51
|
Abstract
Translational research requires reliable biomedical microdevices (BMMD)
to mimic physiological conditions and answer biological questions. In this work, we
introduce a reversibly sealed quick-fit hybrid BMMD that is operator-friendly and
bubble-free, requires low reagent and cell consumption, enables robust and high
throughput performance for biomedical experiments. Specifically, we fabricate a
quick-fit poly(methyl methacrylate) and poly(dimethyl siloxane) (PMMA/PDMS)
prototype to illustrate its utilities by probing the adhesion of glioblastoma cells
(T98G and U251MG) to primary endothelial cells. In static condition, we confirm that
angiopoietin-Tie2 signaling increases the adhesion of glioblastoma cells to
endothelial cells. Next, to mimic the physiological hemodynamic flow and investigate
the effect of physiological electric field, the endothelial cells are
pre-conditioned with concurrent shear flow (with fixed 1 Pa shear stress) and direct
current electric field (dcEF) in the quick-fit PMMA/PDMS BMMD. With shear flow
alone, endothelial cells exhibit classical parallel alignment; while under a
concurrent dcEF, the cells align perpendicularly to the electric current when the
dcEF is greater than 154 V m− 1. Moreover, with fixed
shear stress of 1 Pa, T98G glioblastoma cells demonstrate increased adhesion to
endothelial cells conditioned in dcEF of 154 V m− 1,
while U251MG glioblastoma cells show no difference. The quick-fit hybrid BMMD
provides a simple and flexible platform to create multiplex systems, making it
possible to investigate complicated biological conditions for translational
research.
Collapse
Affiliation(s)
- Hsieh-Fu Tsai
- Micro/Bio/Nanofluidics Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa, 9040495, Japan.
| | - Kazumi Toda-Peters
- Micro/Bio/Nanofluidics Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa, 9040495, Japan
| | - Amy Q Shen
- Micro/Bio/Nanofluidics Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa, 9040495, Japan.
| |
Collapse
|
52
|
The increased adhesion of tumor cells to endothelial cells after irradiation can be reduced by FAK-inhibition. Radiat Oncol 2019; 14:25. [PMID: 30717801 PMCID: PMC6360706 DOI: 10.1186/s13014-019-1230-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 01/23/2019] [Indexed: 12/30/2022] Open
Abstract
Background Radiotherapy is administered in more than 60% of all solid tumors. Most patients are cured but a significant number develops local recurrences or distant metastases. The question arises if irradiation might influence the metastatic process. In the present study we examined whether the adhesion of glioblastoma or breast cancer cells to endothelial cells, an important step in metastasis, is affected by photon irradiation. Methods U-87 MG, U-373 MG and MDA-MB-231 cancer cells as well as primary human endothelial cells were irradiated with 0, 2, 4, or 8 Gy photons at a dose rate of 5 Gy/min. The adhesion of cancer cells to endothelial cells was tested either with the Vybrant based assay via fluorescent labelling or with an ibidi pump system able to mimic the physiological blood flow in vitro. In addition, the impact of FAK (focal adhesion kinase) inhibitor PF-573, 228 on the adhesion of non-irradiated and irradiated tumor cells was analyzed. Adhesion related and regulated proteins were analyzed by Western blotting. Results The cellular adhesion was increased after irradiation regardless of which cell type was irradiated. The FAK-inhibitor was able to reduce the adhesion of non-irradiated cells but also the irradiation-induced increase in adhesion of tumor cells to endothelium. Adhesion related proteins were enhanced after irradiation with 4 Gy or 8 Gy in both cells types. The increased adhesion after irradiation is accompanied by the phosphorylation of src (Y416), FAK (Y397) and increased expression of paxillin. Conclusion Irradiation with photons in therapeutic doses is able to enhance the interaction between tumor cells and endothelial cells and by that might influence important steps of the metastatic process.
Collapse
|
53
|
Saxena T, Lyon JG, Pai SB, Pare D, Amero J, Karumbaia L, Carroll SL, Gaupp E, Bellamkonda RV. Engineering Controlled Peritumoral Inflammation to Constrain Brain Tumor Growth. Adv Healthc Mater 2019; 8:e1801076. [PMID: 30537355 PMCID: PMC6657526 DOI: 10.1002/adhm.201801076] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 10/23/2018] [Indexed: 02/06/2023]
Abstract
Brain tumors remain a great clinical challenge, in part due to their capacity to invade into eloquent, inoperable regions of the brain. In contrast, inflammation in the central nervous system (CNS) due to injuries activates microglia and astrocytes culminating in an astroglial scar that typically "walls-off" the injury site. Here, the hypothesis is tested that targeting peritumoral cells surrounding tumors to activate them via an inflammatory stimulus that recapitulates the sequelae of a traumatic CNS injury, could generate an environment that would wall-off and contain invasive tumors in the brain. Gold nanoparticles coated with inflammatory polypeptides to target stromal cells in close vicinity to glioblastoma (GBM) tumors, in order to activate these cells and stimulate stromal CNS inflammation, are engineered. It is reported that this approach significantly contains tumors in rodent models of GBM relative to control treatments (reduction in tumor volume by over 300% in comparison to controls), by the activation of the innate and adaptive immune response, and by triggering pathways related to cell clustering. Overall, this report outlines an approach to contain invasive tumors that can complement adjuvant interventions for invasive GBM such as radiation and chemotherapy.
Collapse
Affiliation(s)
- Tarun Saxena
- Department of Biomedical Engineering Pratt School of Engineering
Duke University, 101 Science Drive, Durham, NC 27705, USA
| | - Johnathan G. Lyon
- Department of Biomedical Engineering Pratt School of Engineering
Duke University, 101 Science Drive, Durham, NC 27705, USA
| | - S. Balakrishna Pai
- Wallace H. Coulter Department of Biomedical Engineering, Georgia
Institute of Technology & Emory School of Medicine, UA Whitaker
Building, 313 Ferst Drive, Atlanta, GA 30332, USA
| | - Daniel Pare
- Wallace H. Coulter Department of Biomedical Engineering, Georgia
Institute of Technology & Emory School of Medicine, UA Whitaker
Building, 313 Ferst Drive, Atlanta, GA 30332, USA
| | - Jessica Amero
- Wallace H. Coulter Department of Biomedical Engineering, Georgia
Institute of Technology & Emory School of Medicine, UA Whitaker
Building, 313 Ferst Drive, Atlanta, GA 30332, USA
| | - Lohitash Karumbaia
- Regenerative Bioscience Center, The University of Georgia, 425
River Road, ADS Complex, Athens, GA 30602, USA
| | - Sheridan L. Carroll
- Department of Biomedical Engineering Pratt School of Engineering
Duke University, 101 Science Drive, Durham, NC 27705, USA
| | - Eric Gaupp
- Wallace H. Coulter Department of Biomedical Engineering, Georgia
Institute of Technology & Emory School of Medicine, UA Whitaker
Building, 313 Ferst Drive, Atlanta, GA 30332, USA
| | - Ravi V. Bellamkonda
- Department of Biomedical Engineering Pratt School of Engineering
Duke University, 101 Science Drive, Durham, NC 27705, USA,
| |
Collapse
|
54
|
Affiliation(s)
- Husam Wassati
- Department of Neurosurgery, Queen`s Hospital, Romford, United Kingdom. E-mail:
| | | | | |
Collapse
|
55
|
Phenotypic and Expressional Heterogeneity in the Invasive Glioma Cells. Transl Oncol 2018; 12:122-133. [PMID: 30292065 PMCID: PMC6172486 DOI: 10.1016/j.tranon.2018.09.014] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2018] [Revised: 09/21/2018] [Accepted: 09/24/2018] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND: Tumor cell invasion is a hallmark of glioblastoma (GBM) and a major contributing factor for treatment failure, tumor recurrence, and the poor prognosis of GBM. Despite this, our understanding of the molecular machinery that drives invasion is limited. METHODS: Time-lapse imaging of patient-derived GBM cell invasion in a 3D collagen gel matrix, analysis of both the cellular invasive phenotype and single cell invasion pattern with microarray expression profiling. RESULTS: GBM invasion was maintained in a simplified 3D-milieue. Invasion was promoted by the presence of the tumorsphere graft. In the absence of this, the directed migration of cells subsided. The strength of the pro-invasive repulsive signaling was specific for a given patient-derived culture. In the highly invasive GBM cultures, the majority of cells had a neural progenitor-like phenotype, while the less invasive cultures had a higher diversity in cellular phenotypes. Microarray expression analysis of the non-invasive cells from the tumor core displayed a higher GFAP expression and a signature of genes containing VEGFA, hypoxia and chemo-repulsive signals. Cells of the invasive front expressed higher levels of CTGF, TNFRSF12A and genes involved in cell survival, migration and cell cycle pathways. A mesenchymal gene signature was associated with increased invasion. CONCLUSION: The GBM tumorsphere core promoted invasion, and the invasive front was dominated by a phenotypically defined cell population expressing genes regulating traits found in aggressive cancers. The detected cellular heterogeneity and transcriptional differences between the highly invasive and core cells identifies potential targets for manipulation of GBM invasion.
Collapse
|
56
|
Dotson J, Nijim A, Denning KL, Shweihat Y, Lebowicz Y. A Rare Case of Metastases from a High-grade Astrocytoma to the Pleura, Bones, and Liver within Six Months of Diagnosis. Cureus 2018; 10:e3234. [PMID: 30410840 PMCID: PMC6207488 DOI: 10.7759/cureus.3234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
High grade astrocytomas such as anaplastic astrocytoma and glioblastoma multiforme are aggressive central nervous system malignancies with a poor prognosis. Due to shortened survival times, their devastating effects are usually localized intracranially and rarely metastasize outside of the central nervous system. When metastases occur, they usually present in patients with longer survival times and they typically coincide with a primary site recurrence. We present a rare case of metastases from a high-grade astrocytoma/glioblastoma to the pleura, bones and liver within six months of diagnosis, without primary site recurrence.
Collapse
Affiliation(s)
- Jennifer Dotson
- Joan C. Edwards School of Medicine, Marshall University, Huntington, USA
| | - Ala Nijim
- Pulmonology, Marshall University, Joan C. Edwards School of Medicine, Huntington, USA
| | - Krista L Denning
- Pathology, Marshall University, Joan C. Edwards School of Medicine, Huntington, USA
| | - Yousef Shweihat
- Internal Medicine, Marshall University, Joan C. Edwards School of Medicine, Huntington, USA
| | - Yehuda Lebowicz
- Hematology and Oncology, Marshall University, Joan C. Edwards School of Medicine, Huntington, USA
| |
Collapse
|
57
|
Rosen J, Blau T, Grau SJ, Barbe MT, Fink GR, Galldiks N. Extracranial Metastases of a Cerebral Glioblastoma: A Case Report and Review of the Literature. Case Rep Oncol 2018; 11:591-600. [PMID: 30283316 PMCID: PMC6167720 DOI: 10.1159/000492111] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 07/15/2018] [Indexed: 01/09/2023] Open
Abstract
The glioblastoma, a malignant human brain tumor, is known for its devastating intracranial progress and its dismal prognosis. Whereas treatment and research are most prominently focused on the primary tumor lesion, in recent years evidence has accumulated that points to the rare occurrence of extracranial glioblastoma metastases. We here present a case of a female patient with a known glioblastoma who was detected to harbor multiple metastases in the bones, lung, pleura, liver, mesentery, and the subcutaneous soft tissue. Pathogenetically, these metastatic lesions developed most probably after a local progression of the left temporal glioblastoma through the skull base, thus getting access to the systemic lymphatics. Similar cases of extensive glioblastoma metastization, their putative underlying mechanisms, and implications for clinical care are discussed.
Collapse
Affiliation(s)
- Jurij Rosen
- Department of Neurology, University of Cologne, Cologne, Germany
| | - Tobias Blau
- Institute of Neuropathology, University of Cologne, Cologne, Germany
| | - Stefan J Grau
- Department of Neurosurgery, University of Cologne, Cologne, Germany
| | - Michael T Barbe
- Department of Neurology, University of Cologne, Cologne, Germany
| | - Gereon R Fink
- Department of Neurology, University of Cologne, Cologne, Germany.,Institute of Neuroscience and Medicine (INM-3), Forschungszentrum Jülich, Jülich, Germany
| | - Norbert Galldiks
- Department of Neurology, University of Cologne, Cologne, Germany.,Institute of Neuroscience and Medicine (INM-3), Forschungszentrum Jülich, Jülich, Germany.,Center of Integrated Oncology (CIO), University of Cologne, Cologne, Germany
| |
Collapse
|
58
|
Hasslacher S, Schneele L, Stroh S, Langhans J, Zeiler K, Kattner P, Karpel-Massler G, Siegelin MD, Schneider M, Zhou S, Grunert M, Halatsch ME, Nonnenmacher L, Debatin KM, Westhoff MA. Inhibition of PI3K signalling increases the efficiency of radiotherapy in glioblastoma cells. Int J Oncol 2018; 53:1881-1896. [PMID: 30132519 PMCID: PMC6192725 DOI: 10.3892/ijo.2018.4528] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 07/20/2018] [Indexed: 02/07/2023] Open
Abstract
Glioblastoma, the most common primary brain tumour, is also considered one of the most lethal cancers per se. It is highly refractory to therapeutic intervention, as highlighted by the mean patient survival of only 15 months, despite an aggressive treatment approach, consisting of maximal safe surgical resection, followed by radio- and chemotherapy. Radiotherapy, in particular, can have effects on the surviving fractions of tumour cells, which are considered adverse to the desired clinical outcome: It can induce increased cellular proliferation, as well as enhanced invasion. In this study, we established that differentiated glioblastoma cells alter their DNA repair response following repeated exposure to radiation and, therefore, high single-dose irradiation (SD-IR) is not a good surrogate marker for fractionated dose irradiation (FD-IR), as used in clinical practice. Integrating irradiation into a combination therapy approach, we then investigated whether the pharmacological inhibition of PI3K signalling, the most abundantly activated survival cascade in glioblastoma, enhances the efficacy of radiotherapy. Of note, treatment with GDC-0941, which blocks PI3K-mediated signalling, did not enhance cell death upon irradiation, but both treatment modalities functioned synergistically to reduce the total cell number. Furthermore, GDC-0941 not only prevented the radiation-induced increase in the motility of the differentiated cells, but further reduced their speed below that of untreated cells. Therefore, combining radiotherapy with the pharmacological inhibition of PI3K signalling is a potentially promising approach for the treatment of glioblastoma, as it can reduce the unwanted effects on the surviving fraction of tumour cells.
Collapse
Affiliation(s)
- Sebastian Hasslacher
- Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, D-89075 Ulm, Germany
| | - Lukas Schneele
- Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, D-89075 Ulm, Germany
| | - Sebastien Stroh
- Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, D-89075 Ulm, Germany
| | - Julia Langhans
- Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, D-89075 Ulm, Germany
| | - Katharina Zeiler
- Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, D-89075 Ulm, Germany
| | - Patricia Kattner
- Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, D-89075 Ulm, Germany
| | | | - Markus D Siegelin
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY 10032, USA
| | - Matthias Schneider
- Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, D-89075 Ulm, Germany
| | - Shaoxia Zhou
- Department of Clinical Chemistry, University Medical Center Ulm, D-89075 Ulm, Germany
| | - Michael Grunert
- Department of Radiology, German Armed Forces Hospital of Ulm, D-89081 Ulm, Germany
| | - Marc-Eric Halatsch
- Department of Neurosurgery, University Medical Center Ulm, D-89075 Ulm, Germany
| | - Lisa Nonnenmacher
- Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, D-89075 Ulm, Germany
| | - Klaus-Michael Debatin
- Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, D-89075 Ulm, Germany
| | - Mike-Andrew Westhoff
- Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, D-89075 Ulm, Germany
| |
Collapse
|
59
|
Krol I, Castro-Giner F, Maurer M, Gkountela S, Szczerba BM, Scherrer R, Coleman N, Carreira S, Bachmann F, Anderson S, Engelhardt M, Lane H, Evans TRJ, Plummer R, Kristeleit R, Lopez J, Aceto N. Detection of circulating tumour cell clusters in human glioblastoma. Br J Cancer 2018; 119:487-491. [PMID: 30065256 PMCID: PMC6134152 DOI: 10.1038/s41416-018-0186-7] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 06/12/2018] [Accepted: 06/25/2018] [Indexed: 12/31/2022] Open
Abstract
Human glioblastoma (GBM) is a highly aggressive, invasive and hypervascularised malignant brain cancer. Individual circulating tumour cells (CTCs) are sporadically found in GBM patients, yet it is unclear whether multicellular CTC clusters are generated in this disease and whether they can bypass the physical hurdle of the blood-brain barrier. Here, we assessed CTC presence and composition at multiple time points in 13 patients with progressing GBM during an open-label phase 1/2a study with the microtubule inhibitor BAL101553. We observe CTC clusters ranging from 2 to 23 cells and present at multiple sampling time points in a GBM patient with pleomorphism and extensive necrosis, throughout disease progression. Exome sequencing of GBM CTC clusters highlights variants in 58 cancer-associated genes including ATM, PMS2, POLE, APC, XPO1, TFRC, JAK2, ERBB4 and ALK. Together, our findings represent the first evidence of the presence of CTC clusters in GBM.
Collapse
Affiliation(s)
- Ilona Krol
- Department of Biomedicine, Cancer Metastasis Laboratory, University of Basel and University Hospital Basel, CH-4058, Basel, Switzerland
| | - Francesc Castro-Giner
- Department of Biomedicine, Cancer Metastasis Laboratory, University of Basel and University Hospital Basel, CH-4058, Basel, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Martina Maurer
- Basilea Pharmaceutica International Ltd., CH-4058, Basel, Switzerland
| | - Sofia Gkountela
- Department of Biomedicine, Cancer Metastasis Laboratory, University of Basel and University Hospital Basel, CH-4058, Basel, Switzerland
| | - Barbara Maria Szczerba
- Department of Biomedicine, Cancer Metastasis Laboratory, University of Basel and University Hospital Basel, CH-4058, Basel, Switzerland
| | - Ramona Scherrer
- Department of Biomedicine, Cancer Metastasis Laboratory, University of Basel and University Hospital Basel, CH-4058, Basel, Switzerland
| | - Niamh Coleman
- Drug Development Unit, The Royal Marsden Hospital and The Institute of Cancer Research, London, UK
| | - Suzanne Carreira
- Drug Development Unit, The Royal Marsden Hospital and The Institute of Cancer Research, London, UK
| | - Felix Bachmann
- Basilea Pharmaceutica International Ltd., CH-4058, Basel, Switzerland
| | | | - Marc Engelhardt
- Basilea Pharmaceutica International Ltd., CH-4058, Basel, Switzerland
| | - Heidi Lane
- Basilea Pharmaceutica International Ltd., CH-4058, Basel, Switzerland
| | | | - Ruth Plummer
- Northern Centre for Cancer Care, Newcastle upon Tyne, UK
| | | | - Juanita Lopez
- Drug Development Unit, The Royal Marsden Hospital and The Institute of Cancer Research, London, UK
| | - Nicola Aceto
- Department of Biomedicine, Cancer Metastasis Laboratory, University of Basel and University Hospital Basel, CH-4058, Basel, Switzerland.
| |
Collapse
|
60
|
Wanibuchi M, Ohtaki S, Ookawa S, Kataoka-Sasaki Y, Sasaki M, Oka S, Kimura Y, Akiyama Y, Mikami T, Mikuni N, Kocsis JD, Honmou O. Actin, alpha, cardiac muscle 1 (ACTC1) knockdown inhibits the migration of glioblastoma cells in vitro. J Neurol Sci 2018; 392:117-121. [PMID: 30055382 DOI: 10.1016/j.jns.2018.07.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 06/18/2018] [Accepted: 07/15/2018] [Indexed: 12/01/2022]
Abstract
BACKGROUND Recurrence is inevitable in glioblastomas (GBMs) and requires multifactorial processes. One of the factors that cause recurrence is the strong migratory capacity of GBM cells. We recently reported that actin, alpha, cardiac muscle 1 (ACTC1) could serve as a marker to detect GBM migration in clinical cases. OBJECTIVE This study aimed to clarify whether the knockdown of highly expressed ACTC1 can inhibit the migratory capacity of cells in the GBM cell line. METHODS ACTC1 expression was examined using immunocytochemistry and droplet digital polymerase chain reaction. The motility of GBM cells that were either treated with siRNA to knock down ACTC1 or untreated were investigated using a time-lapse study in vitro. RESULTS The relatively high ACTC1 expression was confirmed in a GBM cell line, i.e., U87MG. The ACTC1 expression in U87MG cells was significantly inhibited by ACTC1-siRNA (p < 0.05). A cell movement tracking assay using time-lapse imaging demonstrated the inhibition of U87MG cell migration by ACTC1 knockdown. The quantitative cell migration analysis demonstrated that the distance traversed during 72 h was 3607 ± 458 (median ± SD) μm by untreated U87MG cells and 3570 ± 748 μm by negative control siRNA-treated cells. However, the distance migrated by ACTC1-siRNA-treated cells during 72 h was significantly shorter (1265 ± 457 μm, p < 0.01) than the controls. CONCLUSION ACTC1 knockdown inhibits U87MG cell migration.
Collapse
Affiliation(s)
- Masahiko Wanibuchi
- Department of Neurosurgery, Sapporo Medical University School of Medicine, Sapporo, Hokkaido 060-8543, Japan; Department of Neural Regenerative Medicine, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, Hokkaido 060-8543, Japan.
| | - Shunya Ohtaki
- Department of Neurosurgery, Sapporo Medical University School of Medicine, Sapporo, Hokkaido 060-8543, Japan; Department of Neural Regenerative Medicine, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, Hokkaido 060-8543, Japan
| | - Satoshi Ookawa
- Department of Neurosurgery, Sapporo Medical University School of Medicine, Sapporo, Hokkaido 060-8543, Japan; Department of Neural Regenerative Medicine, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, Hokkaido 060-8543, Japan
| | - Yuko Kataoka-Sasaki
- Department of Neural Regenerative Medicine, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, Hokkaido 060-8543, Japan
| | - Masanori Sasaki
- Department of Neural Regenerative Medicine, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, Hokkaido 060-8543, Japan; Department of Neurology, Yale University School of Medicine, New Haven, CT 06510, USA; Center for Neuroscience and Regeneration Research, VA Connecticut Healthcare System, West Haven, CT 06516, USA
| | - Shinichi Oka
- Department of Neural Regenerative Medicine, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, Hokkaido 060-8543, Japan
| | - Yusuke Kimura
- Department of Neurosurgery, Sapporo Medical University School of Medicine, Sapporo, Hokkaido 060-8543, Japan
| | - Yukinori Akiyama
- Department of Neurosurgery, Sapporo Medical University School of Medicine, Sapporo, Hokkaido 060-8543, Japan
| | - Takeshi Mikami
- Department of Neurosurgery, Sapporo Medical University School of Medicine, Sapporo, Hokkaido 060-8543, Japan
| | - Nobuhiro Mikuni
- Department of Neurosurgery, Sapporo Medical University School of Medicine, Sapporo, Hokkaido 060-8543, Japan
| | - Jeffery D Kocsis
- Department of Neurology, Yale University School of Medicine, New Haven, CT 06510, USA; Center for Neuroscience and Regeneration Research, VA Connecticut Healthcare System, West Haven, CT 06516, USA
| | - Osamu Honmou
- Department of Neural Regenerative Medicine, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, Hokkaido 060-8543, Japan; Department of Neurology, Yale University School of Medicine, New Haven, CT 06510, USA; Center for Neuroscience and Regeneration Research, VA Connecticut Healthcare System, West Haven, CT 06516, USA
| |
Collapse
|
61
|
Alfonso JCL, Talkenberger K, Seifert M, Klink B, Hawkins-Daarud A, Swanson KR, Hatzikirou H, Deutsch A. The biology and mathematical modelling of glioma invasion: a review. J R Soc Interface 2018; 14:rsif.2017.0490. [PMID: 29118112 DOI: 10.1098/rsif.2017.0490] [Citation(s) in RCA: 113] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 10/17/2017] [Indexed: 12/13/2022] Open
Abstract
Adult gliomas are aggressive brain tumours associated with low patient survival rates and limited life expectancy. The most important hallmark of this type of tumour is its invasive behaviour, characterized by a markedly phenotypic plasticity, infiltrative tumour morphologies and the ability of malignant progression from low- to high-grade tumour types. Indeed, the widespread infiltration of healthy brain tissue by glioma cells is largely responsible for poor prognosis and the difficulty of finding curative therapies. Meanwhile, mathematical models have been established to analyse potential mechanisms of glioma invasion. In this review, we start with a brief introduction to current biological knowledge about glioma invasion, and then critically review and highlight future challenges for mathematical models of glioma invasion.
Collapse
Affiliation(s)
- J C L Alfonso
- Department of Systems Immunology and Braunschweig Integrated Centre of Systems Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany.,Centre for Information Services and High Performance Computing, Technische Universität Dresden, Germany
| | - K Talkenberger
- Centre for Information Services and High Performance Computing, Technische Universität Dresden, Germany
| | - M Seifert
- Institute for Medical Informatics and Biometry, Technische Universität Dresden, Germany.,National Center for Tumor Diseases (NCT), Dresden, Germany
| | - B Klink
- Institute for Clinical Genetics, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Germany.,National Center for Tumor Diseases (NCT), Dresden, Germany.,German Cancer Consortium (DKTK), partner site, Dresden, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - A Hawkins-Daarud
- Precision Neurotherapeutics Innovation Program, Mayo Clinic, Phoenix, AZ, USA
| | - K R Swanson
- Precision Neurotherapeutics Innovation Program, Mayo Clinic, Phoenix, AZ, USA
| | - H Hatzikirou
- Department of Systems Immunology and Braunschweig Integrated Centre of Systems Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany.,Centre for Information Services and High Performance Computing, Technische Universität Dresden, Germany
| | - A Deutsch
- Centre for Information Services and High Performance Computing, Technische Universität Dresden, Germany
| |
Collapse
|
62
|
Bonomi RE, Kovoor J, Zaki M, Szlaczky M, Christensen M, Kupsky W, Barger G, Miller S, Dominello MM. Glioblastoma metastatic to the ovary, a very different Krukenberg tumor? Pract Radiat Oncol 2018; 8:373-375. [PMID: 29861347 DOI: 10.1016/j.prro.2018.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 03/22/2018] [Accepted: 04/02/2018] [Indexed: 10/17/2022]
Affiliation(s)
- Robin E Bonomi
- Wayne State University School of Medicine, Detroit, Michigan.
| | - Josh Kovoor
- Wayne State University School of Medicine, Detroit, Michigan
| | - Mark Zaki
- Department of Radiation Oncology, Covenant Health System, Saginaw, Michigan
| | - Mark Szlaczky
- Department of Radiation Oncology, Karmanos Cancer Institute, Detroit, Michigan
| | - Michael Christensen
- Department of Radiation Oncology, Wheaton Francisican Healthcare, Racine, Wisconsin
| | - William Kupsky
- Department of Radiation Oncology, Karmanos Cancer Institute, Detroit, Michigan
| | - Geoffrey Barger
- Department of Radiation Oncology, Karmanos Cancer Institute, Detroit, Michigan
| | - Steven Miller
- Department of Radiation Oncology, Karmanos Cancer Institute, Detroit, Michigan
| | - Michael M Dominello
- Department of Radiation Oncology, Karmanos Cancer Institute, Detroit, Michigan
| |
Collapse
|
63
|
Du Y, Lu T, Huang S, Ren F, Cui G, Chen J. Somatic mutation landscape of a meningioma and its pulmonary metastasis. Cancer Commun (Lond) 2018; 38:16. [PMID: 29764516 PMCID: PMC5993143 DOI: 10.1186/s40880-018-0291-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Accepted: 04/25/2018] [Indexed: 01/06/2023] Open
Abstract
Background Extracranial metastasis (ENM) of meningiomas is extremely rare, and typically occurs several years after a primary tumor is diagnosed. However, the genetic changes underlying ENM events have not yet been investigated. Case presentation A 58-year-old male patient was sent to the emergency room of our hospital because of a sudden fall. Magnetic resonance imaging detected a mass at the right frontal sagittal sinus. He underwent tumor resection and recovered well, but post-operative computed tomography revealed three lumps on the right side of his chest. Thoracic surgery was performed to remove two of the lumps. Pathological findings revealed that the brain and lung tumors were grade I meningiomas. The patient received no additional radiation or chemotherapy post-surgery, and there was no sign of tumor recurrence in the brain or progression of the remaining lump in the chest 1 year after surgery. We performed whole exome sequencing of the patient’s blood, primary brain tumor, and lung metastatic tumor tissues to identify somatic genetic alterations that had occurred during ENM. This revealed that a frameshift deletion of the neurofibromin 2 gene likely drove formation of the meningioma. Surprisingly, we found that the brain tumor was relatively homogeneous and contained only one dominant clone; both the pulmonary metastasis and the original brain tumor were derived from the same clone, and no obvious additional driver mutations were detected in the metastatic tumor. Conclusion Although ENM of meningiomas is very rare, brain tumor cells appear to be more adaptable to tissue microenvironments outside of the central nervous system than was commonly thought.
Collapse
Affiliation(s)
- Yaran Du
- Institute of Functional Nano and Soft Materials (FUNSOM) & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, 215123, P. R. China
| | - Ting Lu
- Department of Neurosurgery, First Affiliated Hospital of Soochow University, Suzhou, 215006, P. R. China
| | - Song Huang
- National Institute of Biological Sciences, Beijing, 102206, P. R. China
| | - Fangfang Ren
- Department of Biochemistry and Molecular Biology, Soochow University Medical College, Suzhou, 215123, P. R. China
| | - Gang Cui
- Department of Neurosurgery, First Affiliated Hospital of Soochow University, Suzhou, 215006, P. R. China
| | - Jian Chen
- Institute of Functional Nano and Soft Materials (FUNSOM) & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, 215123, P. R. China.
| |
Collapse
|
64
|
Abstract
Lung transplantation has become an efficient life-saving treatment for patients with end stage respiratory disease. The increasing good outcome following lung transplantation may be explained by growing experience of transplant teams and availability of potent immunosuppressive drugs. Nevertheless, the latter carries an inherent risk for malignancy besides other common side effects such as systemic hypertension, diabetes and renal dysfunction. Malignancies occur in a smaller proportion of patients but explain for a large proportion of deaths following transplantation. From the first year post-transplantation they will represent the third cause of death with an increasing incidence along post lung transplant survival. In this chapter, we will browse the different types of malignancies arising following lung transplantation. According to the different techniques for lung transplantation, specific types of bronchogenic carcinoma will be described in the explanted lung, in the native lung, and in the graft. Risk factors associated to immunosuppressive therapy, but also to occupational and environmental factors, especially smoking, will be discussed. Eventually, we will strive at integrating recommendations for the treatment of malignancies following lung transplantation.
Collapse
Affiliation(s)
- Anne Olland
- Lung Transplantation Group, University Hospital Strasbourg, Strasbourg, France.,INSERM (French institute for health and medical research) 1260 Regenerative Nanomedecine, Translational Medicine Federation of Strasbourg, University of Strasbourg, Strasbourg, France
| | - Pierre-Emmanuel Falcoz
- Lung Transplantation Group, University Hospital Strasbourg, Strasbourg, France.,INSERM (French institute for health and medical research) 1260 Regenerative Nanomedecine, Translational Medicine Federation of Strasbourg, University of Strasbourg, Strasbourg, France
| | - Gilbert Massard
- Lung Transplantation Group, University Hospital Strasbourg, Strasbourg, France.,INSERM (French institute for health and medical research) 1260 Regenerative Nanomedecine, Translational Medicine Federation of Strasbourg, University of Strasbourg, Strasbourg, France
| |
Collapse
|
65
|
Migration/Invasion of Malignant Gliomas and Implications for Therapeutic Treatment. Int J Mol Sci 2018; 19:ijms19041115. [PMID: 29642503 PMCID: PMC5979613 DOI: 10.3390/ijms19041115] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 03/22/2018] [Accepted: 04/03/2018] [Indexed: 02/07/2023] Open
Abstract
Malignant tumors of the central nervous system (CNS) are among cancers with the poorest prognosis, indicated by their association with tumors of high-level morbidity and mortality. Gliomas, the most common primary CNS tumors that arise from neuroglial stem or progenitor cells, have estimated annual incidence of 6.6 per 100,000 individuals in the USA, and 3.5 per 100,000 individuals in Taiwan. Tumor invasion and metastasis are the major contributors to the deaths in cancer patients. Therapeutic goals including cancer stem cells (CSC), phenotypic shifts, EZH2/AXL/TGF-β axis activation, miRNAs and exosomes are relevant to GBM metastasis to develop novel targeted therapeutics for GBM and other brain cancers. Herein, we highlight tumor metastasis in our understanding of gliomas, and illustrate novel exosome therapeutic approaches in glioma, thereby paving the way towards innovative therapies in neuro-oncology.
Collapse
|
66
|
Gene therapy for human glioblastoma using neurotropic JC virus-like particles as a gene delivery vector. Sci Rep 2018; 8:2213. [PMID: 29396437 PMCID: PMC5797127 DOI: 10.1038/s41598-018-19825-w] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 01/09/2018] [Indexed: 01/10/2023] Open
Abstract
Glioblastoma multiforme (GBM), the most common malignant brain tumor, has a short period of survival even with recent multimodality treatment. The neurotropic JC polyomavirus (JCPyV) infects glial cells and oligodendrocytes and causes fatal progressive multifocal leukoencephalopathy in patients with AIDS. In this study, a possible gene therapy strategy for GBM using JCPyV virus-like particles (VLPs) as a gene delivery vector was investigated. We found that JCPyV VLPs were able to deliver the GFP reporter gene into tumor cells (U87-MG) for expression. In an orthotopic xenograft model, nude mice implanted with U87 cells expressing the near-infrared fluorescent protein and then treated by intratumoral injection of JCPyV VLPs carrying the thymidine kinase suicide gene, combined with ganciclovir administration, exhibited significantly prolonged survival and less tumor fluorescence during the experiment compared with controls. Furthermore, JCPyV VLPs were able to protect and deliver a suicide gene to distal subcutaneously implanted U87 cells in nude mice via blood circulation and inhibit tumor growth. These findings show that metastatic brain tumors can be targeted by JCPyV VLPs carrying a therapeutic gene, thus demonstrating the potential of JCPyV VLPs to serve as a gene therapy vector for the far highly treatment-refractory GBM.
Collapse
|
67
|
Role of Microenvironment in Glioma Invasion: What We Learned from In Vitro Models. Int J Mol Sci 2018; 19:ijms19010147. [PMID: 29300332 PMCID: PMC5796096 DOI: 10.3390/ijms19010147] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 12/30/2017] [Accepted: 12/31/2017] [Indexed: 12/21/2022] Open
Abstract
The invasion properties of glioblastoma hamper a radical surgery and are responsible for its recurrence. Understanding the invasion mechanisms is thus critical to devise new therapeutic strategies. Therefore, the creation of in vitro models that enable these mechanisms to be studied represents a crucial step. Since in vitro models represent an over-simplification of the in vivo system, in these years it has been attempted to increase the level of complexity of in vitro assays to create models that could better mimic the behaviour of the cells in vivo. These levels of complexity involved: 1. The dimension of the system, moving from two-dimensional to three-dimensional models; 2. The use of microfluidic systems; 3. The use of mixed cultures of tumour cells and cells of the tumour micro-environment in order to mimic the complex cross-talk between tumour cells and their micro-environment; 4. And the source of cells used in an attempt to move from commercial lines to patient-based models. In this review, we will summarize the evidence obtained exploring these different levels of complexity and highlighting advantages and limitations of each system used.
Collapse
|
68
|
Lin X, Yang B, Liu W, Tan X, Wu F, Hu P, Jiang T, Bao Z, Yuan J, Qiang B, Peng X, Han W. Interplay between PCBP2 and miRNA modulates ARHGDIA expression and function in glioma migration and invasion. Oncotarget 2017; 7:19483-98. [PMID: 26761212 PMCID: PMC4991396 DOI: 10.18632/oncotarget.6869] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 01/03/2016] [Indexed: 01/09/2023] Open
Abstract
RNA-RNA and protein-RNA interactions are essential for post-transcriptional regulationin normal development and may be deregulated in cancer initiation and progression. The RNA-binding protein PCBP2, an oncogenic protein in human malignant gliomas, is an essential regulator of mRNA and miRNA biogenesis, stability and activity. Here, we identified Rho GDP dissociation inhibitor α (ARHGDIA) as a target mRNA that binds to PCBP2, and we uncovered the role of ARHGDIA as a putative metastasis suppressor through analyses of in vitro and in vivo models of EMT and metastasis. Furthermore, we demonstrated that ARHGDIA is a potential target of miR-151-5p and miR-16 in gliomas. The interaction between PCBP2 and the 3′UTR of the ARHGDIA mRNA may induce a local change in RNA structure that favors subsequent binding of miR-151-5p and miR-16, thus leading to the suppression of ARHGDIA expression. PCBP2 may facilitate miR-151-5p and miR-16 promotion of glioma cell migration and invasion through mitigating the function of ARHGDIA.
Collapse
Affiliation(s)
- Xihua Lin
- Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Bin Yang
- Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Wei Liu
- Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Xiaochao Tan
- Department of Thoracic/Head and Neck Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Fan Wu
- Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Peishan Hu
- Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Tao Jiang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Zhaoshi Bao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Jiangang Yuan
- Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Boqin Qiang
- Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Xiaozhong Peng
- Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Wei Han
- Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| |
Collapse
|
69
|
The Molecular and Phenotypic Basis of the Glioma Invasive Perivascular Niche. Int J Mol Sci 2017; 18:ijms18112342. [PMID: 29113105 PMCID: PMC5713311 DOI: 10.3390/ijms18112342] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Revised: 10/20/2017] [Accepted: 10/30/2017] [Indexed: 01/28/2023] Open
Abstract
Gliomas are devastating brain cancers that have poor prognostic outcomes for their patients. Short overall patient survival is due to a lack of durable, efficacious treatment options. Such therapeutic difficulties exist, in part, due to several glioma survival adaptations and mechanisms, which allow glioma cells to repurpose paracrine signalling pathways and ion channels within discreet microenvironments. These Darwinian adaptations facilitate invasion into brain parenchyma and perivascular space or promote evasion from anti-cancer defence mechanisms. Ultimately, this culminates in glioma repopulation and migration at distances beyond the original tumour site, which is a considerable obstacle for effective treatment. After an era of failed phase II trials targeting individual signalling pathways, coupled to our increasing knowledge of glioma sub-clonal divergence, combinatorial therapeutic approaches which target multiple molecular pathways and mechanisms will be necessary for better treatment outcomes in treating malignant gliomas. Furthermore, next-generation therapy which focuses on infiltrative tumour phenotypes and disruption of the vascular and perivascular microenvironments harbouring residual disease cells offers optimism for the localised control of malignant gliomas.
Collapse
|
70
|
Thompson EG, Sontheimer H. A role for ion channels in perivascular glioma invasion. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2016; 45:635-648. [PMID: 27424110 DOI: 10.1007/s00249-016-1154-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2016] [Revised: 06/21/2016] [Accepted: 07/01/2016] [Indexed: 11/28/2022]
Abstract
Malignant gliomas are devastating tumors, frequently killing those diagnosed in little over a year. The profuse infiltration of glioma cells into healthy tissue surrounding the main tumor mass is one of the major obstacles limiting the improvement of patient survival. Migration along the abluminal side of blood vessels is one of the salient features of glioma cell invasion. Invading glioma cells are attracted to the vascular network, in part by the neuropeptide bradykinin, where glioma cells actively modify the gliovascular interface and undergo volumetric alterations to navigate the confined space. Critical to these volume modifications is a proposed hydrodynamic model that involves the flux of ions in and out of the cell, followed by osmotically obligated water. Ion and water channels expressed by the glioma cell are essential in this model of invasion and make opportune therapeutic targets. Lastly, there is growing evidence that vascular-associated glioma cells are able to control the vascular tone, presumably to free up space for invasion and growth. The unique mechanisms that enable perivascular glioma invasion may offer critical targets for therapeutic intervention in this devastating disease. Indeed, a chloride channel-blocking peptide has already been successfully tested in human clinical trials.
Collapse
Affiliation(s)
- Emily G Thompson
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL, USA.,Center for Glial Biology in Health, Disease, and Cancer, Virginia Tech Carilion Research Institute, Roanoke, VA, USA
| | - Harald Sontheimer
- Center for Glial Biology in Health, Disease, and Cancer, Virginia Tech Carilion Research Institute, Roanoke, VA, USA. .,Virginia Tech School of Neuroscience, Blacksburg, VA, USA.
| |
Collapse
|
71
|
Touat M, Duran-Peña A, Alentorn A, Lacroix L, Massard C, Idbaih A. Emerging circulating biomarkers in glioblastoma: promises and challenges. Expert Rev Mol Diagn 2016; 15:1311-23. [PMID: 26394701 DOI: 10.1586/14737159.2015.1087315] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Glioblastoma (GBM) is the most common and devastating primary malignant brain tumor in adults. The past few years have seen major progress in our understanding of the molecular basis of GBM. These advances, which have contributed to the development of novel targeted therapies, will change the paradigms in GBM therapy from disease-based to individually tailored molecular target-based treatment. No validated circulating biomarkers have yet been integrated into clinical practice for GBM. There is thus a critical need to implement minimally invasive clinical tests enabling molecular stratification and prognosis assessment, as well as the prediction and monitoring of treatment response. After examination of data from recent studies exploring several categories of tumor-associated biomarkers (circulating tumor cells, extracellular vesicles, nucleic acids and oncometabolites) identified in the blood, cerebrospinal fluid and urine, this article discusses the challenges and prospects for the development of circulating biomarkers in GBM.
Collapse
Affiliation(s)
- Mehdi Touat
- a 1 Inserm U981, Université Paris Sud, Gustave Roussy, F-94805 Villejuif, France.,b 2 Département d'innovations thérapeutiques précoces, Gustave Roussy, F-94805 Villejuif, France
| | - Alberto Duran-Peña
- c 3 AP-HP, Hôpital Universitaire la Pitié Salpêtrière, Service de Neurologie 2-Mazarin, F-75013, Paris, France
| | - Agusti Alentorn
- c 3 AP-HP, Hôpital Universitaire la Pitié Salpêtrière, Service de Neurologie 2-Mazarin, F-75013, Paris, France.,d 4 Inserm U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06, Institut du Cerveau et de la Moelle épinière, ICM, F-75013, Paris, France
| | - Ludovic Lacroix
- a 1 Inserm U981, Université Paris Sud, Gustave Roussy, F-94805 Villejuif, France.,e 5 Département de biologie médicale et de pathologie, Gustave Roussy, F-94805 Villejuif, France.,f 6 Laboratoire de recherche translationnelle et centre de ressources biologiques, Gustave Roussy, F-94805 Villejuif, France
| | - Christophe Massard
- a 1 Inserm U981, Université Paris Sud, Gustave Roussy, F-94805 Villejuif, France.,b 2 Département d'innovations thérapeutiques précoces, Gustave Roussy, F-94805 Villejuif, France
| | - Ahmed Idbaih
- c 3 AP-HP, Hôpital Universitaire la Pitié Salpêtrière, Service de Neurologie 2-Mazarin, F-75013, Paris, France.,d 4 Inserm U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06, Institut du Cerveau et de la Moelle épinière, ICM, F-75013, Paris, France
| |
Collapse
|
72
|
Xu M, Wang Y, Xu J, Yao Y, Yu WX, Zhong P. Extensive Therapies for Extraneural Metastases from Glioblastoma, as Confirmed with the OncoScan Assay. World Neurosurg 2016; 90:698.e7-698.e11. [DOI: 10.1016/j.wneu.2016.01.074] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2015] [Revised: 01/27/2016] [Accepted: 01/27/2016] [Indexed: 11/28/2022]
|
73
|
Kumar V, Singh D, Singh H, Saran RK. A case report of pontine glioblastoma presenting as subcutaneous metastasis in nape of neck in a child. J Pediatr Neurosci 2016; 10:386-8. [PMID: 26962352 PMCID: PMC4770658 DOI: 10.4103/1817-1745.174458] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Glioblastoma (GBM) is the most common malignant tumor in adults. Extracranial metastasis of GBM is very rare. The incidence of brainstem glioblastoma is not known due to low biopsy and resection rates. In this case report, we experienced an 11-year-old male who was diagnosed as a case of pontine GBM after biopsy of lesion and underwent radiotherapy with adjuvant chemotherapy. He presented with a subcutaneous swelling in the nape of neck 1 year after the first procedure. Swelling was excised. Pathological examination and immunohistochemical staining confirmed it as GBM. This case shows us that GBM can at times present as a swelling in soft tissue.
Collapse
Affiliation(s)
- Vikas Kumar
- Department of Neurosurgery, G. B. Pant Institute of Postgraduate Medical Education and Research, New Delhi, India
| | - Daljit Singh
- Department of Neurosurgery, G. B. Pant Institute of Postgraduate Medical Education and Research, New Delhi, India
| | - Hukum Singh
- Department of Neurosurgery, G. B. Pant Institute of Postgraduate Medical Education and Research, New Delhi, India
| | - Ravindra Kumar Saran
- Department of Pathology, G. B. Pant Institute of Postgraduate Medical Education and Research, New Delhi, India
| |
Collapse
|
74
|
Monzo P, Chong YK, Guetta-Terrier C, Krishnasamy A, Sathe SR, Yim EKF, Ng WH, Ang BT, Tang C, Ladoux B, Gauthier NC, Sheetz MP. Mechanical confinement triggers glioma linear migration dependent on formin FHOD3. Mol Biol Cell 2016; 27:1246-61. [PMID: 26912794 PMCID: PMC4831879 DOI: 10.1091/mbc.e15-08-0565] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 02/18/2016] [Indexed: 12/12/2022] Open
Abstract
Glioblastomas are extremely aggressive brain tumors with highly invasive properties. Brain linear tracks such as blood vessel walls constitute their main invasive routes. Here we analyze rat C6 and patient-derived glioma cell motility in vitro using micropatterned linear tracks to mimic blood vessels. On laminin-coated tracks (3-10 μm), these cells used an efficient saltatory mode of migration similar to their in vivo migration. This saltatory migration was also observed on larger tracks (50-400 μm in width) at high cell densities. In these cases, the mechanical constraints imposed by neighboring cells triggered this efficient mode of migration, resulting in the formation of remarkable antiparallel streams of cells along the tracks. This motility involved microtubule-dependent polarization, contractile actin bundles and dynamic paxillin-containing adhesions in the leading process and in the tail. Glioma linear migration was dramatically reduced by inhibiting formins but, surprisingly, accelerated by inhibiting Arp2/3. Protein expression and phenotypic analysis indicated that the formin FHOD3 played a role in this motility but not mDia1 or mDia2. We propose that glioma migration under confinement on laminin relies on formins, including FHOD3, but not Arp2/3 and that the low level of adhesion allows rapid antiparallel migration.
Collapse
Affiliation(s)
- Pascale Monzo
- Mechanobiology Institute, National University of Singapore, Singapore 117411
| | | | | | - Anitha Krishnasamy
- Mechanobiology Institute, National University of Singapore, Singapore 117411
| | - Sharvari R Sathe
- Mechanobiology Institute, National University of Singapore, Singapore 117411
| | - Evelyn K F Yim
- Mechanobiology Institute, National University of Singapore, Singapore 117411 Department of Biomedical Engineering, National University of Singapore, Singapore 117575 Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228
| | - Wai Hoe Ng
- National Neuroscience Institute, Singapore 308433 Duke-NUS Graduate Medical School, Singapore 169857
| | - Beng Ti Ang
- National Neuroscience Institute, Singapore 308433 Duke-NUS Graduate Medical School, Singapore 169857 Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597 Singapore Institute for Clinical Sciences, A*STAR, Singapore 117609
| | - Carol Tang
- National Neuroscience Institute, Singapore 308433 Duke-NUS Graduate Medical School, Singapore 169857 Humphrey Oei Institute of Cancer Research, National Cancer Centre, Singapore 169610
| | - Benoit Ladoux
- Mechanobiology Institute, National University of Singapore, Singapore 117411 Institut Jacques Monod, Université Paris Diderot and CNRS UMR 7592, 75205 Paris, France
| | - Nils C Gauthier
- Mechanobiology Institute, National University of Singapore, Singapore 117411 National Neuroscience Institute, Singapore 308433
| | - Michael P Sheetz
- Mechanobiology Institute, National University of Singapore, Singapore 117411 Department of Biological Sciences, Columbia University, New York, NY 10027
| |
Collapse
|
75
|
Lee SJ, Kang WY, Yoon Y, Jin JY, Song HJ, Her JH, Kang SM, Hwang YK, Kang KJ, Joo KM, Nam DH. Natural killer (NK) cells inhibit systemic metastasis of glioblastoma cells and have therapeutic effects against glioblastomas in the brain. BMC Cancer 2015; 15:1011. [PMID: 26704632 PMCID: PMC4690248 DOI: 10.1186/s12885-015-2034-y] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 12/17/2015] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Glioblastoma multiforme (GBM) is characterized by extensive local invasion, which is in contrast with extremely rare systemic metastasis of GBM. Molecular mechanisms inhibiting systemic metastasis of GBM would be a novel therapeutic candidate for GBM in the brain. METHODS Patient-derived GBM cells were primarily cultured from surgical samples of GBM patients and were inoculated into the brains of immune deficient BALB/c-nude or NOD-SCID IL2Rgamma(null) (NSG) mice. Human NK cells were isolated from peripheral blood mononucleated cells and expanded in vitro. RESULTS Patient-derived GBM cells in the brains of NSG mice unexpectedly induced spontaneous lung metastasis although no metastasis was detected in BALB/c-nude mice. Based on the difference of the innate immunity between two mouse strains, NK cell activities of orthotopic GBM xenograft models based on BALB/c-nude mice were inhibited. NK cell inactivation induced spontaneous lung metastasis of GBM cells, which indicated that NK cells inhibit the systemic metastasis. In vitro cytotoxic activities of human NK cells against GBM cells indicated that cytotoxic activity of NK cells against GBM cells prevents systemic metastasis of GBM and that NK cells could be effective cell therapeutics against GBM. Accordingly, NK cells transplanted into orthotopic GBM xenograft models intravenously or intratumorally induced apoptosis of GBM cells in the brain and showed significant therapeutic effects. CONCLUSIONS Our results suggest that innate NK immunity is responsible for rare systemic metastasis of GBM and that sufficient supplementation of NK cells could be a promising immunotherapeutic strategy for GBM in the brain.
Collapse
Affiliation(s)
- Se Jeong Lee
- Department of Anatomy and Cell Biology, Sungkyunkwan University School of Medicine, 2066, Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do, 16419, South Korea.
| | - Won Young Kang
- Department of Neurosurgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, 50 Ilwon-Dong, Gangnam-Gu, Seoul, 06351, South Korea. .,Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, 50 Ilwon-Dong, Gangnam-Gu, Seoul, 06351, South Korea.
| | - Yeup Yoon
- Department of Neurosurgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, 50 Ilwon-Dong, Gangnam-Gu, Seoul, 06351, South Korea. .,Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, 50 Ilwon-Dong, Gangnam-Gu, Seoul, 06351, South Korea.
| | - Ju Youn Jin
- Department of Neurosurgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, 50 Ilwon-Dong, Gangnam-Gu, Seoul, 06351, South Korea.
| | - Hye Jin Song
- Department of Anatomy and Cell Biology, Sungkyunkwan University School of Medicine, 2066, Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do, 16419, South Korea.
| | - Jung Hyun Her
- Cell Therapy Team, Mogam Biotechnology Institute, Yongin, 16928, South Korea.
| | - Sang Mi Kang
- Cell Therapy Team, Mogam Biotechnology Institute, Yongin, 16928, South Korea.
| | - Yu Kyeong Hwang
- Cell Therapy Team, Mogam Biotechnology Institute, Yongin, 16928, South Korea.
| | - Kyeong Jin Kang
- Department of Anatomy and Cell Biology, Sungkyunkwan University School of Medicine, 2066, Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do, 16419, South Korea.
| | - Kyeung Min Joo
- Department of Anatomy and Cell Biology, Sungkyunkwan University School of Medicine, 2066, Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do, 16419, South Korea. .,Department of Neurosurgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, 50 Ilwon-Dong, Gangnam-Gu, Seoul, 06351, South Korea. .,Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, 50 Ilwon-Dong, Gangnam-Gu, Seoul, 06351, South Korea. .,Department of Anatomy and Cell Biology, Sungkyunkwan University School of Medicine, 50 Ilwon-Dong, Gangnam-Gu, Seoul, 06351, South Korea.
| | - Do-Hyun Nam
- Department of Neurosurgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, 50 Ilwon-Dong, Gangnam-Gu, Seoul, 06351, South Korea. .,Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, 50 Ilwon-Dong, Gangnam-Gu, Seoul, 06351, South Korea.
| |
Collapse
|
76
|
Wang TL, Lin CL, Tsai SY, Lieu AS. Regional skin invasion by glioblastoma multiforme. FORMOSAN JOURNAL OF SURGERY 2015. [DOI: 10.1016/j.fjs.2015.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
77
|
Cachia D, Kamiya-Matsuoka C, Mandel JJ, Olar A, Cykowski MD, Armstrong TS, Fuller GN, Gilbert MR, De Groot JF. Primary and secondary gliosarcomas: clinical, molecular and survival characteristics. J Neurooncol 2015; 125:401-10. [PMID: 26354773 DOI: 10.1007/s11060-015-1930-y] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Accepted: 09/07/2015] [Indexed: 11/25/2022]
Abstract
Gliosarcoma is classified by the World Health Organization as a variant of glioblastoma. These tumors exhibit biphasic histologic and immunophenotypic features, reflecting both glial and mesenchymal differentiation. Gliosarcomas can be further classified into primary (de novo) tumors, and secondary gliosarcomas, which are diagnosed at recurrence after a diagnosis of glioblastoma. Using a retrospective review, patients seen at MD Anderson Cancer Center between 2004 and 2014 with a pathology-confirmed diagnosis of gliosarcoma were identified. 34 patients with a diagnosis of gliosarcoma seen at the time of initial diagnosis or at recurrence were identified (24 primary gliosarcomas (PGS), 10 secondary gliosarcomas (SGS)). Molecular analysis performed on fourteen patients revealed a high incidence of TP53 mutations and, rarely, EGFR and IDH mutations. Median overall survival (OS) for all patients was 17.5 months from the diagnosis of gliosarcoma, with a progression free survival (PFS) of 6.4 months. Comparing PGS with SGS, the median OS was 24.7 and 8.95 months, respectively (from the time of sarcomatous transformation in the case of SGS). The median OS in SGS patients from the initial diagnosis of GB was 25 months, with a PFS of 10.7 months. Molecular analysis revealed a higher than expected rate of TP53 mutations in GS patients and, typical of primary glioblastoma, IDH mutations were uncommon. Though our data shows improved outcomes for both PGS and SGS when compared to the literature, this is most likely a reflection of selection bias of patients treated on clinical trials at a quaternary center.
Collapse
Affiliation(s)
- David Cachia
- Department of Neurosurgery, Medical University of South Carolina, 96 Jonathan Lucas St, Charleston, SC, 29425, USA.
| | - Carlos Kamiya-Matsuoka
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, 77030, USA
| | - Jacob J Mandel
- Department of Neurology, Baylor College of Medicine, 6550 Fannin St, Houston, TX, 77030, USA
| | - Adriana Olar
- Department of Pathology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, 77030, USA
| | - Matthew D Cykowski
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, 6565 Fannin Street, Houston, TX, 77030, USA
| | - Terri S Armstrong
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, 77030, USA
- Department of Family Health, The University of Texas Health Science Center School of Nursing, 6901 Bertner Ave, Houston, TX, USA
| | - Gregory N Fuller
- Department of Pathology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, 77030, USA
| | - Mark R Gilbert
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, Building 82, Bethesda, MD, 20892, USA
| | - John F De Groot
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, 77030, USA
| |
Collapse
|
78
|
Extraneural metastases in glioblastoma patients: two cases with YKL-40-positive glioblastomas and a meta-analysis of the literature. Neurosurg Rev 2015. [PMID: 26212701 DOI: 10.1007/s10143-015-0656-9] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Glioblastoma (GBM) are high-grade gliomas that severely impact on overall survival (OS). GBM cell motility and the breakdown of the blood-brain barrier could favor GBM cell communication with the systemic circulation. In spite of this, extracranial GBM metastases are rare. Here, we describe two YKL-40-positive GBM patients with extra-CNS (central nervous system) metastases, and we present a meta-analysis of 94 cases. The analysis concluded that extra-CNS metastases occurred 8.5 months after first GBM diagnosis and OS was 12 months; surgical GBM excision was associated at a longer interval to extra-CNS metastasis than biopsy only, and even longer if followed by radiotherapy and chemotherapy. Both our case reports were adult males who developed extra-CNS, YKL-40-positive metastases at lymph nodes, lung and subcutaneous sites, after 86 and 24 months from initial diagnosis of GBM. At first GBM local recurrence, they were treated with bevacizumab (BV), an anti-vascular endothelial growth factor antibody. They died after 4 and 1 month from the occurrence of metastases. Both cases expressed YKL-40 and lacked EGFR amplification, suggesting a mesenchymal phenotype, and maintained such profile at extra-CNS recurrence; they did not show MGMT promoter methylation, IDH1/2 mutations, or c-Met upregulation. Our two cases and the meta-analysis support the idea that prolonged survival of GBM patients increases the probability of GBM cells shedding to lymphatic and hematic system. Interestingly, the present two cases showed the features of mesenchymal profile, usually related with worst prognosis that was maintained in extracranial metastases.
Collapse
|
79
|
Awan M, Liu S, Sahgal A, Das S, Chao ST, Chang EL, Knisely JPS, Redmond K, Sohn JW, Machtay M, Sloan AE, Mansur DB, Rogers LR, Lo SS. Extra-CNS metastasis from glioblastoma: a rare clinical entity. Expert Rev Anticancer Ther 2015; 15:545-52. [DOI: 10.1586/14737140.2015.1028374] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
80
|
Seyfried TN, Flores R, Poff AM, D'Agostino DP, Mukherjee P. Metabolic therapy: a new paradigm for managing malignant brain cancer. Cancer Lett 2014; 356:289-300. [PMID: 25069036 DOI: 10.1016/j.canlet.2014.07.015] [Citation(s) in RCA: 127] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Revised: 07/09/2014] [Accepted: 07/10/2014] [Indexed: 01/18/2023]
Abstract
Little progress has been made in the long-term management of glioblastoma multiforme (GBM), considered among the most lethal of brain cancers. Cytotoxic chemotherapy, steroids, and high-dose radiation are generally used as the standard of care for GBM. These procedures can create a tumor microenvironment rich in glucose and glutamine. Glucose and glutamine are suggested to facilitate tumor progression. Recent evidence suggests that many GBMs are infected with cytomegalovirus, which could further enhance glucose and glutamine metabolism in the tumor cells. Emerging evidence also suggests that neoplastic macrophages/microglia, arising through possible fusion hybridization, can comprise an invasive cell subpopulation within GBM. Glucose and glutamine are major fuels for myeloid cells, as well as for the more rapidly proliferating cancer stem cells. Therapies that increase inflammation and energy metabolites in the GBM microenvironment can enhance tumor progression. In contrast to current GBM therapies, metabolic therapy is designed to target the metabolic malady common to all tumor cells (aerobic fermentation), while enhancing the health and vitality of normal brain cells and the entire body. The calorie restricted ketogenic diet (KD-R) is an anti-angiogenic, anti-inflammatory and pro-apoptotic metabolic therapy that also reduces fermentable fuels in the tumor microenvironment. Metabolic therapy, as an alternative to the standard of care, has the potential to improve outcome for patients with GBM and other malignant brain cancers.
Collapse
Affiliation(s)
| | | | - Angela M Poff
- Department of Molecular Pharmacology and Physiology, University of South Florida, 33612 Tampa, FL, USA
| | - Dominic P D'Agostino
- Department of Molecular Pharmacology and Physiology, University of South Florida, 33612 Tampa, FL, USA
| | | |
Collapse
|
81
|
Cuddapah VA, Robel S, Watkins S, Sontheimer H. A neurocentric perspective on glioma invasion. Nat Rev Neurosci 2014; 15:455-65. [PMID: 24946761 PMCID: PMC5304245 DOI: 10.1038/nrn3765] [Citation(s) in RCA: 546] [Impact Index Per Article: 54.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Malignant gliomas are devastating tumours that frequently kill patients within 1 year of diagnosis. The major obstacle to a cure is diffuse invasion, which enables tumours to escape complete surgical resection and chemo- and radiation therapy. Gliomas use the same tortuous extracellular routes of migration that are travelled by immature neurons and stem cells, frequently using blood vessels as guides. They repurpose ion channels to dynamically adjust their cell volume to accommodate to narrow spaces and breach the blood-brain barrier through disruption of astrocytic endfeet, which envelop blood vessels. The unique biology of glioma invasion provides hitherto unexplored brain-specific therapeutic targets for this devastating disease.
Collapse
Affiliation(s)
- Vishnu Anand Cuddapah
- Department of Neurobiology, Center for Glial Biology in Medicine, University of Alabama at Birmingham, 1719 6th Avenue South, CIRC 425, Birmingham, Alabama 35294, USA
| | - Stefanie Robel
- Department of Neurobiology, Center for Glial Biology in Medicine, University of Alabama at Birmingham, 1719 6th Avenue South, CIRC 425, Birmingham, Alabama 35294, USA
| | - Stacey Watkins
- Department of Neurobiology, Center for Glial Biology in Medicine, University of Alabama at Birmingham, 1719 6th Avenue South, CIRC 425, Birmingham, Alabama 35294, USA
| | - Harald Sontheimer
- Department of Neurobiology, Center for Glial Biology in Medicine, University of Alabama at Birmingham, 1719 6th Avenue South, CIRC 425, Birmingham, Alabama 35294, USA
| |
Collapse
|
82
|
Orza A, Casciano D, Biris A. Nanomaterials for targeted drug delivery to cancer stem cells. Drug Metab Rev 2014; 46:191-206. [DOI: 10.3109/03602532.2014.900566] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
83
|
Vandenbussche CJ, Ho CY, Nugent SL, Ali SZ. Extraneural metastases of primary central nervous system tumors identified by fine needle aspiration: a retrospective analysis. Acta Cytol 2014; 58:117-24. [PMID: 24434504 DOI: 10.1159/000357025] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Accepted: 10/31/2013] [Indexed: 01/26/2023]
Abstract
OBJECTIVE Extraneural metastasis (EM) of primary central nervous system (PCNS) neoplasms is rare and signifies a poor clinical outcome. Due to its infrequent occurrence, relatively few reports on the cytomorphology of these neoplasms have been published. We describe a series of 19 cases from 16 patients at a single, large tertiary care center. STUDY DESIGN A retrospective analysis of 19 cases of metastases from PCNS neoplasms identified on fine needle aspiration (FNA) in 8 male and 8 female patients aged 14-72 years (mean age 39.6) from 1989 to 2013 was conducted to further characterize the cytomorphologic features identified at metastatic sites. RESULTS Six different PCNS neoplasms were identified: meningioma, glioblastoma, hemangiopericytoma (HPC), oligodendroglioma, medulloblastoma, and retinoblastoma. The mean latency period between the diagnoses of the primary and first metastatic tumors was 7.4 years (range 0-15). The most common PCNS malignancy responsible for EM was HPC. The most common metastatic sites were the lung (31%) and soft tissue/bone (31%). CONCLUSIONS EM of PCNS tumors is extremely rare. FNA allows for quick, safe and accurate diagnosis. Cytomorphologic features are characteristic, and in conjunction with the clinical history and immunohistochemistry, an accurate diagnosis was obtained in 100% of the cases.
Collapse
|
84
|
Sha SJ, Wu HP, Lu K, Chen HJ, Huang PH, Huang SH, Hsu CT. Extraneural metastases of anaplastic oligodendroglioma. APMIS 2014; 122:660-2. [PMID: 24373094 DOI: 10.1111/apm.12206] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Accepted: 08/30/2013] [Indexed: 11/30/2022]
Affiliation(s)
- Shing-Jia Sha
- Department of Pathology, New Taipei City Hospital, New Taipei City, Taiwan.
| | | | | | | | | | | | | |
Collapse
|
85
|
FTIR spectro-imaging of collagen scaffold formation during glioma tumor development. Anal Bioanal Chem 2013; 405:8729-36. [PMID: 24068168 DOI: 10.1007/s00216-013-7337-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Revised: 08/29/2013] [Accepted: 08/31/2013] [Indexed: 01/14/2023]
Abstract
Evidence has recently emerged that solid and diffuse tumors produce a specific extracellular matrix (ECM) for division and diffusion, also developing a specific interface with microvasculature. This ECM is mainly composed of collagens and their scaffolding appears to drive tumor growth. Although collagens are not easily analyzable by UV-fluorescence means, FTIR imaging has appeared as a valuable tool to characterize collagen contents in tissues, specially the brain, where ECM is normally devoid of collagen proteins. Here, we used FTIR imaging to characterize collagen content changes in growing glioma tumors. We could determine that C6-derived solid tumors presented high content of triple helix after 8-11 days of growth (typical of collagen fibrils formation; 8/8 tumor samples; 91 % of total variance), and further turned to larger α-helix (days 12-15; 9/10 of tumors; 94 % of variance) and β-turns (day 18-21; 7/8 tumors; 97 % of variance) contents, which suggest the incorporation of non-fibrillar collagen types in ECM, a sign of more and more organized collagen scaffold along tumor progression. The growth of tumors was also associated to the level of collagen produced (P < 0.05). This study thus confirms that collagen scaffolding is a major event accompanying the angiogenic shift and faster tumor growth in solid glioma phenotypes.
Collapse
|
86
|
Tempero MA, Arnoletti JP, Behrman SW, Ben-Josef E, Benson AB, Casper ES, Cohen SJ, Czito B, Ellenhorn JDI, Hawkins WG, Herman J, Hoffman JP, Ko A, Komanduri S, Koong A, Ma WW, Malafa MP, Merchant NB, Mulvihill SJ, Muscarella P, Nakakura EK, Obando J, Pitman MB, Sasson AR, Tally A, Thayer SP, Whiting S, Wolff RA, Wolpin BM, Freedman-Cass DA, Shead DA. Pancreatic Adenocarcinoma, version 2.2012: featured updates to the NCCN Guidelines. J Natl Compr Canc Netw 2012; 32:e80-4. [PMID: 22679115 DOI: 10.1200/jco.2013.48.7546] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The NCCN Clinical Practice Guidelines in Oncology (NCCN Guidelines) for Pancreatic Adenocarcinoma discuss the workup and management of tumors of the exocrine pancreas. These NCCN Guidelines Insights provide a summary and explanation of major changes to the 2012 NCCN Guidelines for Pancreatic Adenocarcinoma. The panel made 3 significant updates to the guidelines: 1) more detail was added regarding multiphase CT techniques for diagnosis and staging of pancreatic cancer, and pancreas protocol MRI was added as an emerging alternative to CT; 2) the use of a fluoropyrimidine plus oxaliplatin (e.g., 5-FU/leucovorin/oxaliplatin or capecitabine/oxaliplatin) was added as an acceptable chemotherapy combination for patients with advanced or metastatic disease and good performance status as a category 2B recommendation; and 3) the panel developed new recommendations concerning surgical technique and pathologic analysis and reporting.
Collapse
|
87
|
Letter to the editor: the natural history of extra-cranial metastasis from glioblastoma multiform [J Neurooncol DOI 10.1007/s11060-011-0575-8]. J Neurooncol 2012; 109:593-4; author reply 595. [PMID: 22772607 DOI: 10.1007/s11060-012-0921-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Accepted: 06/19/2012] [Indexed: 10/28/2022]
|
88
|
Kesari S. Understanding Glioblastoma Tumor Biology: The Potential to Improve Current Diagnosis and Treatments. Semin Oncol 2011; 38 Suppl 4:S2-10. [DOI: 10.1053/j.seminoncol.2011.09.005] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
89
|
Haier J, Gassman P. Current Concepts of Metastasis Formation. Cancers (Basel) 2011; 3:2886-7. [PMID: 26791654 PMCID: PMC3759177 DOI: 10.3390/cancers3032886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2011] [Accepted: 07/12/2011] [Indexed: 11/17/2022] Open
Abstract
The development of secondary distant organ and lymph node metastasis has an extraordinary impact on the prognosis of patients with solid cancer. In most cases the advent of metastatic growth represents the turning point from a local, potentially curable, disease to a systemic non-curable situation. As a highly regulated process, metastasis formation follows a distinct, non-random pattern characteristic for each tumor entity. Metastasis formation and strategies to prevent this lethal event in the progression of cancer is of fundamental interest for cancer science and patient care. In this special issue of Cancers, papers highlighting cellular mechanisms of metastasis formation, genetic and epigenetic aspects associated with organ and tumor specific metastasis formation, as well as papers outlining experimental and clinical therapeutic concepts for anti-metastatic treatment are included. [...].
Collapse
Affiliation(s)
- Jörg Haier
- Comprehensive Cancer Center Muenster, University Hospital Muenster, Albert-Schweitzer-Campus 1, 48149 Muenster, Germany.
| | - Peter Gassman
- Comprehensive Cancer Center Muenster, University Hospital Muenster, Albert-Schweitzer-Campus 1, 48149 Muenster, Germany
| |
Collapse
|