51
|
Guo Y, Gao F, Ahmed A, Rafiq M, Yu B, Cong H, Shen Y. Immunotherapy: cancer immunotherapy and its combination with nanomaterials and other therapies. J Mater Chem B 2023; 11:8586-8604. [PMID: 37614168 DOI: 10.1039/d3tb01358h] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Abstract
Immunotherapy is a new type of tumor treatment after surgery, radiotherapy and chemotherapy, and can be used to manage and destroy tumor cells through activating or strengthening the immune response. Immunotherapy has the benefits of a low recurrence rate and high specificity compared to traditional treatment methods. Immunotherapy has developed rapidly in recent years and has become a research hotspot. Currently, chimeric antigen receptor T-cell immunotherapy and immune checkpoint inhibitors are the most effective tumor immunotherapies in clinical practice. While tumor immunotherapy brings hope to patients, it also faces some challenges and still requires continuous research and progress. Combination therapy is the future direction of anti-tumor treatment. In this review, the main focus is on an overview of the research progress of immune checkpoint inhibitors, cellular therapies, tumor vaccines, small molecule inhibitors and oncolytic virotherapy in tumor treatment, as well as the combination of immunotherapy with other treatments.
Collapse
Affiliation(s)
- Yuanyuan Guo
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao, 266071, China.
| | - Fengyuan Gao
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao, 266071, China.
| | - Adeel Ahmed
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao, 266071, China.
| | - Muhammad Rafiq
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao, 266071, China.
| | - Bing Yu
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao, 266071, China.
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China
| | - Hailin Cong
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao, 266071, China.
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China
- School of Materials Science and Engineering, Shandong University of Technology, Zibo 255000, China
| | - Youqing Shen
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao, 266071, China.
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Center for Bionanoengineering, and Department of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| |
Collapse
|
52
|
Tan X, Liu C, Sun L. Association between CTLA4 + 49A/G polymorphism and risk of hepatocellular carcinoma: a systematic review and meta-analysis. NUCLEOSIDES, NUCLEOTIDES & NUCLEIC ACIDS 2023; 43:302-315. [PMID: 37679967 DOI: 10.1080/15257770.2023.2255626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 08/31/2023] [Indexed: 09/09/2023]
Abstract
The aim of this systematic review and meta-analysis was to compile the data examining the association between the CTLA4 + 49 A/G polymorphism and the risk for HCC. Multiple databases were systematically searched for eligible studies and the pooled odds ratios (ORs) were generated using five genetic models. Pooled data from 11 studies with 3,055 HCC patients and 3,450 controls found no statistically significant association between the polymorphism and HCC risk, both overall and in subgroup analyses. In conclusion, the current meta-analysis shows that the CTLA4 + 49 A/G polymorphism is not significantly associated with the risk of developing HCC.
Collapse
Affiliation(s)
- Xiujuan Tan
- Department of Intervention Chemotherapy, Zibo First Hospital, Zibo, China
| | - Chunfeng Liu
- Department of Intervention Chemotherapy, Zibo First Hospital, Zibo, China
| | | |
Collapse
|
53
|
Kardile V, Kulkarni A, Nadar B, Saldanha T. Monoclonal Antibodies in Oncology: A Decade of Novel Options. Cell Biochem Biophys 2023; 81:395-408. [PMID: 37395856 DOI: 10.1007/s12013-023-01144-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/08/2023] [Indexed: 07/04/2023]
Abstract
Several decades of research and clinical trials have conclusively provided proof of concept on the usefulness of monoclonal antibodies in the armamentarium against cancer. There are numerous mAbs approved for both, the treatment of solid tumors as well as hematological malignancies. These have ranked in the top ten best-selling drugs in recent years and one such mAb, pembrolizumab, is slated to be the highest revenue-generating drug by 2024. A large proportion of the mAbs in oncology have been approved by regulatory agencies in just the past decade and many professionals working in the field have been unable to keep abreast with the latest mAbs available and their mechanism of action. In this review, we aim to provide a systematic compilation of the various mAbs in oncology, approved by the US FDA in the past decade. It also elaborates on the mechanism of action of the newly approved mAbs to provide an overall update of the same. For this purpose, we have referred to the Drugs at FDA and relevant articles from PubMed from the year 2010 to date.
Collapse
Affiliation(s)
- Vaibhavi Kardile
- Department of Pharmacology, AISSMS College of Pharmacy, Pune, India
| | - Atharva Kulkarni
- Department of Pharmacology, AISSMS College of Pharmacy, Pune, India
| | - Brinda Nadar
- Department of Pharmacology, AISSMS College of Pharmacy, Pune, India
| | - Tina Saldanha
- Department of Pharmacology, AISSMS College of Pharmacy, Pune, India.
| |
Collapse
|
54
|
Yoo KH, Park DJ, Choi JH, Marianayagam NJ, Lim M, Meola A, Chang SD. Optimizing the synergy between stereotactic radiosurgery and immunotherapy for brain metastases. Front Oncol 2023; 13:1223599. [PMID: 37637032 PMCID: PMC10456862 DOI: 10.3389/fonc.2023.1223599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 07/24/2023] [Indexed: 08/29/2023] Open
Abstract
Solid tumors metastasizing to the brain are a frequent occurrence with an estimated incidence of approximately 30% of all cases. The longstanding conventional standard of care comprises surgical resection and whole-brain radiotherapy (WBRT); however, this approach is associated with limited long-term survival and local control outcomes. Consequently, stereotactic radiosurgery (SRS) has emerged as a potential alternative approach. The primary aim of SRS has been to improve long-term control rates. Nevertheless, rare observations of abscopal or out-of-field effects have sparked interest in the potential to elicit antitumor immunity via the administration of high-dose radiation. The blood-brain barrier (BBB) has traditionally posed a significant challenge to the efficacy of systemic therapy in managing intracranial metastasis. However, recent insights into the immune-brain interface and the development of immunotherapeutic agents have shown promise in preclinical and early-phase clinical trials. Researchers have investigated combining immunotherapy with SRS to enhance treatment outcomes in patients with brain metastasis. The combination approach aims to optimize long-term control and overall survival (OS) outcomes by leveraging the synergistic effects of both therapies. Initial findings have been encouraging in the management of various intracranial metastases, while further studies are required to determine the optimal order of administration, radiation doses, and fractionation regimens that have the potential for the best tumor response. Currently, several clinical trials are underway to assess the safety and efficacy of administering immunotherapeutic agents concurrently or consecutively with SRS. In this review, we conduct a comprehensive analysis of the advantages and drawbacks of integrating immunotherapy into conventional SRS protocols for the treatment of intracranial metastasis.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Steven D. Chang
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, United States
| |
Collapse
|
55
|
Zhang W, Tan Y, Li Y, Liu J. Neutrophil to Lymphocyte ratio as a predictor for immune-related adverse events in cancer patients treated with immune checkpoint inhibitors: a systematic review and meta-analysis. Front Immunol 2023; 14:1234142. [PMID: 37622124 PMCID: PMC10445236 DOI: 10.3389/fimmu.2023.1234142] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Accepted: 07/24/2023] [Indexed: 08/26/2023] Open
Abstract
Background The use of immune checkpoint inhibitors (ICIs) in cancer treatment has led to an increase in immune-related adverse events (irAEs), which can cause treatment discontinuation and even fatal reactions. The purpose of this study was to evaluate the usefulness of the peripheral biomarker neutrophil to lymphocyte ratio (NLR) in predicting irAEs. Methods A systematic search of databases was conducted to identify studies on the predictive value of NLR for irAEs. The standardized mean difference (SMD) was used to compare continuous NLR, while crude odds ratios (ORs) were calculated for categorized NLR if adjusted ORs and 95% confidence intervals (CIs) were not provided in the original study. Results The meta-analysis included 47 studies with a total of 11,491 cancer patients treated with ICIs. The baseline continuous NLR was significantly lower in patients with irAEs compared to those without (SMD=-1.55, 95%CI=-2.64 to -0.46, P=0.006). Similarly, categorized NLR showed that lower baseline NLR was associated with increased irAEs (OR=0.55, 95%CI=0.41-0.73, P<0.001). Subgroup analysis revealed that the OR for predicting irAEs with NLR cut-off values of 3 and 5 was 0.4 and 0.59, respectively. Interestingly, increased baseline NLR was associated with a higher incidence of immune-related liver injury (OR=2.44, 95%CI=1.23-4.84, I2 = 0%, P=0.010). Conclusion Our study suggests that lower baseline NLR is associated with a higher risk of overall irAEs. However, further studies are needed to determine the best cut-off value and explore the efficacy of NLR in predicting specific types of irAEs.
Collapse
Affiliation(s)
- Wei Zhang
- Breast Tumor Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yifei Tan
- Department of Ultrasonography, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Yuquan Li
- Department of Thoracic Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Jiang Liu
- Breast Tumor Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
56
|
Chen DP, Wen YH, Lin WT, Hsu FP, Yu KH. Exploration of the association between the single-nucleotide polymorphism of co-stimulatory system and rheumatoid arthritis. Front Immunol 2023; 14:1123832. [PMID: 37457686 PMCID: PMC10344454 DOI: 10.3389/fimmu.2023.1123832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 06/01/2023] [Indexed: 07/18/2023] Open
Abstract
Introduction The human leukocyte antigen (HLA) has been linked to the majority of autoimmune diseases (ADs). However, non-HLA genes may be risk factors for ADs. A number of genes encoding proteins involved in regulating T-cell and B-cell function have been identified as rheumatoid arthritis (RA) susceptibility genes. Methods In this study, we investigated the association between RA and single-nucleotide polymorphisms (SNPs) of co-stimulatory or co-inhibitory molecules in 124 RA cases and 100 healthy controls without immune-related diseases [including tumor necrosis factor superfamily member 4 (TNFSF4), CD28, cytotoxic T-lymphocyte-associated protein 4 (CTLA4), and programmed cell death protein 1 (PDCD1)]. Results The results showed that there were 13 SNPs associated with RA, including rs181758110 of TNFSF4 (CC vs. CT, p = 0.038); rs3181096 of CD28 (TT vs. CC + CT, p = 0.035; CC vs. TT, p = 0.047); rs11571315 (TT vs. CT, p = 0.045), rs733618 (CC vs. TT + CT, p = 0.043), rs4553808 (AA vs. AG vs. GG, p = 0.035), rs11571316 (GG vs. AG vs. AA, p = 0.048; GG vs. AG + AA, p = 0.026; GG vs. AG, p = 0.014), rs16840252 (CC vs. CT vs. TT, p = 0.007; CC vs. CT, p = 0.011), rs5742909 (CC vs. CT vs. TT, p = 0.040), and rs11571319 of CTLA4 (GG vs. AG vs. AA, p < 0.001; GG vs. AG + AA, p = 0.048; AA vs. GG + AG, p = 0.001; GG vs. AA, p = 0.008; GG vs. AG, p ≤ 0.001); and rs10204525 (TT vs. CT + CC, p = 0.024; TT vs. CT, p = 0.021), rs2227982 (AA vs. GG, p = 0.047), rs36084323 (TT vs. CT vs. CC, p = 0.022; TT vs. CT + CC, p = 0.013; CC vs. TT + CT, p = 0.048; TT vs. CC, p = 0.008), and rs5839828 of PDCD1 (DEL vs. DEL/G vs. GG, p = 0.014; DEL vs. DEL/G + GG, p = 0.014; GG vs. DEL + DEL/G, p = 0.025; DEL vs. GG, p = 0.007). Discussion Consequently, these SNPs may play an important role in immune regulation, and further research into the role of these SNPs of immune regulatory genes in the pathogenesis of RA is required.
Collapse
Affiliation(s)
- Ding-Ping Chen
- Department of Laboratory Medicine, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Ying-Hao Wen
- Department of Laboratory Medicine, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
- School of Medicine, National Tsing Hua University, Hsinchu, Taiwan
- School of Medicine, Chang Gung University, Taoyuan, Taiwan
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Wei-Tzu Lin
- Department of Laboratory Medicine, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Fang-Ping Hsu
- Department of Laboratory Medicine, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Kuang-Hui Yu
- Division of Rheumatology, Allergy, and Immunology, Linkou Chang Gung University and Memorial Hospital, Taoyuan, Taiwan
| |
Collapse
|
57
|
Yu Y, Ollodart J, Contino KF, Shiozawa Y. Immunotherapy as a potential treatment approach for currently incurable bone metastasis. J Bone Miner Metab 2023; 41:371-379. [PMID: 36752903 PMCID: PMC10251738 DOI: 10.1007/s00774-023-01404-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 01/16/2023] [Indexed: 02/09/2023]
Abstract
Once cancer metastasizes to the bone, the prognosis of cancer patients becomes extremely poor. Unfortunately, the current most successful treatment for bone metastasis can extend their survival by only a few months. Although recent studies have revealed promising impacts of cancer immunotherapies, their treatment efficacy on bone metastatic diseases remains controversial. Therefore, in this review, we discussed (i) preclinical and clinical evidence of the immunotherapeutic strategies for cancer bone metastasis, mainly focusing on cell-based immunotherapy, cytokine-based immunotherapy, and immune checkpoint blockade, and (ii) current shortcomings of immunotherapy for bone metastasis and their potential future directions. Although the evidence on treatment efficacy and safety, as well as long-term effects, is limited, immunotherapies could induce partial or complete remissions in a few cancer patients with bone metastasis. However, there are still hurdles, such as the immunosuppressive nature of the bone marrow microenvironment and poor distribution of cell-based immunotherapies to bone, that need to be overcome to enhance the treatment efficacy of immunotherapies on bone metastasis. While it is apparent that further investigation is needed regarding immunotherapeutic treatment efficacy in patients with bone metastasis, this therapy may prove to be clinically novel in this subset of cancer patients.
Collapse
Affiliation(s)
- Yang Yu
- Department of Cancer Biology and Comprehensive Cancer Center, Medical Center Blvd, Wake Forest University Health Sciences, Wake Forest School of Medicine, Winston-Salem, NC, 27157-1082, USA
| | - Jenna Ollodart
- Department of Cancer Biology and Comprehensive Cancer Center, Medical Center Blvd, Wake Forest University Health Sciences, Wake Forest School of Medicine, Winston-Salem, NC, 27157-1082, USA
| | - Kelly F Contino
- Department of Cancer Biology and Comprehensive Cancer Center, Medical Center Blvd, Wake Forest University Health Sciences, Wake Forest School of Medicine, Winston-Salem, NC, 27157-1082, USA
| | - Yusuke Shiozawa
- Department of Cancer Biology and Comprehensive Cancer Center, Medical Center Blvd, Wake Forest University Health Sciences, Wake Forest School of Medicine, Winston-Salem, NC, 27157-1082, USA.
| |
Collapse
|
58
|
Ma GL, Lin WF. Immune checkpoint inhibition mediated with liposomal nanomedicine for cancer therapy. Mil Med Res 2023; 10:20. [PMID: 37106400 PMCID: PMC10142459 DOI: 10.1186/s40779-023-00455-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 04/08/2023] [Indexed: 04/29/2023] Open
Abstract
Immune checkpoint blockade (ICB) therapy for cancer has achieved great success both in clinical results and on the market. At the same time, success drives more attention from scientists to improve it. However, only a small portion of patients are responsive to this therapy, and it comes with a unique spectrum of side effects termed immune-related adverse events (irAEs). The use of nanotechnology could improve ICBs' delivery to the tumor, assist them in penetrating deeper into tumor tissues and alleviate their irAEs. Liposomal nanomedicine has been investigated and used for decades, and is well-recognized as the most successful nano-drug delivery system. The successful combination of ICB with liposomal nanomedicine could help improve the efficacy of ICB therapy. In this review, we highlighted recent studies using liposomal nanomedicine (including new emerging exosomes and their inspired nano-vesicles) in associating ICB therapy.
Collapse
Affiliation(s)
- Guang-Long Ma
- Faculty of Medicine, Centre for Cancer Immunology, University of Southampton, Southampton, SO16 6YD UK
| | - Wei-Feng Lin
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, 76100 Rehovot, Israel
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing, 100191 China
| |
Collapse
|
59
|
Skeltved N, Nordmaj MA, Berendtsen NT, Dagil R, Stormer EMR, Al-Nakouzi N, Jiang K, Aicher A, Heeschen C, Gustavsson T, Choudhary S, Gögenur I, Christensen JP, Theander TG, Daugaard M, Salanti A, Nielsen MA. Bispecific T cell-engager targeting oncofetal chondroitin sulfate induces complete tumor regression and protective immune memory in mice. J Exp Clin Cancer Res 2023; 42:106. [PMID: 37118819 PMCID: PMC10142489 DOI: 10.1186/s13046-023-02655-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 03/28/2023] [Indexed: 04/30/2023] Open
Abstract
BACKGROUND The malaria protein VAR2CSA binds oncofetal chondroitin sulfate (ofCS), a unique chondroitin sulfate, expressed on almost all mammalian cancer cells. Previously, we produced a bispecific construct targeting ofCS and human T cells based on VAR2CSA and anti-CD3 (V-aCD3Hu). V-aCD3Hu showed efficacy against xenografted tumors in immunocompromised mice injected with human immune cells at the tumor site. However, the complex effects potentially exerted by the immune system as a result of the treatment cannot occur in mice without an immune system. Here we investigate the efficacy of V-aCD3Mu as a monotherapy and combined with immune checkpoint inhibitors in mice with a fully functional immune system. METHODS We produced a bispecific construct consisting of a recombinant version of VAR2CSA coupled to an anti-murine CD3 single-chain variable fragment. Flow cytometry and ELISA were used to check cell binding capabilities and the therapeutic effect was evaluated in vitro in a killing assay. The in vivo efficacy of V-aCD3Mu was then investigated in mice with a functional immune system and established or primary syngeneic tumors in the immunologically "cold" 4T1 mammary carcinoma, B16-F10 malignant melanoma, the pancreatic KPC mouse model, and in the immunologically "hot" CT26 colon carcinoma model. RESULTS V-aCD3Mu had efficacy as a monotherapy, and the combined treatment of V-aCD3Mu and an immune checkpoint inhibitor showed enhanced effects resulting in the complete elimination of solid tumors in the 4T1, B16-F10, and CT26 models. This anti-tumor effect was abscopal and accompanied by a systemic increase in memory and activated cytotoxic and helper T cells. The combined treatment also led to a higher percentage of memory T cells in the tumor without an increase in regulatory T cells. In addition, we observed partial protection against re-challenge in a melanoma model and full protection in a breast cancer model. CONCLUSIONS Our findings suggest that V-aCD3Mu combined with an immune checkpoint inhibitor renders immunologically "cold" tumors "hot" and results in tumor elimination. Taken together, these data provide proof of concept for the further clinical development of V-aCD3 as a broad cancer therapy in combination with an immune checkpoint inhibitor.
Collapse
Affiliation(s)
- Nanna Skeltved
- Centre for Medical Parasitology, Department of Infectious Diseases, University of Copenhagen and, Copenhagen University Hospital, Copenhagen, Denmark
| | - Mie A Nordmaj
- Centre for Medical Parasitology, Department of Infectious Diseases, University of Copenhagen and, Copenhagen University Hospital, Copenhagen, Denmark
| | - Nicolai T Berendtsen
- Centre for Medical Parasitology, Department of Infectious Diseases, University of Copenhagen and, Copenhagen University Hospital, Copenhagen, Denmark
| | - Robert Dagil
- Centre for Medical Parasitology, Department of Infectious Diseases, University of Copenhagen and, Copenhagen University Hospital, Copenhagen, Denmark
| | - Emilie M R Stormer
- Centre for Medical Parasitology, Department of Infectious Diseases, University of Copenhagen and, Copenhagen University Hospital, Copenhagen, Denmark
| | - Nader Al-Nakouzi
- Vancouver Prostate Centre, University of British Columbia, Vancouver, Canada
| | - Ke Jiang
- Center for Single-Cell Omics and Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Alexandra Aicher
- Precision Immunotherapy, Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
| | - Christopher Heeschen
- Center for Single-Cell Omics and Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Pancreatic Cancer Heterogeneity, Candiolo Cancer Institute - FPO - IRCCS, Candiolo (Torino), Italy
| | - Tobias Gustavsson
- Centre for Medical Parasitology, Department of Infectious Diseases, University of Copenhagen and, Copenhagen University Hospital, Copenhagen, Denmark
- Var2 Pharmaceuticals ApS, Copenhagen, Denmark
| | - Swati Choudhary
- Centre for Medical Parasitology, Department of Infectious Diseases, University of Copenhagen and, Copenhagen University Hospital, Copenhagen, Denmark
- Var2 Pharmaceuticals ApS, Copenhagen, Denmark
| | - Ismail Gögenur
- Department of Clinical Medicine, University of Copenhagen and Center for Surgical Science, Zealand University Hospital, Copenhagen, Denmark
| | - Jan P Christensen
- Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Thor G Theander
- Centre for Medical Parasitology, Department of Infectious Diseases, University of Copenhagen and, Copenhagen University Hospital, Copenhagen, Denmark
| | - Mads Daugaard
- Vancouver Prostate Centre, University of British Columbia, Vancouver, Canada
- Var2 Pharmaceuticals ApS, Copenhagen, Denmark
| | - Ali Salanti
- Centre for Medical Parasitology, Department of Infectious Diseases, University of Copenhagen and, Copenhagen University Hospital, Copenhagen, Denmark.
| | - Morten A Nielsen
- Centre for Medical Parasitology, Department of Infectious Diseases, University of Copenhagen and, Copenhagen University Hospital, Copenhagen, Denmark.
| |
Collapse
|
60
|
Li J, Xu X. Immune Checkpoint Inhibitor-Based Combination Therapy for Colorectal Cancer: An Overview. Int J Gen Med 2023; 16:1527-1540. [PMID: 37131870 PMCID: PMC10149070 DOI: 10.2147/ijgm.s408349] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 04/19/2023] [Indexed: 05/04/2023] Open
Abstract
Colorectal cancer (CRC) is one of the most common diseases in the world. Tumor immunotherapy is an innovative cancer treatment that acts by activating the human body's autoimmune system. Immune checkpoint block has been shown to be effective in DNA deficient mismatch repair/microsatellite instability-high CRC. However, the therapeutic effect for proficient mismatch repair/microsatellite stability patients still requires further study and optimization. At present, the main CRC strategy is to combine other therapeutic methods, such as chemotherapy, targeted therapy, and radiotherapy. Here, we review the current status and the latest progress of immune checkpoint inhibitors in the treatment of CRC. At the same time, we consider therapeutic opportunities for transforming cold to hot, as well as perspectives on possible future therapies, which may be in great demand for drug-resistant patients.
Collapse
Affiliation(s)
- Jingjing Li
- Department of Gastroenterology, Shidong Hospital of Shanghai, Shanghai, People’s Republic of China
| | - Xuanfu Xu
- Department of Gastroenterology, Shidong Hospital of Shanghai, Shanghai, People’s Republic of China
| |
Collapse
|
61
|
Grau-Bejar JF, Garcia-Duran C, Garcia-Illescas D, Mirallas O, Oaknin A. Advances in immunotherapy for cervical cancer. Ther Adv Med Oncol 2023; 15:17588359231163836. [PMID: 37007635 PMCID: PMC10052578 DOI: 10.1177/17588359231163836] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 02/22/2023] [Indexed: 03/30/2023] Open
Abstract
Cervical cancer still represents a major public health problem, being the fourth most common cancer in incidence and mortality in women worldwide. These figures are unacceptable since cervical cancer, an human papillomavirus-related malignancy, is a largely preventable disease by means of well-established screening and vaccination programs. Patients with recurrent, persistent, or metastatic disease unsuitable for curative therapeutic approaches represent a dismal prognosis population. Until recently, these patients were only candidates for cisplatin-based chemotherapy plus bevacizumab. However, the introduction of immune checkpoint inhibitors has revolutionized the treatment landscape of this disease achieving historical overall survival improvements in both the post-platinum and frontline settings. Interestingly, the clinical development of immunotherapy in cervical cancer is currently advancing to earlier stages of the disease, as the locally advanced setting, whose standard of care has not changed in the last decades with still modest outcomes. As more innovative immunotherapy approaches are in clinical early development in advanced cervical cancer, promising efficacy data are emerging that may shape the future of this disease. This review summarizes the main treatment advances carried out in the field of immunotherapy throughout the past years.
Collapse
Affiliation(s)
- Juan Francisco Grau-Bejar
- Gynaecologic Cancer Programme Vall d’Hebron Institute of Oncology (VHIO), Hospital Universitari Vall d’Hebron, Vall d’Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Carmen Garcia-Duran
- Gynaecologic Cancer Programme Vall d’Hebron Institute of Oncology (VHIO), Hospital Universitari Vall d’Hebron, Vall d’Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - David Garcia-Illescas
- Gynaecologic Cancer Programme Vall d’Hebron Institute of Oncology (VHIO), Hospital Universitari Vall d’Hebron, Vall d’Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Oriol Mirallas
- Gynaecologic Cancer Programme Vall d’Hebron Institute of Oncology (VHIO), Hospital Universitari Vall d’Hebron, Vall d’Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Ana Oaknin
- Head of Gynaecological Cancer Program, Medical Oncology Department, Vall d’Hebron University Hospital, Vall d’Hebron Institute of Oncology (VHIO), P. Vall d’Hebron 119-129, Barcelona 08035, Spain
| |
Collapse
|
62
|
Tominaga K, Takeuchi K, Takakuma S, Sakamoto E, Hatanaka S, Kajimoto Y, Toda E, Terasaki Y, Kunugi S, Terasaki M, Shimizu A. Immune checkpoint inhibitors associated granulomatous small vessel vasculitis accompanied with tubulointerstitial nephritis: a case report. BMC Nephrol 2023; 24:48. [PMID: 36894873 PMCID: PMC9997013 DOI: 10.1186/s12882-023-03091-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 02/19/2023] [Indexed: 03/11/2023] Open
Abstract
BACKGROUND Immune checkpoint inhibitors (ICIs) have provided significant benefits in cancer treatment, but they could develop immune-related adverse events (irAE). ICI-associated renal adverse effects are rare and tubulointerstitial nephritis (TIN) is the most common in the renal irAE. However, only a few case reports of renal vasculitis associated with ICI have been reported. In addition, the characteristics of infiltrating inflammatory cells of ICI-associated TIN and renal vasculitis have been uncertain. CASE PRESENTATION A 65-year-old man received immune checkpoint inhibitors (ICIs), anti-CTLA-4 (cytotoxic T-lymphocyte-associated protein 4) and anti-PD-1 (programmed cell death 1) antibodies for aggravated metastatic malignant melanoma. About 1 week after the second administration of nivolumab and ipilimumab, acute kidney injury developed. A renal biopsy was performed that showed TIN and non-necrotizing granulomatous vasculitis in interlobular arteries. Massive CD3+ T cells and CD163+ macrophages infiltrated both tubulointerstitium and interlobular arteries. Many infiltrating cells tested positive for Ki-67 and PD-1 ligand (PD-L1), but negative for PD-1. In CD3+ T cells, CD8+ T cells were predominantly infiltrated, and these cells were positive for Granzyme B (GrB) and cytotoxic granule TIA-1, but negative for CD25, indicating antigen-independent activated CD8+ T cells. Infiltration of CD4+ T cells was noted without obvious CD4+ CD25+ regulatory T (Treg) cells. His renal dysfunction recovered within 2 months of treatment with prednisolone in addition to discontinuation of nivolumab and ipilimumab. CONCLUSIONS We herein reported a case of ICI-related TIN and renal granulomatous vasculitis with infiltration of massive antigen-independent activated CD8+ T cells and CD163+ macrophages, and none or few CD4+ CD25+ Treg cells. These infiltrating cells might be a characteristic of the development of renal irAE.
Collapse
Affiliation(s)
- Kenta Tominaga
- Department of Analytic Human Pathology, Nippon Medical School, Tokyo, Japan
| | - Kazuhiro Takeuchi
- Department of Analytic Human Pathology, Nippon Medical School, Tokyo, Japan
| | - Shoichiro Takakuma
- Department of Analytic Human Pathology, Nippon Medical School, Tokyo, Japan
| | - Emi Sakamoto
- Department of Analytic Human Pathology, Nippon Medical School, Tokyo, Japan
| | - Saeko Hatanaka
- Department of Analytic Human Pathology, Nippon Medical School, Tokyo, Japan
| | - Yusuke Kajimoto
- Department of Analytic Human Pathology, Nippon Medical School, Tokyo, Japan
| | - Etsuko Toda
- Department of Analytic Human Pathology, Nippon Medical School, Tokyo, Japan
| | - Yasuhiro Terasaki
- Department of Analytic Human Pathology, Nippon Medical School, Tokyo, Japan
- Division of Pathology, Nippon Medical School Hospital, Tokyo, Japan
| | - Shinobu Kunugi
- Department of Analytic Human Pathology, Nippon Medical School, Tokyo, Japan
| | - Mika Terasaki
- Department of Analytic Human Pathology, Nippon Medical School, Tokyo, Japan
| | - Akira Shimizu
- Department of Analytic Human Pathology, Nippon Medical School, Tokyo, Japan.
| |
Collapse
|
63
|
Chang HY, Liu CY, Lo YL, Chiou SH, Lu KH, Lee MC, Wang YH. Cytotoxic T-lymphocyte antigen 4 polymorphisms and breast cancer susceptibility: Evidence from a meta-analysis. J Chin Med Assoc 2023; 86:207-219. [PMID: 36652567 DOI: 10.1097/jcma.0000000000000851] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Cytotoxic T-lymphocyte antigen 4 (CTLA-4) is an immune checkpoint and regulates the immune function of T cells. However, previous findings regarding the association of CTLA-4 polymorphisms and breast cancer remain inconclusive. Therefore, we performed a meta-analysis to investigate the potential effects of five polymorphisms (-1722 T/C, -1661 A/G -318 C/T, +49 A/G, and CT60 A/G) in the CTLA-4 gene on breast cancer susceptibility. METHODS Relevant literatures were systematically searched through electronic databases including PubMed, EMBASE, and Web of Science up to October 10, 2021. Available data were extracted and odds ratios (ORs) with 95% confidence intervals were used to estimate the pooling effect size. The Newcastle-Ottawa Scale was applied for assessing the quality of included studies. We conducted subgroup analyses based on ethnicity and control sources to explore levels of heterogeneity. Moreover, sensitivity analysis and publication bias were assessed. RESULTS Finally, a total of 12 eligible studies regarding CTLA-4 polymorphisms and breast cancer were included. For overall analyses, only the +49 A/G polymorphism was significantly associated with breast cancer under allelic (OR = 1.19), dominant (OR = 1.27), and recessive (OR = 1.27) models. Ethnicity-based subgroup analysis found that the +49 A/G polymorphism has a significant risk (OR = 2.03) of breast cancer under the recessive model in the non-Asian population. Studies with hospital-based controls showed that the +49 A/G polymorphism has significant breast cancer risks under allelic (OR = 1.44), dominant (OR = 1.86), and recessive (OR = 1.60) models. In addition, those with population-based controls found that -1722 T/C polymorphism has a significant breast cancer risk under allelic (OR = 1.19) and dominant (OR = 1.26) models. CONCLUSION This meta-analysis suggested that CTLA-4 + 49 A/G polymorphism may significantly associate with breast cancer susceptibility. Future studies containing various populations are helpful for evaluating the impacts of CTLA-4 polymorphisms on breast cancer susceptibility.
Collapse
Affiliation(s)
- Hao-Yun Chang
- School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan, ROC
- Division of General Medicine, Department of Medical Education, Far Eastern Memorial Hospital, New Taipei City, Taiwan, ROC
| | - Chao-Yu Liu
- Division of Traumatology, Department of Surgery, Far Eastern Memorial Hospital, New Taipei City, Taiwan, ROC
| | - Yen-Li Lo
- Institute of Biomedical Sciences, Academia Sinica, Nankang, Taipei, Taiwan, ROC
| | - Shih-Hwa Chiou
- Institute of Pharmacology, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- Stem Cell & Genomic Center, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
- Genomic Research Center, Academia Sinica, Taipei, Taiwan, ROC
| | - Kai-Hsi Lu
- Department of Medical Research and Education, Cheng-Hsin General Hospital, Taipei, Taiwan, ROC
| | - Ming-Cheng Lee
- Division of Infectious Diseases, Department of Internal Medicine, Cheng-Hsin General Hospital, Taipei, Taiwan, ROC
| | - Yuan-Hung Wang
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan, ROC
- Department of Medical Research, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan, ROC
| |
Collapse
|
64
|
Guo RQ, Peng JZ, Li YM, Li XG. Microwave ablation combined with anti-PD-1/CTLA-4 therapy induces an antitumor immune response to renal cell carcinoma in a murine model. Cell Cycle 2023; 22:242-254. [PMID: 35980140 PMCID: PMC9815248 DOI: 10.1080/15384101.2022.2112007] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 08/04/2022] [Accepted: 08/08/2022] [Indexed: 01/11/2023] Open
Abstract
The study was designed to evaluate the efficiency of microwave ablation (MWA) in combination with anti-programmed death receptor 1 (anti-PD-1)/cytotoxic T lymphocyte-associated antigen 4 (CTLA-4) in renal cell carcinoma (RCC) treatment. After tumors were established on C57/BL6 mice, MWA treatment and/or immune checkpoint inhibitor (ICI) treatment to the mice were performed. Tumor volume was recorded every 7 days. A rechallenge test was conducted on mice with tumors in the left kidney to explore the systemic establishment of antitumor immunity on day 7. In this study, during the 21-day observation period, tumors were continued to grow in all groups. However, compared with the tumor growth rate in MWA or control group, the rate in the ICI or MWA+ICI groups was decreased. Moreover, the population of CD8+T-cells was increased only in the MWA+ICI group, while that of regulatory T cells was decreased in the MWA, ICI, and MWA+ICI groups. Additionally, the MWA+ICI group had the highest interferon-γ level among all groups. Furthermore, histopathological examination revealed that CTLA-4 expression in distant tumors was reduced in the ICI and MWA + ICI groups. MWA treatment increased PD-L1/PD-1 expression; however, after the combination treatment with ICI, PD-L1/PD-1 expression was decreased. According to the rechallenge test, mice (16.7%) in the MWA group, ICI group (50%), and MWA+ICI group (66.7%) exhibited successful tumor rejection, whereas no mice in the control group exhibited the capability of tumor rejection. Overall, the systemic antitumor immunity induced by MWA was boosted when combined with anti-PD-1/CTLA-4 treatment in an RCC murine model.
Collapse
Affiliation(s)
- Run-Qi Guo
- Minimally Invasive Tumor Therapies Center, Beijing Hospital, National Center of Gerontology; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, P.R.China
| | - Jin-Zhao Peng
- Minimally Invasive Tumor Therapies Center, Beijing Hospital, National Center of Gerontology; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, P.R.China
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, P.R.China
| | - Yuan-Ming Li
- Minimally Invasive Tumor Therapies Center, Beijing Hospital, National Center of Gerontology; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, P.R.China
| | - Xiao-Guang Li
- Minimally Invasive Tumor Therapies Center, Beijing Hospital, National Center of Gerontology; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, P.R.China
| |
Collapse
|
65
|
Zhao D, Zhu D, Cai F, Jiang M, Liu X, Li T, Zheng Z. Current Situation and Prospect of Adoptive Cellular Immunotherapy for Malignancies. Technol Cancer Res Treat 2023; 22:15330338231204198. [PMID: 38037341 PMCID: PMC10693217 DOI: 10.1177/15330338231204198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 07/05/2023] [Accepted: 08/30/2023] [Indexed: 12/02/2023] Open
Abstract
Adoptive cell immunotherapy (ACT) is an innovative promising treatment for tumors. ACT is characterized by the infusion of active anti-tumor immune cells (specific and non-specific) into patients to kill tumor cells either directly or indirectly by stimulating the body's immune system. The patient's (autologous) or a donor's (allogeneic) immune cells are used to improve immune function. Chimeric antigen receptor (CAR) T cells (CAR-T) is a type of ACT that has gained attention. T cells from the peripheral blood are genetically engineered to express CARs that rapidly proliferate and specifically recognize target antigens to exert its anti-tumor effects. Clinical application of CAR-T therapy for hematological tumors has shown good results, but adverse reactions and recurrence limit its applicability. Tumor infiltrating lymphocyte (TIL) therapy is effective for solid tumors. TIL therapy exhibits T cell receptor (TCR) clonality, superior tumor homing ability, and low targeted toxicity, but its successful application is limited to a number of tumors. Regardless, TIL and CAR-T therapies are effective for treating cancer. Additionally, CAR-natural killer (NK), CAR-macrophages (M), and TCR-T therapies are currently being researched. In this review, we highlight the current developments and limitations of several types of ACT.
Collapse
Affiliation(s)
- Dong Zhao
- Department of Oncology, General Hospital of Northern Theater Command, Shenyang, P. R. China
| | - Dantong Zhu
- Department of Oncology, General Hospital of Northern Theater Command, Shenyang, P. R. China
| | - Fei Cai
- Department of Oncology, General Hospital of Northern Theater Command, Shenyang, P. R. China
| | - Mingzhe Jiang
- Department of Oncology, General Hospital of Northern Theater Command, Shenyang, P. R. China
| | - Xuefei Liu
- Department of Oncology, General Hospital of Northern Theater Command, Shenyang, P. R. China
| | - Tingting Li
- Department of Oncology, General Hospital of Northern Theater Command, Shenyang, P. R. China
| | - Zhendong Zheng
- Department of Oncology, General Hospital of Northern Theater Command, Shenyang, P. R. China
| |
Collapse
|
66
|
Pourhamzeh M, Asadian S, Mirzaei H, Minaei A, Shahriari E, Shpichka A, Es HA, Timashev P, Hassan M, Vosough M. Novel antigens for targeted radioimmunotherapy in hepatocellular carcinoma. Mol Cell Biochem 2023; 478:23-37. [PMID: 35708866 DOI: 10.1007/s11010-022-04483-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 05/18/2022] [Indexed: 01/17/2023]
Abstract
Liver cancer is the sixth common cancer and forth cause of cancer-related death worldwide. Based on usually advanced stages of hepatocellular carcinoma (HCC) at the time of diagnosis, therapeutic options are limited and, in many cases, not effective, and typically result in the tumor recurrence with a poor prognosis. Radioimmunotherapy (RIT) offers a selective internal radiation therapy approach using beta or alpha emitting radionuclides conjugated with tumor-specific monoclonal antibodies (mAbs), or specific selective peptides. When compared to chemotherapy or radiotherapy, radiolabeled mAbs against cancer-associated antigens could provide a high therapeutic and exclusive radiation dose for cancerous cells while decreasing the exposure-induced side effects to healthy tissues. The recent advances in cancer immunotherapy, such as blockade of immune-checkpoint inhibitors (ICIs), has changed the landscape of cancer therapy, and the efficacy of different classes of immunotherapy has been tested in many clinical trials. Taking into account the use of ICIs in the liver tumor microenvironment, combined therapies with different approaches may enhance the outcome in the future clinical studies. With the development of novel immunotherapy treatment options in the recent years, there has been a great deal of information about combining the diverse treatment modalities to boost the effectiveness of immunomodulatory drugs. In this opinion review, we will discuss the recent advancements in RIT. The current status of immunotherapy and internal radiotherapy will be updated, and we will propose novel approaches for the combination of both techniques. Potential target antigens for radioimmunotherapy in Hepatocellular carcinoma (HCC). HCC radioimmunotherapy target antigens are the most specific and commonly accessible antigens on the surface of HCC cells. CTLA-4 ligand and receptor, TAMs, PD-1/PD-L, TIM-3, specific IEXs/TEXs, ROBO1, and cluster of differentiation antigens CD105, CD147 could all be used in HCC radioimmunotherapy. Abbreviations: TAMs, tumor-associated macrophages; CTLA-4, cytotoxic T-lymphocyte associated antigen-4; PD-1, Programmed cell death protein 1; PD-L, programmed death-ligand1; TIM-3, T-cell immunoglobulin (Ig) and mucin-domain containing protein-3; IEXs, immune cell-derived exosomes; TEXs, tumor-derived exosomes.
Collapse
Affiliation(s)
- Mahsa Pourhamzeh
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.,Departments of Pathology and Medicine, UC San Diego, La Jolla, CA, USA
| | - Samieh Asadian
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Azita Minaei
- Cellular and Molecular Research Center, Research Institute for Prevention of Non-Communicable Diseases, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Elahe Shahriari
- Departments of Pathology and Medicine, UC San Diego, La Jolla, CA, USA
| | - Anastasia Shpichka
- World-Class Research Center "Digital Biodesign and Personalized Healthcare", Sechenov First Moscow State Medical University, Moscow, Russia.,Institute for Regenerative Medicine, Sechenov First Moscow State Medical University, Moscow, Russia.,Chemistry Department, Lomonosov Moscow State University, Moscow, Russia
| | | | - Peter Timashev
- World-Class Research Center "Digital Biodesign and Personalized Healthcare", Sechenov First Moscow State Medical University, Moscow, Russia. .,Institute for Regenerative Medicine, Sechenov First Moscow State Medical University, Moscow, Russia. .,Chemistry Department, Lomonosov Moscow State University, Moscow, Russia.
| | - Moustapha Hassan
- Experimental Cancer Medicine, Institution for Laboratory Medicine, Karolinska Institute, Stockholm, Sweden
| | - Massoud Vosough
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran. .,Experimental Cancer Medicine, Institution for Laboratory Medicine, Karolinska Institute, Stockholm, Sweden.
| |
Collapse
|
67
|
Ng WL, Ansell SM, Mondello P. Insights into the tumor microenvironment of B cell lymphoma. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2022; 41:362. [PMID: 36578079 PMCID: PMC9798587 DOI: 10.1186/s13046-022-02579-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 12/20/2022] [Indexed: 12/30/2022]
Abstract
The standard therapies in lymphoma have predominantly focused on targeting tumor cells with less of a focus on the tumor microenvironment (TME), which plays a critical role in favoring tumor growth and survival. Such an approach may result in increasingly refractory disease with progressively reduced responses to subsequent treatments. To overcome this hurdle, targeting the TME has emerged as a new therapeutic strategy. The TME consists of T and B lymphocytes, tumor-associated macrophages (TAMs), myeloid-derived suppressor cells (MDSCs), cancer-associated fibroblasts (CAFs), and other components. Understanding the TME can lead to a comprehensive approach to managing lymphoma, resulting in therapeutic strategies that target not only cancer cells, but also the supportive environment and thereby ultimately improve survival of lymphoma patients. Here, we review the normal function of different components of the TME, the impact of their aberrant behavior in B cell lymphoma and the current TME-direct therapeutic avenues.
Collapse
Affiliation(s)
- Wern Lynn Ng
- grid.66875.3a0000 0004 0459 167XDivision of Hematology, Mayo Clinic, 200 1st St SW, Rochester, MN 55905 USA
| | - Stephen M. Ansell
- grid.66875.3a0000 0004 0459 167XDivision of Hematology, Mayo Clinic, 200 1st St SW, Rochester, MN 55905 USA
| | - Patrizia Mondello
- grid.66875.3a0000 0004 0459 167XDivision of Hematology, Mayo Clinic, 200 1st St SW, Rochester, MN 55905 USA
| |
Collapse
|
68
|
Liu Y, Nguyen AW, Maynard JA. Engineering antibodies for conditional activity in the solid tumor microenvironment. Curr Opin Biotechnol 2022; 78:102809. [PMID: 36182870 DOI: 10.1016/j.copbio.2022.102809] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/25/2022] [Accepted: 08/30/2022] [Indexed: 12/14/2022]
Abstract
Antibody-based therapeutics enjoy considerable clinical and commercial successes as cancer treatments. However, they can also cause serious toxicities due to recognition of tumor-associated antigens in noncancerous tissues, which can prevent antibody use in certain patient populations and therapeutic modalities. Here, we discuss recent efforts to develop advanced antibody therapeutics with activities restricted to the solid tumor microenvironment. With the intent of decreasing toxicities and expanding therapeutic windows, protein engineering strategies can render ligand binding sensitive to multiple tumor-specific characteristics. These triggers can be intrinsic to solid tumor microenvironments, such as low pH, high extracellular ATP, and the presence of specific proteases. Emerging strategies rely instead on exogenous triggers such as light and ultrasound to provide spatial and temporal control over antibody activation. These multilayered approaches to targeting diseased tissues are expected to usher in a new generation of precision therapeutics.
Collapse
Affiliation(s)
- Yutong Liu
- Department of Chemical Engineering, University of Texas, Austin, TX 78712, USA
| | - Annalee W Nguyen
- Department of Chemical Engineering, University of Texas, Austin, TX 78712, USA.
| | - Jennifer A Maynard
- Department of Chemical Engineering, University of Texas, Austin, TX 78712, USA.
| |
Collapse
|
69
|
Zhu S, Wang Y, Tang J, Cao M. Radiotherapy induced immunogenic cell death by remodeling tumor immune microenvironment. Front Immunol 2022; 13:1074477. [PMID: 36532071 PMCID: PMC9753984 DOI: 10.3389/fimmu.2022.1074477] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 11/15/2022] [Indexed: 12/04/2022] Open
Abstract
Emerging evidence indicates that the induction of radiotherapy(RT) on the immunogenic cell death (ICD) is not only dependent on its direct cytotoxic effect, changes in the tumor immune microenvironment also play an important role in it. Tumor immune microenvironment (TIME) refers to the immune microenvironment that tumor cells exist, including tumor cells, inflammatory cells, immune cells, various signaling molecules and extracellular matrix. TIME has a barrier effect on the anti-tumor function of immune cells, which can inhibit all stages of anti-tumor immune response. The remodeling of TIME caused by RT may affect the degree of immunogenicity, and make it change from immunosuppressive phenotype to immunostimulatory phenotype. It is of great significance to reveal the causes of immune escape of tumor cells, especially for the treatment of drug-resistant tumor. In this review, we focus on the effect of RT on the TIME, the mechanism of RT in reversing the TIME to suppress intrinsic immunity, and the sensitization effect of the remodeling of TIME caused by RT on the effectiveness of immunotherapy.
Collapse
|
70
|
Therapeutic Antibodies in Cancer Treatment in the UK. Int J Mol Sci 2022; 23:ijms232314589. [PMID: 36498915 PMCID: PMC9739895 DOI: 10.3390/ijms232314589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/20/2022] [Accepted: 11/21/2022] [Indexed: 11/25/2022] Open
Abstract
The growing understanding of the molecular mechanisms of carcinogenesis accelerated the development of monoclonal therapeutic antibodies to specifically target multiple cancer pathways. Recombinant protein therapeutics now constitute a large proportion of yearly approved medicines. Oncology, autoimmune diseases and to a smaller degree the prophylaxis of organ transplant rejection are their main application areas. As of the date of this review, 37 monoclonal antibody products are approved for use in cancer treatments in the United Kingdom. Currently, the antibody therapeutics market is dominated by monoclonal immunoglobulins (IgGs). New types of recombinant antibody therapeutics developed more recently include bispecific recombinant antibodies and other recombinantly produced functional proteins. This review focuses on the approved therapeutic antibodies used in cancer treatment in the UK today and describes their antigen targets and molecular mechanisms involved. We provide convenient links to the relevant databases and other relevant resources for all antigens and antibodies mentioned. This review provides a comprehensive summary of the different monoclonal antibodies that are currently in clinical use primarily in malignancy, including their function, which is of importance to those in the medical field and allied specialties.
Collapse
|
71
|
Qin R, Mahal LK, Bojar D. Deep learning explains the biology of branched glycans from single-cell sequencing data. iScience 2022; 25:105163. [PMID: 36217547 PMCID: PMC9547197 DOI: 10.1016/j.isci.2022.105163] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 09/06/2022] [Accepted: 09/16/2022] [Indexed: 11/03/2022] Open
Abstract
Glycosylation is ubiquitous and often dysregulated in disease. However, the regulation and functional significance of various types of glycosylation at cellular levels is hard to unravel experimentally. Multi-omics, single-cell measurements such as SUGAR-seq, which quantifies transcriptomes and cell surface glycans, facilitate addressing this issue. Using SUGAR-seq data, we pioneered a deep learning model to predict the glycan phenotypes of cells (mouse T lymphocytes) from transcripts, with the example of predicting β1,6GlcNAc-branching across T cell subtypes (test set F1 score: 0.9351). Model interpretation via SHAP (SHapley Additive exPlanations) identified highly predictive genes, in part known to impact (i) branched glycan levels and (ii) the biology of branched glycans. These genes included physiologically relevant low-abundance genes that were not captured by conventional differential expression analysis. Our work shows that interpretable deep learning models are promising for uncovering novel functions and regulatory mechanisms of glycans from integrated transcriptomic and glycomic datasets.
Collapse
Affiliation(s)
- Rui Qin
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada
| | - Lara K. Mahal
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada
| | - Daniel Bojar
- Department of Chemistry and Molecular Biology, University of Gothenburg, 405 30 Gothenburg, Sweden
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, 405 30 Gothenburg, Sweden
| |
Collapse
|
72
|
Giampietri C, Scatozza F, Crecca E, Vigiano Benedetti V, Natali PG, Facchiano A. Analysis of gene expression levels and their impact on survival in 31 cancer-types patients identifies novel prognostic markers and suggests unexplored immunotherapy treatment options in a wide range of malignancies. J Transl Med 2022; 20:467. [PMID: 36224560 PMCID: PMC9559014 DOI: 10.1186/s12967-022-03670-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 09/25/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Immunotherapy has dramatically improved cancer treatment by inhibiting or activating specific cell receptors, thus unleashing the host anti-tumor response. However, the engagement of the three main immune checkpoints so far identified, CTLA4, PD-1 and PD-L1, is effective in a fraction of patients, therefore novel targets must be identified and tested. METHODS We focused our attention on the following nine highly relevant immune checkpoint (ICR) receptors: CTLA4, PD1, PD-L1, LAG3, TIM3, OX40, GITR, 4-1BB and TIGIT. All of them are targets of existing drugs currently under clinical scrutiny in several malignancies. Their expression levels were evaluated in patient tissues of 31 different cancer types vs. proper controls, in a total of 15,038 individuals. This analysis was carried out by interrogating public databases available on GEPIA2 portal and UALCAN portal. By the Principal Component Analysis (PCA) their ability to effectively discriminate patients form controls was then investigated. Expression of the nine ICRs was also related to overall survival in 31 cancer types and expressed as Hazard Ratio, on the GEPIA2 portal and validated, for melanoma patients, in patients-datasets available on PROGgene V2 portal. RESULTS Significant differential expression was observed for each ICR molecule in many cancer types. A 7-molecules profile was found to specifically discriminate melanoma patients from controls, while two different 6-molecules profiles discriminate pancreatic cancer patients and Testicular Germ Cell Tumors from matched controls. Highly significant survival improvement was found to be related to the expression levels of all nine ICRs in a wide spectrum of malignancies. For melanoma analysis, the relation with survival observed in TCGA datasets was validated in independent GSE melanoma datasets. CONCLUSION Analysis the nine ICR molecules demonstrates that their expression patterns may be considered as markers of disease and strong survival predictors in a variety of malignancies frequently associated to poor prognosis. Thus, the present findings are strongly advocating that exploratory clinical trials are worth to be performed, using available drugs, targeting these molecules.
Collapse
Affiliation(s)
- Claudia Giampietri
- Department of Anatomy, Histology, Forensic Medicine and Orthopedics, Unit of Human Anatomy, Sapienza University of Rome, Rome, Italy
| | - Francesca Scatozza
- Laboratory of Molecular Oncology, Istituto Dermopatico Dell'Immacolata, IDI-IRCCS, Via Monti di Creta, 00167, Rome, Italy
| | - Elena Crecca
- Laboratory of Molecular Oncology, Istituto Dermopatico Dell'Immacolata, IDI-IRCCS, Via Monti di Creta, 00167, Rome, Italy
| | - Virginia Vigiano Benedetti
- Laboratory of Molecular Oncology, Istituto Dermopatico Dell'Immacolata, IDI-IRCCS, Via Monti di Creta, 00167, Rome, Italy
| | | | - Antonio Facchiano
- Laboratory of Molecular Oncology, Istituto Dermopatico Dell'Immacolata, IDI-IRCCS, Via Monti di Creta, 00167, Rome, Italy.
| |
Collapse
|
73
|
Russi S, Marano L, Laurino S, Calice G, Scala D, Marino G, Sgambato A, Mazzone P, Carbone L, Napolitano G, Roviello F, Falco G, Zoppoli P. Gene Regulatory Network Characterization of Gastric Cancer's Histological Subtypes: Distinctive Biological and Clinically Relevant Master Regulators. Cancers (Basel) 2022; 14:4961. [PMID: 36230884 PMCID: PMC9563962 DOI: 10.3390/cancers14194961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 09/27/2022] [Accepted: 10/04/2022] [Indexed: 11/17/2022] Open
Abstract
Gastric cancer (GC) molecular heterogeneity represents a major determinant for clinical outcomes, and although new molecular classifications have been introduced, they are not easy to translate from bench to bedside. We explored the data from GC public databases by performing differential gene expression analysis (DEGs) and gene network reconstruction to identify master regulators (MRs), as well as a gene set analysis (GSA) to reveal their biological features. Moreover, we evaluated the association of MRs with clinicopathological parameters. According to the GSA, the Diffuse group was characterized by an epithelial-mesenchymal transition (EMT) and inflammatory response, while the Intestinal group was associated with a cell cycle and drug resistance pathways. In particular, the regulons of Diffuse MRs, such as Vgll3 and Ciita, overlapped with the EMT and interferon-gamma response, while the regulons Top2a and Foxm1 were shared with the cell cycle pathways in the Intestinal group. We also found a strict association between MR activity and several clinicopathological features, such as survival. Our approach led to the identification of genes and pathways differentially regulated in the Intestinal and Diffuse GC histotypes, highlighting biologically interesting MRs and subnetworks associated with clinical features and prognosis, suggesting putative actionable candidates.
Collapse
Affiliation(s)
- Sabino Russi
- IRCCS-CROB Centro di Riferimento Oncologico della Basilica, 85028 Rionero in Vulture, Italy
| | - Luigi Marano
- Unit of General Surgery and Surgical Oncology, Department of Medicine, Surgery and Neurosciences, University of Siena, 53100 Siena, Italy
| | - Simona Laurino
- IRCCS-CROB Centro di Riferimento Oncologico della Basilica, 85028 Rionero in Vulture, Italy
| | - Giovanni Calice
- IRCCS-CROB Centro di Riferimento Oncologico della Basilica, 85028 Rionero in Vulture, Italy
| | - Dario Scala
- IRCCS-CROB Centro di Riferimento Oncologico della Basilica, 85028 Rionero in Vulture, Italy
| | - Graziella Marino
- IRCCS-CROB Centro di Riferimento Oncologico della Basilica, 85028 Rionero in Vulture, Italy
| | - Alessandro Sgambato
- IRCCS-CROB Centro di Riferimento Oncologico della Basilica, 85028 Rionero in Vulture, Italy
| | - Pellegrino Mazzone
- Biogem, Istituto di Biologia e Genetica Molecolare, Via Camporeale, 83031 Ariano Irpino, Italy
| | - Ludovico Carbone
- Unit of General Surgery and Surgical Oncology, Department of Medicine, Surgery and Neurosciences, University of Siena, 53100 Siena, Italy
| | - Giuliana Napolitano
- Department of Biology, University of Naples ‘Federico II’, 80126 Naples, Italy
| | - Franco Roviello
- Unit of General Surgery and Surgical Oncology, Department of Medicine, Surgery and Neurosciences, University of Siena, 53100 Siena, Italy
| | - Geppino Falco
- Biogem, Istituto di Biologia e Genetica Molecolare, Via Camporeale, 83031 Ariano Irpino, Italy
- Department of Biology, University of Naples ‘Federico II’, 80126 Naples, Italy
| | - Pietro Zoppoli
- Department of Molecular Medicine and Health Biotechnolgy, Università di Napoli Federico II, 80131 Naples, Italy
| |
Collapse
|
74
|
Kumar V, Randhawa P, Bilodeau R, Mercola D, McClelland M, Agrawal A, Nguyen J, Castro P, Ittmann MM, Rahmatpanah F. Spatial Profiling of the Prostate Cancer Tumor Microenvironment Reveals Multiple Differences in Gene Expression and Correlation with Recurrence Risk. Cancers (Basel) 2022; 14:cancers14194923. [PMID: 36230846 PMCID: PMC9562240 DOI: 10.3390/cancers14194923] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/03/2022] [Accepted: 10/03/2022] [Indexed: 11/16/2022] Open
Abstract
The tumor microenvironment plays a crucial role in both the development and progression of prostate cancer. Furthermore, identifying protein and gene expression differences between different regions is valuable for treatment development. We applied Digital Spatial Profiling multiplex analysis to formalin-fixed paraffin embedded prostatectomy tissue blocks to investigate protein and transcriptome differences between tumor, tumor-adjacent stroma (TAS), CD45+ tumor, and CD45+ TAS tissue. Differential expression of an immunology/oncology protein panel (n = 58) was measured. OX40L and CTLA4 were expressed at higher levels while 22 other proteins, including CD11c, were expressed at lower levels (FDR < 0.2 and p-value < 0.05) in TAS as compared to tumor epithelia. A tissue microarray analysis of 97 patients with 1547 cores found positive correlations between high expression of CD11c and increased time to recurrence in tumor and TAS, and inverse relationships for CTLA4 and OX40L, where higher expression in tumor correlated with lower time to recurrence, but higher time to recurrence in TAS. Spatial transcriptomic analysis using a Cancer Transcriptome Atlas panel (n = 1825 genes) identified 162 genes downregulated and 69 upregulated in TAS versus tumor, 26 downregulated and 6 upregulated in CD45+ TAS versus CD45+ tumor. We utilized CIBERSORTx to estimate the relative immune cell fractions using CD45+ gene expression and found higher average fractions for memory B, naïve B, and T cells in TAS. In summary, the combination of protein expression differences, immune cell fractions, and correlations of protein expression with time to recurrence suggest that closely examining the tumor microenvironment provides valuable data that can improve prognostication and treatment techniques.
Collapse
Affiliation(s)
- Vinay Kumar
- Department of Pathology and Laboratory Medicine, University of California, Irvine, CA 92697, USA
| | - Pavneet Randhawa
- Department of Pathology and Laboratory Medicine, University of California, Irvine, CA 92697, USA
| | - Robert Bilodeau
- Department of Pathology and Laboratory Medicine, University of California, Irvine, CA 92697, USA
| | - Dan Mercola
- Department of Pathology and Laboratory Medicine, University of California, Irvine, CA 92697, USA
| | - Michael McClelland
- Department of Molecular and Microbiology, University of California, Irvine, CA 92697, USA
| | - Anshu Agrawal
- Department of Medicine, University of California, Irvine, CA 92697, USA
| | - James Nguyen
- Department of Pathology and Laboratory Medicine, University of California, Irvine, CA 92697, USA
| | - Patricia Castro
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Michael M. Ittmann
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Farah Rahmatpanah
- Department of Pathology and Laboratory Medicine, University of California, Irvine, CA 92697, USA
- Correspondence:
| |
Collapse
|
75
|
Pham PH, Tockovska T, Leacy A, Iverson M, Ricker N, Susta L. Transcriptome Analysis of Duck and Chicken Brains Infected with Aquatic Bird Bornavirus-1 (ABBV-1). Viruses 2022; 14:2211. [PMID: 36298766 PMCID: PMC9611670 DOI: 10.3390/v14102211] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/02/2022] [Accepted: 10/06/2022] [Indexed: 12/21/2022] Open
Abstract
Aquatic bird bornavirus 1 (ABBV-1) is a neurotropic virus that infects waterfowls, resulting in persistent infection. Experimental infection showed that both Muscovy ducks and chickens support persistent ABBV-1 infection in the central nervous system (CNS), up to 12 weeks post-infection (wpi), without the development of clinical disease. The aim of the present study was to describe the transcriptomic profiles in the brains of experimentally infected Muscovy ducks and chickens infected with ABBV-1 at 4 and 12 wpi. Transcribed RNA was sequenced by next-generation sequencing and analyzed by principal component analysis (PCA) and differential gene expression. The functional annotation of differentially expressed genes was evaluated by gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis. The PCA showed that the infected ducks sampled at both 4 and 12 wpi clustered separately from the controls, while only the samples from the chickens at 12 wpi, but not at 4 wpi, formed a separate cluster. In the ducks, more genes were differentially expressed at 4 wpi than 12 wpi, and the majority of the highly differentially expressed genes (DEG) were upregulated. On the other hand, the infected chickens had fewer DEGs at 4 wpi than at 12 wpi, and the majority of those with high numbers of DEGs were downregulated at 4 wpi and upregulated at 12 wpi. The functional annotation showed that the most enriched GO terms were immune-associated in both species; however, the terms associated with the innate immune response were predominantly enriched in the ducks, whereas the chickens had enrichment of both the innate and adaptive immune response. Immune-associated pathways were also enriched according to the KEGG pathway analysis in both species. Overall, the transcriptomic analysis of the duck and chicken brains showed that the main biological responses to ABBV-1 infection were immune-associated and corresponded with the levels of inflammation in the CNS.
Collapse
Affiliation(s)
| | | | | | | | | | - Leonardo Susta
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada
| |
Collapse
|
76
|
Identification of Six N7-Methylguanosine-Related miRNA Signatures to Predict the Overall Survival and Immune Landscape of Triple-Negative Breast Cancer through In Silico Analysis. JOURNAL OF ONCOLOGY 2022; 2022:2735251. [PMID: 36199792 PMCID: PMC9529398 DOI: 10.1155/2022/2735251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 09/05/2022] [Indexed: 11/17/2022]
Abstract
Triple-negative breast cancer (TNBC) is a widely prevalent breast cancer, with a mortality rate of up to 25%. TNBC has a lower survival rate, and the significance of N7-methylguanosine (m7G) modification in TNBC remains unclear. Thus, this study is aimed at investigating m7G-related miRNAs in TNBC patients through in silico analysis. In our research, RNA sequencing and clinical data were obtained from The Cancer Genome Atlas (TCGA) database. The miRNAs targeting typical m7G modification regulators Methyltransferase-like 1 (METTL1) and WD repeat domain 4 (WDR4) were predicted on the TargetScan website. A miRNA risk model was built, and its prognostic value was evaluated by R soft packages. Single-sample gene set enrichment analysis was used to assess immune infiltration, and further expression of immune checkpoints was investigated. As a result, miR-421, miR-5001-3p, miR-4326, miR-1915-3p, miR-3177-5p, and miR-4505 were identified to create the risk model. A nomogram consisting of the stage N and risk model predicted overall survival effectively among TNBC patients. Treg and TIL were shown to be strongly linked to the risk model, and the high-risk group had higher levels of four immune checkpoints expression (CD28, CTLA-4, ICOS, and TNFRSF9). A risk model consisting of m7G-related miRNAs was constructed. The findings of the current study could be used as a prognostic biomarker and can provide a novel immunotherapy insight for TNBC patients.
Collapse
|
77
|
Liu R, Du S, Zhao L, Jain S, Sahay K, Rizvanov A, Lezhnyova V, Khaibullin T, Martynova E, Khaiboullina S, Baranwal M. Autoreactive lymphocytes in multiple sclerosis: Pathogenesis and treatment target. Front Immunol 2022; 13:996469. [PMID: 36211343 PMCID: PMC9539795 DOI: 10.3389/fimmu.2022.996469] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 09/08/2022] [Indexed: 11/13/2022] Open
Abstract
Multiple sclerosis (MS) is a chronic inflammatory disease of the central nervous system (CNS) characterized by destruction of the myelin sheath structure. The loss of myelin leads to damage of a neuron’s axon and cell body, which is identified as brain lesions on magnetic resonance image (MRI). The pathogenesis of MS remains largely unknown. However, immune mechanisms, especially those linked to the aberrant lymphocyte activity, are mainly responsible for neuronal damage. Th1 and Th17 populations of lymphocytes were primarily associated with MS pathogenesis. These lymphocytes are essential for differentiation of encephalitogenic CD8+ T cell and Th17 lymphocyte crossing the blood brain barrier and targeting myelin sheath in the CNS. B-lymphocytes could also contribute to MS pathogenesis by producing anti-myelin basic protein antibodies. In later studies, aberrant function of Treg and Th9 cells was identified as contributing to MS. This review summarizes the aberrant function and count of lymphocyte, and the contributions of these cell to the mechanisms of MS. Additionally, we have outlined the novel MS therapeutics aimed to amend the aberrant function or counts of these lymphocytes.
Collapse
Affiliation(s)
- Rongzeng Liu
- Department of Immunology, School of Basic Medical Sciences, Henan University of Science and Technology, Luoyang, China
| | - Shushu Du
- Department of Immunology, School of Basic Medical Sciences, Henan University of Science and Technology, Luoyang, China
| | - Lili Zhao
- Department of Immunology, School of Basic Medical Sciences, Henan University of Science and Technology, Luoyang, China
| | - Sahil Jain
- Department of Biochemistry and Molecular Biology, Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv, Israel
| | - Kritika Sahay
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala, India
| | - Albert Rizvanov
- Gene and cell Department, Kazan Federal University, Kazan, Russia
| | - Vera Lezhnyova
- Gene and cell Department, Kazan Federal University, Kazan, Russia
| | - Timur Khaibullin
- Neurological Department, Republican Clinical Neurological Center, Kazan, Russia
| | | | - Svetlana Khaiboullina
- Gene and cell Department, Kazan Federal University, Kazan, Russia
- *Correspondence: Svetlana Khaiboullina, ; Manoj Baranwal, ;
| | - Manoj Baranwal
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala, India
- *Correspondence: Svetlana Khaiboullina, ; Manoj Baranwal, ;
| |
Collapse
|
78
|
Shahverdi M, Masoumi J, Ghorbaninezhad F, Shajari N, Hajizadeh F, Hassanian H, Alizadeh N, Jafarlou M, Baradaran B. The modulatory role of dendritic cell-T cell cross-talk in breast cancer: Challenges and prospects. Adv Med Sci 2022; 67:353-363. [PMID: 36116207 DOI: 10.1016/j.advms.2022.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 07/05/2022] [Accepted: 09/04/2022] [Indexed: 11/16/2022]
Abstract
Antigen recognition and presentation are highlighted as the first steps in developing specialized antigen responses. Dendritic cells (DCs) are outstanding professional antigen-presenting cells (APCs) responsible for priming cellular immunity in pathological states, including cancer. However, the diminished or repressed function of DCs is thought to be a substantial mechanism through which tumors escape from the immune system. In this regard, DCs obtained from breast cancer (BC) patients represent a notably weakened potency to encourage specific T-cell responses. Additionally, impaired DC-T-cell cross-talk in BC facilitates the immune evade of cancer cells and is connected with tumor advancement, immune tolerance, and adverse prognosis for patients. In this review we aim to highlight the available knowledge on DC-T-cell interactions in BC aggressiveness and show its therapeutic potential in BC treatment.
Collapse
Affiliation(s)
- Mahshid Shahverdi
- Department of Medical Biotechnology, Arak University of Medical Sciences, Arak, Iran
| | - Javad Masoumi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Farid Ghorbaninezhad
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Neda Shajari
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Farnaz Hajizadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamidreza Hassanian
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nazila Alizadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahdi Jafarlou
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
79
|
Mohd Idris RA, Mussa A, Ahmad S, Al-Hatamleh MAI, Hassan R, Tengku Din TADAA, Wan Abdul Rahman WF, Lazim NM, Boer JC, Plebanski M, Mohamud R. The Effects of Tamoxifen on Tolerogenic Cells in Cancer. BIOLOGY 2022; 11:1225. [PMID: 36009853 PMCID: PMC9405160 DOI: 10.3390/biology11081225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 08/01/2022] [Accepted: 08/01/2022] [Indexed: 11/30/2022]
Abstract
Tamoxifen (TAM) is the most prescribed selective estrogen receptor modulator (SERM) to treat hormone-receptor-positive breast cancer patients and has been used for more than 20 years. Its role as a hormone therapy is well established; however, the potential role in modulating tolerogenic cells needs to be better clarified. Infiltrating tumor-microenvironment-regulatory T cells (TME-Tregs) are important as they serve a suppressive function through the transcription factor Forkhead box P3 (Foxp3). Abundant studies have suggested that Foxp3 regulates the expression of several genes (CTLA-4, PD-1, LAG-3, TIM-3, TIGIT, TNFR2) involved in carcinogenesis to utilize its tumor suppressor function through knockout models. TAM is indirectly concomitant via the Cre/loxP system by allowing nuclear translocation of the fusion protein, excision of the floxed STOP cassette and heritable expression of encoding fluorescent protein in a cohort of cells that express Foxp3. Moreover, TAM administration in breast cancer treatment has shown its effects directly through MDSCs by the enrichment of its leukocyte populations, such as NK and NKT cells, while it impairs the differentiation and activation of DCs. However, the fundamental mechanisms of the reduction of this pool by TAM are unknown. Here, we review the vital effects of TAM on Tregs for a precise mechanistic understanding of cancer immunotherapies.
Collapse
Affiliation(s)
- Ros Akmal Mohd Idris
- Immunology Department, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
| | - Ali Mussa
- Haematology Department, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
- Department of Biology, Faculty of Education, Omdurman Islamic University, Omdurman P.O. Box 382, Sudan
| | - Suhana Ahmad
- Immunology Department, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
| | - Mohammad A. I. Al-Hatamleh
- Immunology Department, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
| | - Rosline Hassan
- Haematology Department, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
| | | | - Wan Faiziah Wan Abdul Rahman
- Pathology Department, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
| | - Norhafiza Mat Lazim
- Otorhinolaryngology Department-Head & Neck Surgery, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
| | - Jennifer C. Boer
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3083, Australia
| | - Magdalena Plebanski
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3083, Australia
| | - Rohimah Mohamud
- Immunology Department, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
| |
Collapse
|
80
|
Metformin modulate immune fitness in hepatocellular carcinoma: Molecular and cellular approach. Int Immunopharmacol 2022; 109:108889. [DOI: 10.1016/j.intimp.2022.108889] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 05/18/2022] [Accepted: 05/19/2022] [Indexed: 12/16/2022]
|
81
|
Maharaj K, Uriepero A, Sahakian E, Pinilla-Ibarz J. Regulatory T cells (Tregs) in lymphoid malignancies and the impact of novel therapies. Front Immunol 2022; 13:943354. [PMID: 35979372 PMCID: PMC9376239 DOI: 10.3389/fimmu.2022.943354] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 07/11/2022] [Indexed: 11/30/2022] Open
Abstract
Regulatory T cells (Tregs) are responsible for maintaining immune homeostasis by controlling immune responses. They can be characterized by concomitant expression of FoxP3, CD25 and inhibitory receptors such as PD-1 and CTLA-4. Tregs are key players in preventing autoimmunity and are dysregulated in cancer, where they facilitate tumor immune escape. B-cell lymphoid malignancies are a group of diseases with heterogenous molecular characteristics and clinical course. Treg levels are increased in patients with B-cell lymphoid malignancies and correlate with clinical outcomes. In this review, we discuss studies investigating Treg immunobiology in B-cell lymphoid malignancies, focusing on clinical correlations, mechanisms of accumulation, phenotype, and function. Overarching trends suggest that Tregs can be induced directly by tumor cells and recruited to the tumor microenvironment where they suppress antitumor immunity to facilitate disease progression. Further, we highlight studies showing that Tregs can be modulated by novel therapeutic agents such as immune checkpoint blockade and targeted therapies. Treg disruption by novel therapeutics may beneficially restore immune competence but has been associated with occurrence of adverse events. Strategies to achieve balance between these two outcomes will be paramount in the future to improve therapeutic efficacy and safety.
Collapse
Affiliation(s)
- Kamira Maharaj
- Department of Immunology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, United States
| | - Angimar Uriepero
- Department of Immunology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, United States
| | - Eva Sahakian
- Department of Immunology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, United States
- Department of Malignant Hematology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, United States
| | - Javier Pinilla-Ibarz
- Department of Immunology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, United States
- Department of Malignant Hematology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, United States
- *Correspondence: Javier Pinilla-Ibarz,
| |
Collapse
|
82
|
Combining radiation with immune checkpoint inhibitors therapy for HCC: From the alteration of the immune microenvironment by radiotherapy. RADIATION MEDICINE AND PROTECTION 2022. [DOI: 10.1016/j.radmp.2022.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
83
|
Lv B, Wang Y, Ma D, Cheng W, Liu J, Yong T, Chen H, Wang C. Immunotherapy: Reshape the Tumor Immune Microenvironment. Front Immunol 2022; 13:844142. [PMID: 35874717 PMCID: PMC9299092 DOI: 10.3389/fimmu.2022.844142] [Citation(s) in RCA: 99] [Impact Index Per Article: 49.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 06/13/2022] [Indexed: 12/12/2022] Open
Abstract
Tumor immune microenvironment (TIME) include tumor cells, immune cells, cytokines, etc. The interactions between these components, which are divided into anti-tumor and pro-tumor, determine the trend of anti-tumor immunity. Although the immune system can eliminate tumor through the cancer-immune cycle, tumors appear to eventually evade from immune surveillance by shaping an immunosuppressive microenvironment. Immunotherapy reshapes the TIME and restores the tumor killing ability of anti-tumor immune cells. Herein, we review the function of immune cells within the TIME and discuss the contribution of current mainstream immunotherapeutic approaches to remolding the TIME. Changes in the immune microenvironment in different forms under the intervention of immunotherapy can shed light on better combination treatment strategies.
Collapse
Affiliation(s)
- Bingzhe Lv
- Department of General Surgery, Lanzhou University Second Hospital, Lanzhou, China.,The Second Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Yunpeng Wang
- Department of General Surgery, Lanzhou University Second Hospital, Lanzhou, China.,The Second Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Dongjiang Ma
- Department of General Surgery, Lanzhou University Second Hospital, Lanzhou, China.,The Second Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Wei Cheng
- Department of General Surgery, Lanzhou University Second Hospital, Lanzhou, China.,The Second Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Jie Liu
- Department of General Surgery, Lanzhou University Second Hospital, Lanzhou, China.,The Second Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Tao Yong
- Department of General Surgery, Lanzhou University Second Hospital, Lanzhou, China.,The Second Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Hao Chen
- Key Laboratory of Digestive System Tumors of Gansu Province, Lanzhou University Second Hospital, Lanzhou, China.,Department of Surgical Oncology, Lanzhou University Second Hospital, Lanzhou, China
| | - Chen Wang
- Department of General Surgery, Lanzhou University Second Hospital, Lanzhou, China.,Key Laboratory of Digestive System Tumors of Gansu Province, Lanzhou University Second Hospital, Lanzhou, China
| |
Collapse
|
84
|
Sorbara M, Cordelier P, Bery N. Antibody-Based Approaches to Target Pancreatic Tumours. Antibodies (Basel) 2022; 11:antib11030047. [PMID: 35892707 PMCID: PMC9326758 DOI: 10.3390/antib11030047] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/04/2022] [Accepted: 07/08/2022] [Indexed: 02/01/2023] Open
Abstract
Pancreatic cancer is an aggressive cancer with a dismal prognosis. This is due to the difficulty to detect the disease at an early and curable stage. In addition, only limited treatment options are available, and they are confronted by mechanisms of resistance. Monoclonal antibody (mAb) molecules are highly specific biologics that can be directly used as a blocking agent or modified to deliver a drug payload depending on the desired outcome. They are widely used to target extracellular proteins, but they can also be employed to inhibit intracellular proteins, such as oncoproteins. While mAbs are a class of therapeutics that have been successfully employed to treat many cancers, they have shown only limited efficacy in pancreatic cancer as a monotherapy so far. In this review, we will discuss the challenges, opportunities and hopes to use mAbs for pancreatic cancer treatment, diagnostics and imagery.
Collapse
|
85
|
Tian X, Ning Q, Yu J, Tang S. T-cell immunoglobulin and ITIM domain in cancer immunotherapy: A focus on tumor-infiltrating regulatory T cells. Mol Immunol 2022; 147:62-70. [DOI: 10.1016/j.molimm.2022.04.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 04/06/2022] [Accepted: 04/24/2022] [Indexed: 12/17/2022]
|
86
|
Wan H, Zhou H, Feng Y, Chen Y, Zhu L, Mi Y. Comprehensive Analysis of 29,464 Cancer Cases and 35,858 Controls to Investigate the Effect of the Cytotoxic T-Lymphocyte Antigen 4 Gene rs231775 A/G Polymorphism on Cancer Risk. Front Oncol 2022; 12:878507. [PMID: 35600409 PMCID: PMC9114750 DOI: 10.3389/fonc.2022.878507] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 03/28/2022] [Indexed: 12/20/2022] Open
Abstract
In our previous studies, we found that the rs231775 polymorphism of cytotoxic T-lymphocyte antigen 4 (CTLA-4) is associated with risks of different cancer types; however, the association remains controversial and ambiguous, so we conducted an in-depth meta-analysis to verify the association. A complete search of the PubMed, Google Scholar, Embase, Chinese databases, and Web of Science was conducted without regard to language limitations, covering all publications since November 20, 2021. The search criteria for cancer susceptibility associated with the polymorphism in the CTLA-4 gene rs231775 resulted in 87 case-control studies with 29,464 cases and 35,858 controls. The association strength was analyzed using odds ratios and 95% confidence intervals. Overall, we found that the CTLA-4 rs231775 polymorphism may reduce cancer risk. A stratified cancer type analysis showed that CTLA-4 rs231775 polymorphism was a risk factor for colorectal cancer and thyroid cancer; on the other hand, it was a protective factor for breast cancer, liver cancer, cervical cancer, bone cancer, head and neck, and pancreatic cancer. We also classified cancer into five systems and observed an increased association with digestive tract cancer, decreased associations with orthopedic tumors, tumors of the urinary system, and gynecological tumors. In the subgroup based on race, decreased relationships were observed in both Asians and Caucasians. The same decreased association was also shown in the analysis of the source of control analysis. Our present study indicates that the CTLA-4 rs231775 polymorphism contributes to cancer development and aggression.
Collapse
Affiliation(s)
- Hongyuan Wan
- Wuxi Medical College, Jiangnan University, Wuxi, China
- Department of Urology, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Hangsheng Zhou
- Wuxi Medical College, Jiangnan University, Wuxi, China
- Department of Urology, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Yanyan Feng
- Wuxi Medical College, Jiangnan University, Wuxi, China
- Department of Urology, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Yongquan Chen
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Lijie Zhu
- Department of Urology, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Yuanyuan Mi
- Department of Urology, Affiliated Hospital of Jiangnan University, Wuxi, China
| |
Collapse
|
87
|
Emery A, Moore S, Turner JE, Campbell JP. Reframing How Physical Activity Reduces The Incidence of Clinically-Diagnosed Cancers: Appraising Exercise-Induced Immuno-Modulation As An Integral Mechanism. Front Oncol 2022; 12:788113. [PMID: 35359426 PMCID: PMC8964011 DOI: 10.3389/fonc.2022.788113] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 01/14/2022] [Indexed: 12/13/2022] Open
Abstract
Undertaking a high volume of physical activity is associated with reduced risk of a broad range of clinically diagnosed cancers. These findings, which imply that physical activity induces physiological changes that avert or suppress neoplastic activity, are supported by preclinical intervention studies in rodents demonstrating that structured regular exercise commonly represses tumour growth. In Part 1 of this review, we summarise epidemiology and preclinical evidence linking physical activity or regular structured exercise with reduced cancer risk or tumour growth. Despite abundant evidence that physical activity commonly exerts anti-cancer effects, the mechanism(s)-of-action responsible for these beneficial outcomes is undefined and remains subject to ongoing speculation. In Part 2, we outline why altered immune regulation from physical activity - specifically to T cells - is likely an integral mechanism. We do this by first explaining how physical activity appears to modulate the cancer immunoediting process. In doing so, we highlight that augmented elimination of immunogenic cancer cells predominantly leads to the containment of cancers in a 'precancerous' or 'covert' equilibrium state, thus reducing the incidence of clinically diagnosed cancers among physically active individuals. In seeking to understand how physical activity might augment T cell function to avert cancer outgrowth, in Part 3 we appraise how physical activity affects the determinants of a successful T cell response against immunogenic cancer cells. Using the cancer immunogram as a basis for this evaluation, we assess the effects of physical activity on: (i) general T cell status in blood, (ii) T cell infiltration to tissues, (iii) presence of immune checkpoints associated with T cell exhaustion and anergy, (iv) presence of inflammatory inhibitors of T cells and (v) presence of metabolic inhibitors of T cells. The extent to which physical activity alters these determinants to reduce the risk of clinically diagnosed cancers - and whether physical activity changes these determinants in an interconnected or unrelated manner - is unresolved. Accordingly, we analyse how physical activity might alter each determinant, and we show how these changes may interconnect to explain how physical activity alters T cell regulation to prevent cancer outgrowth.
Collapse
Affiliation(s)
- Annabelle Emery
- Department for Health, University of Bath, Bath, United Kingdom
| | - Sally Moore
- Department of Haematology, Royal United Hospitals Bath NHS Foundation Trust, Bath, United Kingdom
| | - James E Turner
- Department for Health, University of Bath, Bath, United Kingdom
| | - John P Campbell
- Department for Health, University of Bath, Bath, United Kingdom
| |
Collapse
|
88
|
Weber M, Lutz R, Olmos M, Glajzer J, Baran C, Nobis CP, Möst T, Eckstein M, Kesting M, Ries J. Beyond PD-L1—Identification of Further Potential Therapeutic Targets in Oral Cancer. Cancers (Basel) 2022; 14:cancers14071812. [PMID: 35406584 PMCID: PMC8997752 DOI: 10.3390/cancers14071812] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/29/2022] [Accepted: 03/30/2022] [Indexed: 12/03/2022] Open
Abstract
Simple Summary Tumor immunotherapy is rapidly evolving and approved for the treatment of advanced OSCC cases. In addition, the currently observed shift in the use of checkpoint inhibitors from palliative to neoadjuvant treatment may improve survival. However, not all patients respond to currently applied immune checkpoint inhibitors. Therefore, further immune targets for therapeutic approaches are urgently needed. However, there are limited data on immune checkpoint expression in OSCC. This study aimed to perform a comparative analysis of a large number of immune modulators in OSCC compared with healthy controls by NanoString mRNA analysis in order to identify possible targets for therapeutic applications. We were able to ascertain several cellular markers, checkpoints and their correlation, as well as their association with histomorphological parameters. Hence, the study contributes to the understanding of immune escape in OSCC and reveals potential targets for immunotherapy of oral cancer. Abstract Background: The involvement of immune cell infiltration and immune regulation in the progression of oral squamous cell carcinoma (OSCC) is shown. Anti-PD-1 therapy is approved for the treatment of advanced OSCC cases, but not all patients respond to immune checkpoint inhibitors. Hence, further targets for therapeutic approaches are needed. The number of identified cellular receptors with immune checkpoint function is constantly increasing. This study aimed to perform a comparative analysis of a large number of immune checkpoints in OSCC in order to identify possible targets for therapeutic application. Materials and Methods: A NanoString mRNA analysis was performed to assess the expression levels of 21 immune regulatory checkpoint molecules in OSCC tissue (n = 98) and healthy oral mucosa (NOM; n = 41). The expression rates were compared between the two groups, and their association with prognostic parameters was determined. Additionally, relevant correlations between the expression levels of different checkpoints were examined. Results: In OSCC tissue, significantly increased expression of CD115, CD163, CD68, CD86, CD96, GITRL, CD28 and PD-L1 was detected. Additionally, a marginally significant increase in CD8 expression was observed. BTLA and PD-1 levels were substantially increased, but the differential expression was not statistically significant. The expression of CD137L was significantly downregulated in OSCC compared to NOM. Correlations between immune checkpoint expression levels were demonstrated, and some occurred specifically in OSCC tissue. Conclusions: The upregulation of inhibitory receptors and ligands and the downregulation of activators could contribute to reduced effector T-cell function and could induce local immunosuppression in OSCC. Increased expression of activating actors of the immune system could be explained by the increased infiltration of myeloid cells and T-cells in OSCC tissue. The analysis contributes to the understanding of immune escape in OSCC and reveals potential targets for oral cancer immunotherapy.
Collapse
Affiliation(s)
- Manuel Weber
- Department of Oral and Maxillofacial Surgery, Friedrich-Alexander University Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (M.W.); (R.L.); (M.O.); (J.G.); (C.B.); (C.-P.N.); (T.M.); (M.K.)
- Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), 91054 Erlangen, Germany
| | - Rainer Lutz
- Department of Oral and Maxillofacial Surgery, Friedrich-Alexander University Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (M.W.); (R.L.); (M.O.); (J.G.); (C.B.); (C.-P.N.); (T.M.); (M.K.)
- Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), 91054 Erlangen, Germany
| | - Manuel Olmos
- Department of Oral and Maxillofacial Surgery, Friedrich-Alexander University Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (M.W.); (R.L.); (M.O.); (J.G.); (C.B.); (C.-P.N.); (T.M.); (M.K.)
- Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), 91054 Erlangen, Germany
| | - Jacek Glajzer
- Department of Oral and Maxillofacial Surgery, Friedrich-Alexander University Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (M.W.); (R.L.); (M.O.); (J.G.); (C.B.); (C.-P.N.); (T.M.); (M.K.)
- Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), 91054 Erlangen, Germany
| | - Christoph Baran
- Department of Oral and Maxillofacial Surgery, Friedrich-Alexander University Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (M.W.); (R.L.); (M.O.); (J.G.); (C.B.); (C.-P.N.); (T.M.); (M.K.)
- Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), 91054 Erlangen, Germany
| | - Christopher-Philipp Nobis
- Department of Oral and Maxillofacial Surgery, Friedrich-Alexander University Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (M.W.); (R.L.); (M.O.); (J.G.); (C.B.); (C.-P.N.); (T.M.); (M.K.)
- Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), 91054 Erlangen, Germany
| | - Tobias Möst
- Department of Oral and Maxillofacial Surgery, Friedrich-Alexander University Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (M.W.); (R.L.); (M.O.); (J.G.); (C.B.); (C.-P.N.); (T.M.); (M.K.)
- Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), 91054 Erlangen, Germany
| | - Markus Eckstein
- Institute of Pathology, Friedrich-Alexander University Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany;
| | - Marco Kesting
- Department of Oral and Maxillofacial Surgery, Friedrich-Alexander University Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (M.W.); (R.L.); (M.O.); (J.G.); (C.B.); (C.-P.N.); (T.M.); (M.K.)
- Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), 91054 Erlangen, Germany
| | - Jutta Ries
- Department of Oral and Maxillofacial Surgery, Friedrich-Alexander University Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (M.W.); (R.L.); (M.O.); (J.G.); (C.B.); (C.-P.N.); (T.M.); (M.K.)
- Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), 91054 Erlangen, Germany
- Correspondence: ; Tel.: +49-9131-854-43775
| |
Collapse
|
89
|
Qin VM, Haynes NM, D'Souza C, Neeson PJ, Zhu JJ. CAR-T Plus Radiotherapy: A Promising Combination for Immunosuppressive Tumors. Front Immunol 2022; 12:813832. [PMID: 35095911 PMCID: PMC8790144 DOI: 10.3389/fimmu.2021.813832] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 12/22/2021] [Indexed: 12/26/2022] Open
Abstract
Radiotherapy (RT) is the standard-of-care treatment for more than half of cancer patients with localized tumors and is also used as palliative care to facilitate symptom relief in metastatic cancers. In addition, RT can alter the immunosuppressive tumor microenvironment (TME) of solid tumors to augment the anti-tumor immune response of immune checkpoint blockade (ICB). The rationale of this combination therapy can also be extended to other forms of immunotherapy, such as chimeric antigen receptor T cell (CAR-T) therapy. Similar to ICB, the efficacy of CAR-T therapy is also significantly impacted by the immunosuppressive TME, leading to compromised T cell function and/or insufficient T cell infiltration. In this review, we will discuss some of the key barriers to the activity of CAR-T cells in the immunosuppressive TME and focus on how RT can be used to eliminate or bypass these barriers. We will present the challenges to achieving success with this therapeutic partnership. Looking forward, we will also provide strategies currently being investigated to ensure the success of this combination strategy in the clinic.
Collapse
Affiliation(s)
- Vicky Mengfei Qin
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia.,Department of Clinical Pathology, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, VIC, Australia
| | - Nicole M Haynes
- Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia.,Sir Peter MacCallum Department of Oncology, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, VIC, Australia
| | - Criselle D'Souza
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia.,Sir Peter MacCallum Department of Oncology, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, VIC, Australia
| | - Paul J Neeson
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia.,Sir Peter MacCallum Department of Oncology, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, VIC, Australia
| | - Joe Jiang Zhu
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia.,Sir Peter MacCallum Department of Oncology, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
90
|
Zhao S, Xu B, Ma W, Chen H, Jiang C, Cai J, Meng X. DNA Damage Repair in Brain Tumor Immunotherapy. Front Immunol 2022; 12:829268. [PMID: 35095931 PMCID: PMC8792754 DOI: 10.3389/fimmu.2021.829268] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Accepted: 12/22/2021] [Indexed: 12/01/2022] Open
Abstract
With the gradual understanding of tumor development, many tumor therapies have been invented and applied in clinical work, and immunotherapy has been widely concerned as an emerging hot topic in the last decade. It is worth noting that immunotherapy is nowadays applied under too harsh conditions, and many tumors are defined as “cold tumors” that are not sensitive to immunotherapy, and brain tumors are typical of them. However, there is much evidence that suggests a link between DNA damage repair mechanisms and immunotherapy. This may be a breakthrough for the application of immunotherapy in brain tumors. Therefore, in this review, first, we will describe the common pathways of DNA damage repair. Second, we will focus on immunotherapy and analyze the mechanisms of DNA damage repair involved in the immune process. Third, we will review biomarkers that have been or may be used to evaluate immunotherapy for brain tumors, such as TAMs, RPA, and other molecules that may provide a precursor assessment for the rational implementation of immunotherapy for brain tumors. Finally, we will discuss the rational combination of immunotherapy with other therapeutic approaches that have an impact on the DNA damage repair process in order to open new pathways for the application of immunotherapy in brain tumors, to maximize the effect of immunotherapy on DNA damage repair mechanisms, and to provide ideas and guidance for immunotherapy in brain tumors.
Collapse
Affiliation(s)
- Shihong Zhao
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Boya Xu
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Wenbin Ma
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Hao Chen
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Chuanlu Jiang
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jinquan Cai
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xiangqi Meng
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
91
|
Yan Q, Zhang B, Ling X, Zhu B, Mei S, Yang H, Zhang D, Huo J, Zhao Z. CTLA-4 Facilitates DNA Damage–Induced Apoptosis by Interacting With PP2A. Front Cell Dev Biol 2022; 10:728771. [PMID: 35281086 PMCID: PMC8907142 DOI: 10.3389/fcell.2022.728771] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 01/06/2022] [Indexed: 12/15/2022] Open
Abstract
Cytotoxic T-lymphocyte–associated protein 4 (CTLA-4) plays a pivotal role in regulating immune responses. It accumulates in intracellular compartments, translocates to the cell surface, and is rapidly internalized. However, the cytoplasmic function of CTLA-4 remains largely unknown. Here, we describe the role of CTLA-4 as an immunomodulator in the DNA damage response to genotoxic stress. Using isogenic models of murine T cells with either sufficient or deficient CTLA-4 expression and performing a variety of assays, including cell apoptosis, cell cycle, comet, western blotting, co-immunoprecipitation, and immunofluorescence staining analyses, we show that CTLA-4 activates ataxia–telangiectasia mutated (ATM) by binding to the ATM inhibitor protein phosphatase 2A into the cytoplasm of T cells following transient treatment with zeocin, exacerbating the DNA damage response and inducing apoptosis. These findings provide new insights into how T cells maintain their immune function under high-stress conditions, which is clinically important for patients with tumors undergoing immunotherapy combined with chemoradiotherapy.
Collapse
Affiliation(s)
- Qiongyu Yan
- Department of Pharmacy, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Bin Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Xi Ling
- Department of Pharmacy, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Bin Zhu
- Department of Pharmacy, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Shenghui Mei
- Department of Pharmacy, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Hua Yang
- Department of Pharmacy, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Dongjie Zhang
- Department of Pharmacy, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Jiping Huo
- Department of Pharmacy, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Zhigang Zhao
- Department of Pharmacy, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- *Correspondence: Zhigang Zhao,
| |
Collapse
|
92
|
Immunotherapy for Colorectal Cancer: Mechanisms and Predictive Biomarkers. Cancers (Basel) 2022; 14:cancers14041028. [PMID: 35205776 PMCID: PMC8869923 DOI: 10.3390/cancers14041028] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/07/2022] [Accepted: 02/09/2022] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Late-stage colorectal cancer treatment often involves chemotherapy and radiation that can cause dose-limiting toxicity, and therefore there is great interest in developing targeted therapies for this disease. Immunotherapy is a targeted therapy that uses peptides, cells, antibodies, viruses, or small molecules to engage or train the immune system to kill cancer. Here, we discuss the preclinical and clinical development of immunotherapy for treatment of colorectal cancer and provide an overview of predictive biomarkers for such treatments. We also consider open questions including optimal combination treatments and sensitization of colorectal cancer patients with proficient mismatch repair enzymes. Abstract Though early-stage colorectal cancer has a high 5 year survival rate of 65–92% depending on the specific stage, this probability drops to 13% after the cancer metastasizes. Frontline treatments for colorectal cancer such as chemotherapy and radiation often produce dose-limiting toxicities in patients and acquired resistance in cancer cells. Additional targeted treatments are needed to improve patient outcomes and quality of life. Immunotherapy involves treatment with peptides, cells, antibodies, viruses, or small molecules to engage or train the immune system to kill cancer cells. Preclinical and clinical investigations of immunotherapy for treatment of colorectal cancer including immune checkpoint blockade, adoptive cell therapy, monoclonal antibodies, oncolytic viruses, anti-cancer vaccines, and immune system modulators have been promising, but demonstrate limitations for patients with proficient mismatch repair enzymes. In this review, we discuss preclinical and clinical studies investigating immunotherapy for treatment of colorectal cancer and predictive biomarkers for response to these treatments. We also consider open questions including optimal combination treatments to maximize efficacy, minimize toxicity, and prevent acquired resistance and approaches to sensitize mismatch repair-proficient patients to immunotherapy.
Collapse
|
93
|
Yadav D, Kwak M, Chauhan PS, Puranik N, Lee PCW, Jin JO. Cancer immunotherapy by immune checkpoint blockade and its advanced application using bio-nanomaterials. Semin Cancer Biol 2022; 86:909-922. [PMID: 35181474 DOI: 10.1016/j.semcancer.2022.02.016] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 02/09/2022] [Accepted: 02/13/2022] [Indexed: 02/07/2023]
Abstract
Cancer is the second leading cause of death worldwide. Traditional approaches, such as surgery, chemotherapy, and radiotherapy have been the main cancer therapeutic modalities in recent years. Cancer immunotherapy is a novel therapeutic modality that potentiates the immune responses of patients against malignancy. Immune checkpoint proteins expressed on T cells or tumor cells serve as a target for inhibiting T cell overactivation, maintaining the balance between self-reactivity and autoimmunity. Tumors essentially hijack the immune checkpoint pathway in order to survive and spread. Immune checkpoint inhibitors (ICIs) are being developed as a result to reactivate the anti-tumor immune response. Recent advances in nanotechnology have contributed to the development of successful, safe, and efficient anticancer drug systems based on nanoparticles. Nanoparticle-based cancer immunotherapy overcomes numerous challenges and offers novel strategies for improving conventional immunotherapies. The fundamental and physiochemical properties of nanoparticles depend on various cancer therapeutic strategies, such as chemotherapeutics, nucleic acid-based treatments, photothermal therapy, and photodynamic agents. The review discusses the use of nanoparticles as carriers for delivering immune checkpoint inhibitors and their efficacy in cancer combination therapy.
Collapse
Affiliation(s)
- Dhananjay Yadav
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, 38541, South Korea; Research Institute of Cell Culture, Yeungnam University, Gyeongsan, 38541, South Korea
| | - Minseok Kwak
- Department of Chemistry and Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan, South Korea
| | | | - Nidhi Puranik
- Biological Sciences Department, Bharathiar University, Coimbatore, 641046, Tamil Nadu, India
| | - Peter C W Lee
- Department of Biomedical Sciences, University of Ulsan College of Medicine, ASAN Medical Center, Seoul, South Korea.
| | - Jun-O Jin
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, 38541, South Korea; Research Institute of Cell Culture, Yeungnam University, Gyeongsan, 38541, South Korea.
| |
Collapse
|
94
|
Liu W, Xia L, Xia Z, Chen L. Comprehensive Analysis of Innate Immunophenotyping Based on Immune Score Predicting Immune Alterations and Prognosis in Breast Cancer Patients. Genes (Basel) 2021; 13:88. [PMID: 35052427 PMCID: PMC8774675 DOI: 10.3390/genes13010088] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 12/21/2021] [Accepted: 12/27/2021] [Indexed: 11/16/2022] Open
Abstract
Breast cancer is the most common cancer, with the highest mortality rate and the most diagnosed cancer type in women worldwide. To identify the effect innate immune checkpoint for breast cancer immunotherapy, the innate immune prognostic biomarkers were selected through the ICI score model and the risk model in breast cancer patients. Moreover, the reliability and accuracy of the ICI score model and the risk model were further examined through the analysis of breast cancer prognosis and immune cell infiltration. The pan cancer analysis further confirmed and selected CXCL9 as the key innate immune checkpoint for breast cancer immunotherapy and identified three small molecular drugs for target CXCL9 through molecular docking analysis. In summary, CXCL9 significantly correlated with the prognostic of breast cancer and immune cell infiltration and could be innate immune checkpoint for breast cancer immunotherapy.
Collapse
Affiliation(s)
| | | | | | - Liming Chen
- Department of Biochemistry, School of Life Sciences, Nanjing Normal University, Nanjing 210023, China; (W.L.); (L.X.); (Z.X.)
| |
Collapse
|
95
|
Johnson RL, Cummings M, Thangavelu A, Theophilou G, de Jong D, Orsi NM. Barriers to Immunotherapy in Ovarian Cancer: Metabolic, Genomic, and Immune Perturbations in the Tumour Microenvironment. Cancers (Basel) 2021; 13:6231. [PMID: 34944851 PMCID: PMC8699358 DOI: 10.3390/cancers13246231] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 12/03/2021] [Accepted: 12/07/2021] [Indexed: 02/07/2023] Open
Abstract
A lack of explicit early clinical signs and effective screening measures mean that ovarian cancer (OC) often presents as advanced, incurable disease. While conventional treatment combines maximal cytoreductive surgery and platinum-based chemotherapy, patients frequently develop chemoresistance and disease recurrence. The clinical application of immune checkpoint blockade (ICB) aims to restore anti-cancer T-cell function in the tumour microenvironment (TME). Disappointingly, even though tumour infiltrating lymphocytes are associated with superior survival in OC, ICB has offered limited therapeutic benefits. Herein, we discuss specific TME features that prevent ICB from reaching its full potential, focussing in particular on the challenges created by immune, genomic and metabolic alterations. We explore both recent and current therapeutic strategies aiming to overcome these hurdles, including the synergistic effect of combination treatments with immune-based strategies and review the status quo of current clinical trials aiming to maximise the success of immunotherapy in OC.
Collapse
Affiliation(s)
- Racheal Louise Johnson
- Department Gynaecological Oncology, St. James’s University Hospital, Leeds LS9 7TF, UK; (A.T.); (G.T.); (D.d.J.)
| | - Michele Cummings
- Leeds Institute of Medical Research, St. James’s University Hospital, Leeds LS9 7TF, UK; (M.C.); (N.M.O.)
| | - Amudha Thangavelu
- Department Gynaecological Oncology, St. James’s University Hospital, Leeds LS9 7TF, UK; (A.T.); (G.T.); (D.d.J.)
| | - Georgios Theophilou
- Department Gynaecological Oncology, St. James’s University Hospital, Leeds LS9 7TF, UK; (A.T.); (G.T.); (D.d.J.)
| | - Diederick de Jong
- Department Gynaecological Oncology, St. James’s University Hospital, Leeds LS9 7TF, UK; (A.T.); (G.T.); (D.d.J.)
| | - Nicolas Michel Orsi
- Leeds Institute of Medical Research, St. James’s University Hospital, Leeds LS9 7TF, UK; (M.C.); (N.M.O.)
| |
Collapse
|
96
|
Heme-Oxygenase-1 Attenuates Oxidative Functions of Antigen Presenting Cells and Promotes Regulatory T Cell Differentiation during Fasciola hepatica Infection. Antioxidants (Basel) 2021; 10:antiox10121938. [PMID: 34943041 PMCID: PMC8750899 DOI: 10.3390/antiox10121938] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 11/03/2021] [Accepted: 11/10/2021] [Indexed: 12/19/2022] Open
Abstract
Fasciola hepatica is a fluke that infects livestock and humans causing fasciolosis, a zoonotic disease of increasing importance due to its worldwide distribution and high economic losses. The parasite regulates the host immune system by inducing a strong Th2 and regulatory T (Treg) cell immune response through mechanisms that might involve the expression or activity of heme-oxygenase-1 (HO-1), the rate-limiting enzyme in the catabolism of free heme that also has immunoregulatory and antioxidant properties. In this paper, we show that F. hepatica-infected mice upregulate HO-1 on peritoneal antigen-presenting cells (APC), which produce decreased levels of both reactive oxygen and nitrogen species (ROS/RNS). The presence of these cells was associated with increased levels of regulatory T cells (Tregs). Blocking the IL-10 receptor (IL-10R) during parasite infection demonstrated that the presence of splenic Tregs and peritoneal APC expressing HO-1 were both dependent on IL-10 activity. Furthermore, IL-10R neutralization as well as pharmacological treatment with the HO-1 inhibitor SnPP protected mice from parasite infection and allowed peritoneal APC to produce significantly higher ROS/RNS levels than those detected in cells from infected control mice. Finally, parasite infection carried out in gp91phox knockout mice with inactive NADPH oxidase was associated with decreased levels of peritoneal HO-1+ cells and splenic Tregs, and partially protected mice from the hepatic damage induced by the parasite, revealing the complexity of the molecular mechanisms involving ROS production that participate in the complex pathology induced by this helminth. Altogether, these results contribute to the elucidation of the immunoregulatory and antioxidant role of HO-1 induced by F. hepatica in the host, providing alternative checkpoints that might control fasciolosis.
Collapse
|
97
|
De Bousser E, Callewaert N, Festjens N. T Cell Engaging Immunotherapies, Highlighting Chimeric Antigen Receptor (CAR) T Cell Therapy. Cancers (Basel) 2021; 13:6067. [PMID: 34885176 PMCID: PMC8657024 DOI: 10.3390/cancers13236067] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/16/2021] [Accepted: 11/29/2021] [Indexed: 12/12/2022] Open
Abstract
In the past decade, chimeric antigen receptor (CAR) T cell technology has revolutionized cancer immunotherapy. This strategy uses synthetic CARs to redirect the patient's own immune cells to recognize specific antigens expressed on the surface of tumor cells. The unprecedented success of anti-CD19 CAR T cell therapy against B cell malignancies has resulted in its approval by the US Food and Drug Administration (FDA) in 2017. However, major scientific challenges still remain to be addressed for the broad use of CAR T cell therapy. These include severe toxicities, limited efficacy against solid tumors, and immune suppression in the hostile tumor microenvironment. Furthermore, CAR T cell therapy is a personalized medicine of which the production is time- and resource-intensive, which makes it very expensive. All these factors drive new innovations to engineer more powerful CAR T cells with improved antitumor activity, which are reviewed in this manuscript.
Collapse
Affiliation(s)
- Elien De Bousser
- Vlaams Instituut voor Biotechnologie (VIB)—UGent Center for Medical Biotechnology, Technologiepark—Zwijnaarde 75, 9052 Ghent, Belgium;
- Department of Biochemistry and Microbiology, Ghent University, Technologiepark—Zwijnaarde 75, 9052 Ghent, Belgium
| | - Nico Callewaert
- Vlaams Instituut voor Biotechnologie (VIB)—UGent Center for Medical Biotechnology, Technologiepark—Zwijnaarde 75, 9052 Ghent, Belgium;
- Department of Biochemistry and Microbiology, Ghent University, Technologiepark—Zwijnaarde 75, 9052 Ghent, Belgium
| | - Nele Festjens
- Vlaams Instituut voor Biotechnologie (VIB)—UGent Center for Medical Biotechnology, Technologiepark—Zwijnaarde 75, 9052 Ghent, Belgium;
- Department of Biochemistry and Microbiology, Ghent University, Technologiepark—Zwijnaarde 75, 9052 Ghent, Belgium
| |
Collapse
|
98
|
Cancer Immunology and Immunotherapies: Mechanisms That Affect Antitumor Immune Response and Treatment Resistance. Cancers (Basel) 2021; 13:cancers13225655. [PMID: 34830808 PMCID: PMC8616397 DOI: 10.3390/cancers13225655] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 11/10/2021] [Indexed: 01/15/2023] Open
|
99
|
Ahluwalia P, Mondal AK, Sahajpal NS, Rojiani MV, Kolhe R. Gene signatures with therapeutic value: emerging perspective for personalized immunotherapy in renal cancer. Immunotherapy 2021; 13:1535-1547. [PMID: 34753298 DOI: 10.2217/imt-2021-0187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Renal cancer is one of the deadliest urogenital diseases. In recent years, the advent of immunotherapy has led to significant improvement in the management of patients with renal cancer. Although cancer immunotherapy and its combinations had benefited numerous patients, several challenges need to be addressed. Apart from the high costs of treatment, the lack of predictive biomarkers and toxic side-effects have impeded its wider applicability. To address these issues, new biomarkers are required to predict responsiveness and design personalized treatment strategies. Recent advances in the field of single-cell sequencing and multi-dimensional spatial transcriptomics have identified clinically relevant subtypes of renal cancer. Furthermore, there is emerging potential for gene signatures based on immune cells, non-coding RNAs, and pathways such as metabolism and RNA modification. In this review article, we have discussed recent progress in the identification of gene signatures with predictive and prognostic potential in renal cancer.
Collapse
Affiliation(s)
- Pankaj Ahluwalia
- Department of Pathology, Medical College of Georgia, Augusta University, GA 30912, USA
| | - Ashis K Mondal
- Department of Pathology, Medical College of Georgia, Augusta University, GA 30912, USA
| | - Nikhil S Sahajpal
- Department of Pathology, Medical College of Georgia, Augusta University, GA 30912, USA
| | - Mumtaz V Rojiani
- Department of Pharmacology, Penn State University College of Medicine, PA 17033, USA
| | - Ravindra Kolhe
- Department of Pathology, Medical College of Georgia, Augusta University, GA 30912, USA
| |
Collapse
|
100
|
Hu Y, Xu C, Ren J, Zeng Y, Cao F, Fang H, Jintao G, Zhou Y, Li Q. Exposure to Tobacco Smoking Induces a subset of Activated Tumor-resident Tregs in Non-Small Cell Lung Cancer. Transl Oncol 2021; 15:101261. [PMID: 34768099 PMCID: PMC8591366 DOI: 10.1016/j.tranon.2021.101261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 10/26/2021] [Accepted: 10/28/2021] [Indexed: 11/09/2022] Open
Abstract
Tumor-specific smoking-induced differentially expressed genes are different in male and female patients. A smoking-related tumor-specific Treg subset is defined, highly expressed ADAM12. ADAM12+ CTLA4+ Tregs actively communicated with exhausted T cells than other Tregs.
Tobacco smoking is the major cause of non-small-cell-lung cancer (NSCLC). However, it is barely known how smoking impact the tumor immune environment (TIME) of lung cancer. We integrated single-cell RNA-seq and bulk RNA-seq data from several studies to systematically study the impact of smoking on T cells in treatment naïve NSCLC patients. We defined a set of smoking-induced differentially expressed genes (SIDEGs) in different cells in TIME.. Specifically, we defined a smoking-related tumor-specific Treg subset, ADAM12+ CTLA4+ Tregs according to the trajectory analysis and highly express genes in cell adhesion pathways and lipid metabolism. Using independent datasets from treatment naïve patients, we found that the fraction of ADAM12+ CTLA4+ Tregs are significantly increased in patients with smoking history. Moreover, the fraction of ADAM12+ CTLA4+ Tregs are positively correlated with the fraction of exhausted T cells. Additionally, we reconstructed the spatial organization of the tumor immune microenvironment and found that ADAM12+ CTLA4+ Tregs more actively communicate with LAYN+CD8+ exhausted T cells compared with ADAM12−CTLA4+ Tregs. Our data demonstrate that smoking induced a unique subset of tumor-specific activated Tregs which interact with exhausted T cells in the TIME. Our findings not only explained how smoking impact the TIME but also provide new targets and biomarkers for precision immunotherapy of lung cancer.
Collapse
Affiliation(s)
- Yudi Hu
- National Institute for Data Science in Health and Medicine, Xiamen University, Xiamen, 361102, China; Department of hematology, School of Medicine, Xiamen University, Xiamen, 361102, China; Department of Pediatrics, The First Affiliated Hospital of Xiamen University, Xiamen, 361102, China
| | - Chaoqun Xu
- National Institute for Data Science in Health and Medicine, Xiamen University, Xiamen, 361102, China; Department of hematology, School of Medicine, Xiamen University, Xiamen, 361102, China; Department of Pediatrics, The First Affiliated Hospital of Xiamen University, Xiamen, 361102, China
| | - Jun Ren
- School of Informatics, Xiamen University, Xiamen, 361105, China
| | - Yuanyuan Zeng
- National Institute for Data Science in Health and Medicine, Xiamen University, Xiamen, 361102, China; Department of hematology, School of Medicine, Xiamen University, Xiamen, 361102, China; Department of Pediatrics, The First Affiliated Hospital of Xiamen University, Xiamen, 361102, China
| | - Fengyang Cao
- National Institute for Data Science in Health and Medicine, Xiamen University, Xiamen, 361102, China; Department of hematology, School of Medicine, Xiamen University, Xiamen, 361102, China; Department of Pediatrics, The First Affiliated Hospital of Xiamen University, Xiamen, 361102, China
| | - Hongkun Fang
- National Institute for Data Science in Health and Medicine, Xiamen University, Xiamen, 361102, China; Department of hematology, School of Medicine, Xiamen University, Xiamen, 361102, China; Department of Pediatrics, The First Affiliated Hospital of Xiamen University, Xiamen, 361102, China
| | - Guo Jintao
- National Institute for Data Science in Health and Medicine, Xiamen University, Xiamen, 361102, China; Department of hematology, School of Medicine, Xiamen University, Xiamen, 361102, China; Department of Pediatrics, The First Affiliated Hospital of Xiamen University, Xiamen, 361102, China
| | - Ying Zhou
- National Institute for Data Science in Health and Medicine, Xiamen University, Xiamen, 361102, China; Department of hematology, School of Medicine, Xiamen University, Xiamen, 361102, China; Department of Pediatrics, The First Affiliated Hospital of Xiamen University, Xiamen, 361102, China.
| | - Qiyuan Li
- National Institute for Data Science in Health and Medicine, Xiamen University, Xiamen, 361102, China; Department of hematology, School of Medicine, Xiamen University, Xiamen, 361102, China; Department of Pediatrics, The First Affiliated Hospital of Xiamen University, Xiamen, 361102, China.
| |
Collapse
|