal cells (IC50: 95.4 µM). Derivatives bearing 2-nitrophenyl (9g), 4-cyanophenyl (9j), pyrrole (9k), and thiophene (9l) moieties induced G0/G1 cell cycle arrest and also apoptosis at higher doses in MCF-7 cells. Docking study showed that the phenanthrotriazine backbone form H-bond interactions with Asn1209, while phenyl moieties of the pendants generate different hydrophobic interactions with the Asp1164 and Asp1231 residues of c-Met. In conclusion, phenanthrene 1,2,4-triazines, especially the ones with less influence on normal cells, may constitute promising compounds for the discovery of antiproliferative agents with potential c-Met inhibitory capacity.
Collapse
Affiliation(s)
- Najmeh Edraki
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Mohammad Hasan Jamei
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Zahra Haghighijoo
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Zahra Kayani
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Elaheh Raufi
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Masoomeh Eskandari
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Maryam Firouzi
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Hossein Sadeghpour
- Department of Medicinal Chemistry, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Ramin Miri
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Mehdi Khoshneviszadeh
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran. ,Department of Medicinal Chemistry, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.,Corresponding author: E-mail: ;
| | - Omidreza Firuzi
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran. ,Corresponding author: E-mail: ;
| |
Collapse
|
54
|
Yu Y, Schuck K, Friess H, Kong B. Targeting Aggressive Fibroblasts to Enhance the Treatment of Pancreatic Cancer. Expert Opin Ther Targets 2020; 25:5-13. [PMID: 33246383 DOI: 10.1080/14728222.2021.1857727] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
INTRODUCTION Pancreatic ductal adenocarcinoma (PDAC) is one of the most malignant cancer entities, which is characterized by abundant desmoplastic stroma. The stroma consists of extracellular matrix, infiltrating immune cells, cancer-associated fibroblasts (CAFs) and others. Depending on environmental cues, CAFs can be highly heterogeneous and play context-dependent roles in PDAC progression. AREAS COVERED In this article, we discuss the biological significance of CAFs heterogeneity (oncogenic vs. tumor-suppressive) in pancreatic carcinogenesis. In particular, the complex interaction between CAFs and infiltrating immune cells has a determinant role in defining the stromal composition. A subset of PDAC patients may benefit from anti-CAFs therapy. EXPERT OPINION Co-defined by CAFs and infiltrating immune cells, the prognostic stroma signature is clinically relevant in a subset of human PDAC. This is the patient population which may benefit from future anti-stroma or anti-CAFs therapies. To consider CAF heterogeneity is crucial for designing anti-stroma studies. Here, reliable and traceable subtype-specific markers for CAFs are urgently needed to dissect the biological impact of CAF heterogeneity on PDAC development spatiotemporally. Given the significant contribution of CAFs to immunosuppressive microenvironment of PDAC, it is conceivable to combine anti-CAFs therapy with immunotherapy. To implement a CAF-subtype specific therapy is crucially important to improve the effectiveness of current treatments including chemotherapies and immunotherapy.
Collapse
Affiliation(s)
- Yuanyuan Yu
- Department of Surgery, Klinikum Rechts Der Isar, School of Medicine, Technical University of Munich (TUM) , Munich, Germany
| | - Kathleen Schuck
- Department of Surgery, Klinikum Rechts Der Isar, School of Medicine, Technical University of Munich (TUM) , Munich, Germany
| | - Helmut Friess
- Department of Surgery, Klinikum Rechts Der Isar, School of Medicine, Technical University of Munich (TUM) , Munich, Germany
| | - Bo Kong
- Department of Surgery, Klinikum Rechts Der Isar, School of Medicine, Technical University of Munich (TUM) , Munich, Germany
| |
Collapse
|
55
|
Mantini G, Vallés AM, Le Large TYS, Capula M, Funel N, Pham TV, Piersma SR, Kazemier G, Bijlsma MF, Giovannetti E, Jimenez CR. Co-expression analysis of pancreatic cancer proteome reveals biology and prognostic biomarkers. Cell Oncol (Dordr) 2020; 43:1147-1159. [PMID: 32860207 PMCID: PMC7716908 DOI: 10.1007/s13402-020-00548-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/30/2020] [Indexed: 01/02/2023] Open
Abstract
PURPOSE Despite extensive biological and clinical studies, including comprehensive genomic and transcriptomic profiling efforts, pancreatic ductal adenocarcinoma (PDAC) remains a devastating disease, with a poor survival and limited therapeutic options. The goal of this study was to assess co-expressed PDAC proteins and their associations with biological pathways and clinical parameters. METHODS Correlation network analysis is emerging as a powerful approach to infer tumor biology from omics data and to prioritize candidate genes as biomarkers or drug targets. In this study, we applied a weighted gene co-expression network analysis (WGCNA) to the proteome of 20 surgically resected PDAC specimens (PXD015744) and confirmed its clinical value in 82 independent primary cases. RESULTS Using WGCNA, we obtained twelve co-expressed clusters with a distinct biology. Notably, we found that one module enriched for metabolic processes and epithelial-mesenchymal-transition (EMT) was significantly associated with overall survival (p = 0.01) and disease-free survival (p = 0.03). The prognostic value of three proteins (SPTBN1, KHSRP and PYGL) belonging to this module was confirmed using immunohistochemistry in a cohort of 82 independent resected patients. Risk score evaluation of the prognostic signature confirmed its association with overall survival in multivariate analyses. Finally, immunofluorescence analysis confirmed co-expression of SPTBN1 and KHSRP in Hs766t PDAC cells. CONCLUSIONS Our WGCNA analysis revealed a PDAC module enriched for metabolic and EMT-associated processes. In addition, we found that three of the proteins involved were associated with PDAC survival.
Collapse
Affiliation(s)
- G Mantini
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam, The Netherlands
- Fondazione Pisana Per La Scienza, Pisa, Italy
| | - A M Vallés
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - T Y S Le Large
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam, The Netherlands
- Amsterdam UMC, Univ of Amsterdam, Laboratory for Experimental Oncology and Radiobiology, Amsterdam, The Netherlands
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Surgery, Amsterdam, The Netherlands
| | - M Capula
- Fondazione Pisana Per La Scienza, Pisa, Italy
| | - N Funel
- U.O. Anatomia ed Istologia Patologica II Azienda Ospedaliero Universitaria Pisana , Pisa, Italy
| | - T V Pham
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - S R Piersma
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - G Kazemier
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Surgery, Amsterdam, The Netherlands
| | - M F Bijlsma
- U.O. Anatomia ed Istologia Patologica II Azienda Ospedaliero Universitaria Pisana , Pisa, Italy
- Oncode Institute, Amsterdam, The Netherlands
| | - E Giovannetti
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam, The Netherlands.
- Fondazione Pisana Per La Scienza, Pisa, Italy.
| | - C R Jimenez
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
56
|
Pothula SP, Xu Z, Goldstein D, Pirola RC, Wilson JS, Apte MV. Targeting HGF/c-MET Axis in Pancreatic Cancer. Int J Mol Sci 2020; 21:9170. [PMID: 33271944 PMCID: PMC7730415 DOI: 10.3390/ijms21239170] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/27/2020] [Accepted: 11/28/2020] [Indexed: 12/11/2022] Open
Abstract
Pancreatic cancer (pancreatic ductal adenocarcinoma (PDAC/PC)) has been an aggressive disease that is associated with early metastases. It is characterized by dense and collagenous desmoplasia/stroma, predominantly produced by pancreatic stellate cells (PSCs). PSCs interact with cancer cells as well as other stromal cells, facilitating disease progression. A candidate growth factor pathway that may mediate this interaction is the hepatocyte growth factor (HGF)/c-MET pathway. HGF is produced by PSCs and its receptor c-MET is expressed on pancreatic cancer cells and endothelial cells. The current review discusses the role of the MET/HGF axis in tumour progression and dissemination of pancreatic cancer. Therapeutic approaches that were developed targeting either the ligand (HGF) or the receptor (c-MET) have not been shown to translate well into clinical settings. We discuss a two-pronged approach of targeting both the components of this pathway to interrupt the stromal-tumour interactions, which may represent a potential therapeutic strategy to improve outcomes in PC.
Collapse
Affiliation(s)
- Srinivasa P. Pothula
- Pancreatic Research Group, South Western Sydney Clinical School, Faculty of Medicine and Ingham Institute for Applied Medical Research, Liverpool, NSW 2170, Australia; (S.P.P.); (Z.X.); (R.C.P.); (J.S.W.)
- Faculty of Medicine, The University of New South Wales, Sydney, NSW 2052, Australia;
| | - Zhihong Xu
- Pancreatic Research Group, South Western Sydney Clinical School, Faculty of Medicine and Ingham Institute for Applied Medical Research, Liverpool, NSW 2170, Australia; (S.P.P.); (Z.X.); (R.C.P.); (J.S.W.)
- Faculty of Medicine, The University of New South Wales, Sydney, NSW 2052, Australia;
| | - David Goldstein
- Faculty of Medicine, The University of New South Wales, Sydney, NSW 2052, Australia;
| | - Romano C. Pirola
- Pancreatic Research Group, South Western Sydney Clinical School, Faculty of Medicine and Ingham Institute for Applied Medical Research, Liverpool, NSW 2170, Australia; (S.P.P.); (Z.X.); (R.C.P.); (J.S.W.)
- Faculty of Medicine, The University of New South Wales, Sydney, NSW 2052, Australia;
| | - Jeremy S. Wilson
- Pancreatic Research Group, South Western Sydney Clinical School, Faculty of Medicine and Ingham Institute for Applied Medical Research, Liverpool, NSW 2170, Australia; (S.P.P.); (Z.X.); (R.C.P.); (J.S.W.)
- Faculty of Medicine, The University of New South Wales, Sydney, NSW 2052, Australia;
| | - Minoti V. Apte
- Pancreatic Research Group, South Western Sydney Clinical School, Faculty of Medicine and Ingham Institute for Applied Medical Research, Liverpool, NSW 2170, Australia; (S.P.P.); (Z.X.); (R.C.P.); (J.S.W.)
- Faculty of Medicine, The University of New South Wales, Sydney, NSW 2052, Australia;
| |
Collapse
|
57
|
Zhou Y, Xu X, Wang F, He H, Qi B. Discovery of 4-((4-(4-(3-(2-(2,6-difluorophenyl)-4-oxothiazolidin-3-yl)ureido)-2-fluorophenoxy)-6-methoxyquinolin-7-yl)oxy)-N,N-diethylpiperidine-1-carboxamide as kinase inhibitor for the treatment of colorectal cancer. Bioorg Chem 2020; 106:104511. [PMID: 33272707 DOI: 10.1016/j.bioorg.2020.104511] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 10/01/2020] [Accepted: 11/19/2020] [Indexed: 11/18/2022]
Abstract
In this study, a novel series of 4,6,7-trisubstituted quinoline analogues bearing thiazolidinones were designed and synthesized based on our previous study. Among them, the most potent compound 15i, 4-((4-(4-(3-(2-(2,6-difluorophenyl)-4-oxothiazolidin-3-yl)ureido)-2-fluorophenoxy)-6-methoxyquinolin-7-yl)oxy)-N,N-diethylpiperidine-1-carboxamide was identified as a multi-kinase inhibitor. The results of MTT assay revealed in vitro antitumor activities against HT-29 cells of compound 15i with an IC50 value of 0.19 μM which was 14.5-fold more potent than that of Regorafenib. In the cellular context, significant antiproliferation, cytotoxicity and induction of apoptosis on HT-29 cells in a dose- and time-dependent manner were confirmed by IncuCyte live-cell imaging assays. Moreover, compound 15i strongly induced apoptosis by arresting cell cycle into the G2/M phase. No antiproliferation and cytotoxicity against human normal colorectal mucosa epithelial cell FHC was observed at 10.0 μg/mL or lower concentrations which indicated that the toxicity to normal cells of compound 15i was much lower than that of Regorafenib. Based on the above findings, further structural modification will be conducted for the development of more potent kinase inhibitors as anticancer agents.
Collapse
Affiliation(s)
- Yuting Zhou
- Department of Bioengineering, Zhuhai Campus of Zunyi Medical University, Zhuhai 519041, Guangdong Province, China
| | - Xingwei Xu
- Department of Bioengineering, Zhuhai Campus of Zunyi Medical University, Zhuhai 519041, Guangdong Province, China
| | - Fei Wang
- Department of Bioengineering, Zhuhai Campus of Zunyi Medical University, Zhuhai 519041, Guangdong Province, China
| | - Huan He
- Department of Bioengineering, Zhuhai Campus of Zunyi Medical University, Zhuhai 519041, Guangdong Province, China.
| | - Baohui Qi
- Department of Bioengineering, Zhuhai Campus of Zunyi Medical University, Zhuhai 519041, Guangdong Province, China.
| |
Collapse
|
58
|
Che PP, Gregori A, Peters GJ, Dahele M, Sminia P, Giovannetti E. Comment on: Targeting the HGF/c-MET pathway in advanced pancreatic cancer: a key element of treatment that limits primary tumour growth and eliminates metastasis. Br J Cancer 2020; 123:1464-1465. [PMID: 32719548 PMCID: PMC7591556 DOI: 10.1038/s41416-020-1003-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 06/19/2020] [Accepted: 06/26/2020] [Indexed: 11/09/2022] Open
Affiliation(s)
- Pei Pei Che
- Department of Radiation Oncology, Amsterdam University Medical Centers, VU University, Cancer Center Amsterdam, Amsterdam, The Netherlands
- Department of Medical Oncology, Amsterdam University Medical Centers, VU University, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Alessandro Gregori
- Department of Medical Oncology, Amsterdam University Medical Centers, VU University, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Godefridus J Peters
- Department of Medical Oncology, Amsterdam University Medical Centers, VU University, Cancer Center Amsterdam, Amsterdam, The Netherlands
- Department of Biochemistry, Medical University of Gdansk, Gdańsk, Poland
| | - Max Dahele
- Department of Radiation Oncology, Amsterdam University Medical Centers, VU University, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Peter Sminia
- Department of Radiation Oncology, Amsterdam University Medical Centers, VU University, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Elisa Giovannetti
- Department of Medical Oncology, Amsterdam University Medical Centers, VU University, Cancer Center Amsterdam, Amsterdam, The Netherlands.
- Cancer Pharmacology Lab, AIRC Start-Up Unit, Fondazione Pisana per la Scienza, Pisa, Italy.
| |
Collapse
|
59
|
Doctor A, Seifert V, Ullrich M, Hauser S, Pietzsch J. Three-Dimensional Cell Culture Systems in Radiopharmaceutical Cancer Research. Cancers (Basel) 2020; 12:cancers12102765. [PMID: 32993034 PMCID: PMC7600608 DOI: 10.3390/cancers12102765] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 09/14/2020] [Accepted: 09/16/2020] [Indexed: 12/12/2022] Open
Abstract
In preclinical cancer research, three-dimensional (3D) cell culture systems such as multicellular spheroids and organoids are becoming increasingly important. They provide valuable information before studies on animal models begin and, in some cases, are even suitable for reducing or replacing animal experiments. Furthermore, they recapitulate microtumors, metastases, and the tumor microenvironment much better than monolayer culture systems could. Three-dimensional models show higher structural complexity and diverse cell interactions while reflecting (patho)physiological phenomena such as oxygen and nutrient gradients in the course of their growth or development. These interactions and properties are of great importance for understanding the pathophysiological importance of stromal cells and the extracellular matrix for tumor progression, treatment response, or resistance mechanisms of solid tumors. Special emphasis is placed on co-cultivation with tumor-associated cells, which further increases the predictive value of 3D models, e.g., for drug development. The aim of this overview is to shed light on selected 3D models and their advantages and disadvantages, especially from the radiopharmacist's point of view with focus on the suitability of 3D models for the radiopharmacological characterization of novel radiotracers and radiotherapeutics. Special attention is paid to pancreatic ductal adenocarcinoma (PDAC) as a predestined target for the development of new radionuclide-based theranostics.
Collapse
Affiliation(s)
- Alina Doctor
- Department of Radiopharmaceutical and Chemical Biology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, 01328 Dresden, Germany; (A.D.); (V.S.); (M.U.); (S.H.)
- School of Science, Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01069 Dresden, Germany
| | - Verena Seifert
- Department of Radiopharmaceutical and Chemical Biology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, 01328 Dresden, Germany; (A.D.); (V.S.); (M.U.); (S.H.)
- School of Science, Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01069 Dresden, Germany
| | - Martin Ullrich
- Department of Radiopharmaceutical and Chemical Biology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, 01328 Dresden, Germany; (A.D.); (V.S.); (M.U.); (S.H.)
| | - Sandra Hauser
- Department of Radiopharmaceutical and Chemical Biology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, 01328 Dresden, Germany; (A.D.); (V.S.); (M.U.); (S.H.)
| | - Jens Pietzsch
- Department of Radiopharmaceutical and Chemical Biology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, 01328 Dresden, Germany; (A.D.); (V.S.); (M.U.); (S.H.)
- School of Science, Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01069 Dresden, Germany
- Correspondence: ; Tel.: +49-351-260-2622
| |
Collapse
|
60
|
Che PP, Gregori A, Firuzi O, Dahele M, Sminia P, Peters GJ, Giovannetti E. Pancreatic cancer resistance conferred by stellate cells: looking for new preclinical models. Exp Hematol Oncol 2020; 9:18. [PMID: 32775041 PMCID: PMC7398063 DOI: 10.1186/s40164-020-00176-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 07/29/2020] [Indexed: 02/06/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) has an extremely poor response to chemo- and (modest-dose conventionally fractionated) radio-therapy. Emerging evidence suggests that pancreatic stellate cells (PSCs) secrete deoxycytidine, which confers resistance to gemcitabine. In particular, deoxycytidine was detected by analysis of metabolites in fractionated media from different mouse PSCs, showing that it caused PDAC cells chemoresistance by reducing the capacity of deoxycytidine kinase (dCK) for gemcitabine phosphorylation. However, data on human models are missing and dCK expression was not associated with clinical efficacy of gemcitabine. We recently established co-culture models of hetero-spheroids including primary human PSCs and PDAC cells showing their importance as a platform to test the effects of cancer- and stroma-targeted drugs. Here, we discuss the limitations of previous studies and the potential use of above-mentioned models to study molecular mechanisms underlying chemo- and radio-resistance.
Collapse
Affiliation(s)
- Pei Pei Che
- Department of Radiation Oncology, Amsterdam University Medical Centers, Location VUMC, Cancer Center Amsterdam, Amsterdam, The Netherlands
- Department of Medical Oncology, Amsterdam University Medical Centers, Location VUMC, Cancer Center Amsterdam, CCA Room 1.52 De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
| | - Alessandro Gregori
- Department of Medical Oncology, Amsterdam University Medical Centers, Location VUMC, Cancer Center Amsterdam, CCA Room 1.52 De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
| | - Omidreza Firuzi
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Max Dahele
- Department of Radiation Oncology, Amsterdam University Medical Centers, Location VUMC, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Peter Sminia
- Department of Radiation Oncology, Amsterdam University Medical Centers, Location VUMC, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Godefridus J. Peters
- Department of Medical Oncology, Amsterdam University Medical Centers, Location VUMC, Cancer Center Amsterdam, CCA Room 1.52 De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
- Department of Biochemistry, Medical University of Gdansk, Gdańsk, Poland
| | - Elisa Giovannetti
- Department of Medical Oncology, Amsterdam University Medical Centers, Location VUMC, Cancer Center Amsterdam, CCA Room 1.52 De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
- Cancer Pharmacology Lab, AIRC Start-Up Unit, Fondazione Pisana per la Scienza, Pisa, Italy
| |
Collapse
|
61
|
Li Petri G, El Hassouni B, Sciarrillo R, Funel N, Mantini G, Zeeuw van der Laan EA, Cascioferro S, Avan A, Zucali PA, Zaffaroni N, Lagerweij T, Parrino B, Smid K, Deraco M, Granchi C, Braczko A, Smolenski RT, Matherly LH, Jansen G, Assaraf YG, Diana P, Cloos J, Peters GJ, Minutolo F, Giovannetti E. Impact of hypoxia on chemoresistance of mesothelioma mediated by the proton-coupled folate transporter, and preclinical activity of new anti-LDH-A compounds. Br J Cancer 2020; 123:644-656. [PMID: 32493992 PMCID: PMC7434895 DOI: 10.1038/s41416-020-0912-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 03/12/2020] [Accepted: 05/07/2020] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Expression of proton-coupled folate transporter (PCFT) is associated with survival of mesothelioma patients treated with pemetrexed, and is reduced by hypoxia, prompting studies to elucidate their correlation. METHODS Modulation of glycolytic gene expression was evaluated by PCR arrays in tumour cells and primary cultures growing under hypoxia, in spheroids and after PCFT silencing. Inhibitors of lactate dehydrogenase (LDH-A) were tested in vitro and in vivo. LDH-A expression was determined in tissue microarrays of radically resected malignant pleural mesothelioma (MPM, N = 33) and diffuse peritoneal mesothelioma (DMPM, N = 56) patients. RESULTS Overexpression of hypoxia marker CAIX was associated with low PCFT expression and decreased MPM cell growth inhibition by pemetrexed. Through integration of PCR arrays in hypoxic cells and spheroids and following PCFT silencing, we identified the upregulation of LDH-A, which correlated with shorter survival of MPM and DMPM patients. Novel LDH-A inhibitors enhanced spheroid disintegration and displayed synergistic effects with pemetrexed in MPM and gemcitabine in DMPM cells. Studies with bioluminescent hypoxic orthotopic and subcutaneous DMPM athymic-mice models revealed the marked antitumour activity of the LDH-A inhibitor NHI-Glc-2, alone or combined with gemcitabine. CONCLUSIONS This study provides novel insights into hypoxia/PCFT-dependent chemoresistance, unravelling the potential prognostic value of LDH-A, and demonstrating the preclinical activity of LDH-A inhibitors.
Collapse
Affiliation(s)
- Giovanna Li Petri
- Department of Medical Oncology, Cancer Center Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Palermo, Italy
| | - Btissame El Hassouni
- Department of Medical Oncology, Cancer Center Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
| | - Rocco Sciarrillo
- Department of Medical Oncology, Cancer Center Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
- Department of Hematology, Cancer Center Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
- Department of Pediatric Oncology, Cancer Center Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
| | - Niccola Funel
- Azienda Ospedaliera Universitaria Pisana, Pisa, Italy
| | - Giulia Mantini
- Department of Medical Oncology, Cancer Center Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
- Cancer Pharmacology Lab, Fondazione Pisana per la Scienza, Pisa, Italy
| | - Eveline A Zeeuw van der Laan
- Department of Medical Oncology, Cancer Center Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
| | - Stella Cascioferro
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Palermo, Italy
| | - Amir Avan
- Department of Medical Oncology, Cancer Center Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
- Metabolic syndrome Research center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Paolo Andrea Zucali
- Department of Oncology, Humanitas Clinical and Research Center, IRCCS, Rozzano (Milan), Italy
| | - Nadia Zaffaroni
- Molecular Pharmacology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milano, Italy
| | - Tonny Lagerweij
- Department of Neurosurgery, Neuro-Oncology Research Group, Cancer Center Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
| | - Barbara Parrino
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Palermo, Italy
| | - Kees Smid
- Department of Medical Oncology, Cancer Center Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
| | - Marcello Deraco
- Peritoneal Malignancy Program, Fondazione IRCCS Istituto Nazionale dei Tumori, Milano, Italy
| | | | - Alicja Braczko
- Department of Biochemistry, Medical University of Gdansk, Gdańsk, Poland
| | | | - Larry H Matherly
- Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, USA
| | - Gerrit Jansen
- Amsterdam Rheumatology and immunology Center, VU University Medical Center, Amsterdam, The Netherlands
| | - Yehuda G Assaraf
- Fred Wyszkowski Cancer Research Laboratory, Department of Biology, Technion-Israel Institute of Technology, Haifa, Israel
| | - Patrizia Diana
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Palermo, Italy
| | - Jacqueline Cloos
- Department of Hematology, Cancer Center Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
- Department of Pediatric Oncology, Cancer Center Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
| | - Godefridus J Peters
- Department of Medical Oncology, Cancer Center Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
- Department of Biochemistry, Medical University of Gdansk, Gdańsk, Poland
| | | | - Elisa Giovannetti
- Department of Medical Oncology, Cancer Center Amsterdam, VU University Medical Center, Amsterdam, The Netherlands.
- Cancer Pharmacology Lab, Fondazione Pisana per la Scienza, Pisa, Italy.
| |
Collapse
|
62
|
Aier I, Semwal R, Sharma A, Varadwaj PK. In silico identification of therapeutic compounds against microRNA targets in drug-resistant pancreatic ductal adenocarcinoma. J Biomol Struct Dyn 2020; 39:4893-4901. [PMID: 32579088 DOI: 10.1080/07391102.2020.1782262] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a major health issue that has been eluding efforts to identify viable therapeutic treatment options. Besides having the lowest survival rate among all types of cancer, almost all conventional methods of treatment are futile against this condition, leaving patients to succumb to this ailment faster than ever. As it is increasingly becoming difficult to come up with new compounds for the treatment of various diseases, alternative solutions are required for tackling these problems. In this study, publically available miRNA and gene expression data were used to identify common elements that were present in gemcitabine-resistant PDAC cell lines. By selecting overexpressed genes involved in pancreatic cancer and cancer pathways in general, potential drug candidates for the treatment of PDAC were identified. In this study, 21 differentially expressed miRNAs were identified from PANC-1 cell line treated with gemcitabine. Pathway analysis revealed that MET and PPARG were overexpressed in cancer-related pathways, including pancreatic cancer, and could be targeted for PDAC treatment. Using CMap, fisetin was identified a likely candidate drug for the treatment of PDAC. Docking studies indicated that fisetin was bound to c-Met and PPARG with an XP G score of -12.819 and -7.021 kcal/mol, respectively. As miRNAs have increasingly been shown to part take in important cancer-related processes and pathways, researching drug development methods based on miRNA targets could be beneficial for pharmaceutical industries. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Imlimaong Aier
- Department of Bioinformatics & Applied Sciences, Indian Institute of Information Technology, Allahabad, India
| | - Rahul Semwal
- Department of Information Technology, Indian Institute of Information Technology, Allahabad, India
| | - Anju Sharma
- Department of Bioinformatics & Applied Sciences, Indian Institute of Information Technology, Allahabad, India
| | - Pritish Kumar Varadwaj
- Department of Bioinformatics & Applied Sciences, Indian Institute of Information Technology, Allahabad, India
| |
Collapse
|
63
|
Cascioferro S, Petri GL, Parrino B, Carbone D, Funel N, Bergonzini C, Mantini G, Dekker H, Geerke D, Peters GJ, Cirrincione G, Giovannetti E, Diana P. Imidazo[2,1-b] [1,3,4]thiadiazoles with antiproliferative activity against primary and gemcitabine-resistant pancreatic cancer cells. Eur J Med Chem 2020; 189:112088. [PMID: 32007666 DOI: 10.1016/j.ejmech.2020.112088] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 01/16/2020] [Accepted: 01/20/2020] [Indexed: 12/31/2022]
Abstract
A new series of eighteen imidazo [2,1-b] [1,3,4]thiadiazole derivatives was efficiently synthesized and screened for antiproliferative activity against the National Cancer Institute (NCI-60) cell lines panel. Two out of eighteen derivatives, compounds 12a and 12h, showed remarkably cytotoxic activity with the half maximal inhibitory concentration values (IC50) ranging from 0.23 to 11.4 μM, and 0.29-12.2 μM, respectively. However, two additional compounds, 12b and 13g, displayed remarkable in vitro antiproliferative activity against pancreatic ductal adenocarcinoma (PDAC) cell lines, including immortalized (SUIT-2, Capan-1, Panc-1), primary (PDAC-3) and gemcitabine-resistant (Panc-1R), eliciting IC50 values ranging from micromolar to sub-micromolar level, associated with significant reduction of cell-migration and spheroid shrinkage. These remarkable results might be explained by modulation of key regulators of epithelial-to-mesenchymal transition (EMT), including E-cadherin and vimentin, and inhibition of metalloproteinase-2/-9. High-throughput arrays revealed a significant inhibition of the phosphorylation of 45 tyrosine kinases substrates, whose visualization on Cytoscape highlighted PTK2/FAK as an important hub. Inhibition of phosphorylation of PTK2/FAK was validated as one of the possible mechanisms of action, using a specific ELISA. In conclusion, novel imidazothiadiazoles show potent antiproliferative activity, mediated by modulation of EMT and PTK2/FAK.
Collapse
Affiliation(s)
- Stella Cascioferro
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Via Archirafi 32, 90123, Palermo, Italy
| | - Giovanna Li Petri
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Via Archirafi 32, 90123, Palermo, Italy; Department of Medical Oncology, Amsterdam University Medical Center, VU University Cancer Center Amsterdam, De Boelelaan 1117, 1081HV, Amsterdam, the Netherlands
| | - Barbara Parrino
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Via Archirafi 32, 90123, Palermo, Italy
| | - Daniela Carbone
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Via Archirafi 32, 90123, Palermo, Italy
| | - Niccola Funel
- Unit of Anatomic Pathology II, Azienda Ospedaliero-Universitaria Pisana, Via Roma 67, 56126, Pisa, Italy
| | - Cecilia Bergonzini
- Department of Medical Oncology, Amsterdam University Medical Center, VU University Cancer Center Amsterdam, De Boelelaan 1117, 1081HV, Amsterdam, the Netherlands
| | - Giulia Mantini
- Department of Medical Oncology, Amsterdam University Medical Center, VU University Cancer Center Amsterdam, De Boelelaan 1117, 1081HV, Amsterdam, the Netherlands
| | - Henk Dekker
- Department of Medical Oncology, Amsterdam University Medical Center, VU University Cancer Center Amsterdam, De Boelelaan 1117, 1081HV, Amsterdam, the Netherlands
| | - Daan Geerke
- AIMMS Division of Molecular Toxicology, Department of Chemistry and Pharmaceutical Sciences, Faculty of Sciences, VU University Amsterdam, De Boelelaan 1108, 1081 HZ, Amsterdam, the Netherlands
| | - Godefridus J Peters
- Department of Medical Oncology, Amsterdam University Medical Center, VU University Cancer Center Amsterdam, De Boelelaan 1117, 1081HV, Amsterdam, the Netherlands
| | - Girolamo Cirrincione
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Via Archirafi 32, 90123, Palermo, Italy
| | - Elisa Giovannetti
- Department of Medical Oncology, Amsterdam University Medical Center, VU University Cancer Center Amsterdam, De Boelelaan 1117, 1081HV, Amsterdam, the Netherlands; Fondazione Pisana per la Scienza, Via Ferruccio Giovannini 13, 56017, San Giuliano Terme, Pisa, Italy.
| | - Patrizia Diana
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Via Archirafi 32, 90123, Palermo, Italy.
| |
Collapse
|
64
|
EMT and Stemness-Key Players in Pancreatic Cancer Stem Cells. Cancers (Basel) 2019; 11:cancers11081136. [PMID: 31398893 PMCID: PMC6721598 DOI: 10.3390/cancers11081136] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Revised: 08/01/2019] [Accepted: 08/06/2019] [Indexed: 12/15/2022] Open
Abstract
Metastasis and tumor progression are the major cause of death in patients suffering from pancreatic ductal adenocarcinoma. Tumor growth and especially dissemination are typically associated with activation of an epithelial-to-mesenchymal transition (EMT) program. This phenotypic transition from an epithelial to a mesenchymal state promotes migration and survival both during development and in cancer progression. When re-activated in pathological contexts such as cancer, this type of developmental process confers additional stemness properties to specific subsets of cells. Cancer stem cells (CSCs) are a subpopulation of cancer cells with stem-like features that are responsible for the propagation of the tumor as well as therapy resistance and cancer relapse, but also for circulating tumor cell release and metastasis. In support of this concept, EMT transcription factors generate cells with stem cell properties and mediate chemoresistance. However, their role in pancreatic ductal adenocarcinoma metastasis remains controversial. As such, a better characterization of CSC populations will be crucial in future development of therapies targeting these cells. In this review, we will discuss the latest updates on the mechanisms common to pancreas development and CSC-mediated tumor progression.
Collapse
|