51
|
Design, Synthesis and Biological Assessment of Rhodanine-Linked Benzenesulfonamide Derivatives as Selective and Potent Human Carbonic Anhydrase Inhibitors. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27228028. [PMID: 36432129 PMCID: PMC9697818 DOI: 10.3390/molecules27228028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/14/2022] [Accepted: 11/16/2022] [Indexed: 11/22/2022]
Abstract
A novel series of twenty-five rhodamine-linked benzenesulfonamide derivatives (7a-u and 9a-d) were synthesized and screened for their inhibitory action against four physiologically relevant human (h) carbonic anhydrase (CA) isoforms, namely hCA I, hCA II, hCA IX, and hCA XII. All the synthesized molecules showed good to excellent inhibition against all the tested isoforms in the nanomolar range due to the presence of the sulfonamide as a zinc binding group. The target compounds were developed from indol-3-ylchalcone-linked benzenesulfonamide where the indol-3-ylchalcone moiety was replaced with rhodanine-linked aldehydes or isatins to improve the inhibition. Interestingly, the molecules were slightly more selective towards hCA IX and XII compared to hCA I and II. The most potent and efficient ones against hCA I were 7h (KI 22.4 nM) and 9d (KI 35.8 nM) compared to the standard drug AAZ (KI 250.0 nM), whereas in case of hCA II inhibition, the derivatives containing the isatin nucleus as a tail were preferred. Collectively, all compounds were endowed with better inhibition against hCA IX compared to AAZ (KI 25.8 nM) as well as strong potency against hCA XII. Finally, these newly synthesized molecules could be taken as potential leads for the development of isoform selective hCA IX and XII inhibitors.
Collapse
|
52
|
Supuran CT. Carbonic Anhydrase Inhibitors from Marine Natural Products. Mar Drugs 2022; 20:721. [PMID: 36422000 PMCID: PMC9696426 DOI: 10.3390/md20110721] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 11/04/2022] [Accepted: 11/15/2022] [Indexed: 04/14/2024] Open
Abstract
Carbonic anhydrases (CAs, EC 4.2.1.1) are widespread metalloenzymes in organisms in all life kingdoms, being involved in pH regulation, metabolic processes and many other physiological and pathological conditions. CA inhibitors and activators thus possess applications as pharmacological agents in the management of a range of diseases. Marine natural products have allowed the identification of some highly interesting CA inhibitors, among which are sulfonamides, phenols, polyamines, coumarins and several other miscellaneous inhibitors, which are reviewed here. Psammaplin C and some bromophenols were the most investigated classes of such marine-based inhibitors and have been used as lead molecules for developing interesting types of potent and, in some cases, isoform-selective inhibitors, with applications as antitumor agents by inhibiting human CA XII and P-glycoprotein activities. Some phenols have shown interesting bacterial and fungal β-CA inhibitory effects. Marine natural products thus constitute a gold mine for identifying novel CA inhibitors, some of which may lead to the development of novel types of pharmacological agents.
Collapse
Affiliation(s)
- Claudiu T Supuran
- NEUROFARBA Department, Sezione di Scienze Farmaceutiche e Nutraceutiche, Università degli Studi di Firenze, Via Ugo Schiff 6, 50019 Firenze, Italy
| |
Collapse
|
53
|
Agamennone M, Fantacuzzi M, Carradori S, Petzer A, Petzer JP, Angeli A, Supuran CT, Luisi G. Coumarin-Based Dual Inhibitors of Human Carbonic Anhydrases and Monoamine Oxidases Featuring Amino Acyl and ( Pseudo)-Dipeptidyl Appendages: In Vitro and Computational Studies. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27227884. [PMID: 36431985 PMCID: PMC9692511 DOI: 10.3390/molecules27227884] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/08/2022] [Accepted: 11/11/2022] [Indexed: 11/17/2022]
Abstract
The involvement of human carbonic anhydrase (hCA) IX/XII in the pathogenesis and progression of many types of cancer is well acknowledged, and more recently human monoamine oxidases (hMAOs) A and B have been found important contributors to tumor development and aggressiveness. With a view of an enzymatic dual-blockade approach, in this investigation, new coumarin-based amino acyl and (pseudo)-dipeptidyl derivatives were synthesized and firstly evaluated in vitro for inhibitory activity and selectivity against membrane-bound and cytosolic hCAs (hCA IX/XII over hCA I/II), as well as the hMAOs, to estimate their potential as anticancer agents. De novo design of peptide-coumarin conjugates was subsequently carried out and involved the combination of the widely explored coumarin nucleus with the unique biophysical and structural properties of native or modified peptides. All compounds displayed nanomolar inhibitory activities towards membrane-anchored hCAs, whilst they were unable to block the ubiquitous CA I and II isoforms. Structural features pertinent to potent and selective CA inhibitory activity are discussed, and modeling studies were found to support the biological data. Lower potency inhibition of the hMAOs was observed, with most compounds showing preferential inhibition of hMAO-A. The binding of the most potent ligands (6 and 16) to the hydrophobic active site of hMAO-A was investigated in an attempt to explain selectivity on the molecular level. Calculated Ligand Efficiency values indicate that compound 6 has the potential to serve as a lead compound for developing innovative anticancer agents based on the dual inhibition strategy. This information may help design new coumarin-based peptide molecules with diverse bioactivities.
Collapse
Affiliation(s)
- Mariangela Agamennone
- Department of Pharmacy, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Marialuigia Fantacuzzi
- Department of Pharmacy, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Simone Carradori
- Department of Pharmacy, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
- Correspondence:
| | - Anél Petzer
- Pharmaceutical Chemistry, School of Pharmacy and Centre of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom 2520, South Africa
| | - Jacobus P. Petzer
- Pharmaceutical Chemistry, School of Pharmacy and Centre of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom 2520, South Africa
| | - Andrea Angeli
- Neurofarba Department, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Sesto Fiorentino, 50019 Florence, Italy
| | - Claudiu T. Supuran
- Neurofarba Department, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Sesto Fiorentino, 50019 Florence, Italy
| | - Grazia Luisi
- Department of Pharmacy, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| |
Collapse
|
54
|
Benzenesulfonamides Incorporating Hydantoin Moieties Effectively Inhibit Eukaryoticand Human Carbonic Anhydrases. Int J Mol Sci 2022; 23:ijms232214115. [PMID: 36430592 PMCID: PMC9696710 DOI: 10.3390/ijms232214115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/11/2022] [Accepted: 11/12/2022] [Indexed: 11/17/2022] Open
Abstract
A series of novel 1-(4-benzenesulfonamide)-3-alkyl/benzyl-hydantoin derivatives were synthesized and evaluated for the inhibition of eukaryotic and human carbonic anhydrases (CAs, EC 4.2.1.1). The prepared compounds were screened for their hCA inhibitory activities against three cytosolic isoforms as well as two β-CAs from fungal pathogens. The best inhibition was observed against hCA II and VII as well as Candida glabrata enzyme CgNce103. hCA I and Malassezia globosa MgCA enzymes were, on the other hand, less effectively inhibited by these compounds. The inhibitory potency of these compounds against CAs was found to be dependent on the electronic and steric effects of substituent groups on the N3-position of the hydantoin ring, which included alkyl, alkenyl and substituted benzyl moieties. The interesting results against CgNce103 make the compounds of interest for investigations in vivo as potential antifungals.
Collapse
|
55
|
Development of benzene and benzothiazole-sulfonamide analogues as selective inhibitors of the tumor-associated carbonic anhydrase IX. Eur J Med Chem 2022; 243:114793. [DOI: 10.1016/j.ejmech.2022.114793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 09/20/2022] [Accepted: 09/22/2022] [Indexed: 11/23/2022]
|
56
|
Bogdanov A, Bogdanov A, Chubenko V, Volkov N, Moiseenko F, Moiseyenko V. Tumor acidity: From hallmark of cancer to target of treatment. Front Oncol 2022; 12:979154. [PMID: 36106097 PMCID: PMC9467452 DOI: 10.3389/fonc.2022.979154] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 08/08/2022] [Indexed: 12/16/2022] Open
Abstract
Tumor acidity is one of the cancer hallmarks and is associated with metabolic reprogramming and the use of glycolysis, which results in a high intracellular lactic acid concentration. Cancer cells avoid acid stress major by the activation and expression of proton and lactate transporters and exchangers and have an inverted pH gradient (extracellular and intracellular pHs are acid and alkaline, respectively). The shift in the tumor acid-base balance promotes proliferation, apoptosis avoidance, invasiveness, metastatic potential, aggressiveness, immune evasion, and treatment resistance. For example, weak-base chemotherapeutic agents may have a substantially reduced cellular uptake capacity due to "ion trapping". Lactic acid negatively affects the functions of activated effector T cells, stimulates regulatory T cells, and promotes them to express programmed cell death receptor 1. On the other hand, the inversion of pH gradient could be a cancer weakness that will allow the development of new promising therapies, such as tumor-targeted pH-sensitive antibodies and pH-responsible nanoparticle conjugates with anticancer drugs. The regulation of tumor pH levels by pharmacological inhibition of pH-responsible proteins (monocarboxylate transporters, H+-ATPase, etc.) and lactate dehydrogenase A is also a promising anticancer strategy. Another idea is the oral or parenteral use of buffer systems, such as sodium bicarbonate, to neutralize tumor acidity. Buffering therapy does not counteract standard treatment methods and can be used in combination to increase effectiveness. However, the mechanisms of the anticancer effect of buffering therapy are still unclear, and more research is needed. We have attempted to summarize the basic knowledge about tumor acidity.
Collapse
Affiliation(s)
- Alexey Bogdanov
- Saint Petersburg Clinical Research and Practical Center of Specialized Types of Medical Care (Oncological), Saint Petersburg, Russia
| | | | | | | | | | | |
Collapse
|
57
|
Pontecorvi V, Mori M, Picarazzi F, Zara S, Carradori S, Cataldi A, Angeli A, Berrino E, Chimenti P, Ciogli A, Secci D, Guglielmi P, Supuran CT. Novel Insights on Human Carbonic Anhydrase Inhibitors Based on Coumalic Acid: Design, Synthesis, Molecular Modeling Investigation, and Biological Studies. Int J Mol Sci 2022; 23:7950. [PMID: 35887299 PMCID: PMC9324074 DOI: 10.3390/ijms23147950] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 07/11/2022] [Accepted: 07/17/2022] [Indexed: 11/18/2022] Open
Abstract
Human carbonic anhydrase (hCA, EC 4.2.1.1) isoforms IX and XII are overexpressed in solid hypoxic tumors, and they are considered as prognostic tools and therapeutic targets for cancer. Based on a molecular simplification of the well-known coumarin scaffold, we developed a new series of derivatives of the pyran-2-one core. The new compounds are endowed with potent and selective inhibitory activity against the tumor-related hCA isoforms IX and XII, in the low nanomolar range, whereas they are inactive against the two cytosolic off-targets hCA I and II. The compounds exhibiting the best hCA inhibition were further investigated against the breast adenocarcinoma cell line (MCF7) in hypoxic conditions, evaluating their ability to eventually synergize with doxorubicin. The compounds' biocompatibility on healthy cells was also tested and confirmed on Human Gingival Fibroblasts (HGFs). Furthermore, the possible binding mode of all compounds to the active site of the tumor-associated human CA IX was investigated by computational techniques which predicted the binding conformations and the persistency of binding poses within the active site of the enzyme, furnishing relevant data for the design of tight binding inhibitors.
Collapse
Affiliation(s)
- Virginia Pontecorvi
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy; (V.P.); (E.B.); (P.C.); (A.C.); (D.S.)
| | - Mattia Mori
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy; (M.M.); (F.P.)
| | - Francesca Picarazzi
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy; (M.M.); (F.P.)
| | - Susi Zara
- Department of Pharmacy, “G. d’Annunzio” University of Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy; (S.Z.); (S.C.); (A.C.)
| | - Simone Carradori
- Department of Pharmacy, “G. d’Annunzio” University of Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy; (S.Z.); (S.C.); (A.C.)
| | - Amelia Cataldi
- Department of Pharmacy, “G. d’Annunzio” University of Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy; (S.Z.); (S.C.); (A.C.)
| | - Andrea Angeli
- NEUROFARBA Department, Pharmaceutical and Nutraceutical Section, University of Florence, Via Ugo Schiff 6, 50019 Florence, Italy;
- Department of Food and Drug, University of Parma, Parco Area delle Scienze, 27/A, 43124 Parma, Italy
| | - Emanuela Berrino
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy; (V.P.); (E.B.); (P.C.); (A.C.); (D.S.)
| | - Paola Chimenti
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy; (V.P.); (E.B.); (P.C.); (A.C.); (D.S.)
| | - Alessia Ciogli
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy; (V.P.); (E.B.); (P.C.); (A.C.); (D.S.)
| | - Daniela Secci
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy; (V.P.); (E.B.); (P.C.); (A.C.); (D.S.)
| | - Paolo Guglielmi
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy; (V.P.); (E.B.); (P.C.); (A.C.); (D.S.)
| | - Claudiu T. Supuran
- NEUROFARBA Department, Pharmaceutical and Nutraceutical Section, University of Florence, Via Ugo Schiff 6, 50019 Florence, Italy;
| |
Collapse
|