51
|
Cui D, Jin J, Cao W, Wang H, Wang X, Li Y, Liu T, Yin T, Liu Z. Beneficial Effect of High-Frequency Repetitive Transcranial Magnetic Stimulation for the Verbal Memory and Default Mode Network in Healthy Older Adults. Front Aging Neurosci 2022; 14:845912. [PMID: 35601617 PMCID: PMC9114775 DOI: 10.3389/fnagi.2022.845912] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 03/14/2022] [Indexed: 11/13/2022] Open
Abstract
Repetitive transcranial magnetic stimulation (rTMS) of the dorsolateral prefrontal cortex (DLPFC) is a non-invasive effective treatment for cognitive disorder, but its underlying mechanism of action remains unknown. The aim of this study was to explore the effect of a 2-week high-frequency (HF) active or sham 10 Hz rTMS on verbal memory in 40 healthy older adults. Resting-state functional magnetic resonance imaging (rs-fMRI) was used to measure functional connectivity (FC) within the default mode network (DMN). Verbal memory performance was evaluated using an auditory verbal learning test (AVLT). Additionally, we evaluated the relationship between memory improvement and FC changes within the DMN. The results revealed that HF-rTMS can enhance immediate recall and delayed recall of verbal memory and increased the FC of the bilateral precuneus (PCUN) within the DMN. The positive correlations between the immediate recall memory and the FC of the left PCUN after a 2-week intervention of HF-rTMS were detected. In conclusion, HF-rTMS may have the potential to improve verbal memory performance in older adults, which relation to FC changes in the DMN. The current findings are useful for increasing the understanding of the mechanisms of HF-rTMS, as well as guiding HF-rTMS treatment of cognitive disorders.
Collapse
Affiliation(s)
- Dong Cui
- Institute of Biomedical Engineering, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin, China
| | - Jingna Jin
- Institute of Biomedical Engineering, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin, China
| | - Weifang Cao
- Department of Radiology, Shandong First Medical University and Shandong Academy of Medical Sciences, Tai’an, China
| | - He Wang
- Institute of Biomedical Engineering, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin, China
| | - Xin Wang
- Institute of Biomedical Engineering, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin, China
| | - Ying Li
- Institute of Biomedical Engineering, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin, China
| | - Tianjun Liu
- Institute of Biomedical Engineering, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin, China
| | - Tao Yin
- Institute of Biomedical Engineering, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin, China
- Neuroscience Center, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
- *Correspondence: Zhipeng Liu Tao Yin
| | - Zhipeng Liu
- Institute of Biomedical Engineering, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin, China
- *Correspondence: Zhipeng Liu Tao Yin
| |
Collapse
|
52
|
Long DE, Kosmac K, Dungan CM, Bamman MM, Peterson CA, Kern PA. Potential Benefits of Combined Statin and Metformin Therapy on Resistance Training Response in Older Individuals. Front Physiol 2022; 13:872745. [PMID: 35492586 PMCID: PMC9047873 DOI: 10.3389/fphys.2022.872745] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 03/24/2022] [Indexed: 12/24/2022] Open
Abstract
Metformin and statins are currently the focus of large clinical trials testing their ability to counter age-associated declines in health, but recent reports suggest that both may negatively affect skeletal muscle response to exercise. However, it has also been suggested that metformin may act as a possible protectant of statin-related muscle symptoms. The potential impact of combined drug use on the hypertrophic response to resistance exercise in healthy older adults has not been described. We present secondary statin analyses of data from the MASTERS trial where metformin blunted the hypertrophy response in healthy participants (>65 years) following 14 weeks of progressive resistance training (PRT) when compared to identical placebo treatment (n = 94). Approximately one-third of MASTERS participants were taking prescribed statins. Combined metformin and statin resulted in rescue of the metformin-mediated impaired growth response to PRT but did not significantly affect strength. Improved muscle fiber growth may be associated with medication-induced increased abundance of CD11b+/CD206+ M2-like macrophages. Sarcopenia is a significant problem with aging and this study identifies a potential interaction between these commonly used drugs which may help prevent metformin-related blunting of the beneficial effects of PRT.Trial Registration: ClinicalTrials.gov, NCT02308228, Registered on 25 November 2014.
Collapse
Affiliation(s)
- Douglas E. Long
- Department of Physical Therapy and Center for Muscle Biology, College of Health Sciences, University of Kentucky, Lexington, KY, United States
| | - Kate Kosmac
- Department of Physical Therapy and Center for Muscle Biology, College of Health Sciences, University of Kentucky, Lexington, KY, United States
| | - Cory M. Dungan
- Department of Physical Therapy and Center for Muscle Biology, College of Health Sciences, University of Kentucky, Lexington, KY, United States
| | - Marcas M. Bamman
- Florida Institute for Human and Machine Cognition, Pensacola, FL, United States
- Center for Exercise Medicine and Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Charlotte A. Peterson
- Department of Physical Therapy and Center for Muscle Biology, College of Health Sciences, University of Kentucky, Lexington, KY, United States
| | - Philip A. Kern
- Department of Internal Medicine, Division of Endocrinology, Barnstable Brown Diabetes and Obesity Center, University of Kentucky, Lexington, KY, United States
- *Correspondence: Philip A. Kern,
| |
Collapse
|
53
|
Mosevitsky MI. Progerin and Its Role in Accelerated and Natural Aging. Mol Biol 2022. [DOI: 10.1134/s0026893322020091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
54
|
Tripathi SS, Kumar R, Bissoyi A, Rizvi SI. Baicalein may act as a caloric restriction mimetic candidate to improve the anti-oxidant profile in a natural rodent model of aging. Rejuvenation Res 2022; 25:70-78. [PMID: 35316094 DOI: 10.1089/rej.2021.0071] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
INTRODUCTION Caloric restriction (CR) is the most effective intervention for extending the life span of vertebrate and invertebrate aging models.. CRMs, which are synthetic or natural chemicals that mimic the biochemical, hormonal, and physiological consequences of calorie restriction, are being researched for anti-aging benefits. Baicalein is a plant-derived polyphenol that has the potential of anti-oxidant, anti-inflammatory, and autophagy inducer. The objective of this study is to evaluate the anti-aging, anti-inflammatory, and antioxidant role of Baicalein in erythrocyte membrane and plasma, and evaluate the efficacy of Baicalein to act as a CRM candidate. MATERIALS AND METHODS The present study evaluates the effect of Baicalein on aging biomarkers in normal and aged rats. We study various pro- and anti-oxidant markers, erythrocyte membrane transporters, and eryptosis. RESULTS Baicalein supplementation in male Wistar rats significantly alleviated pro-oxidant markers and improved anti-oxidant profile. Improvement was also observed in age-induced alterations in membrane transporters, and eryptosis. CONCLUSION Based on the above observations we conclude that Baicalein has the potential to maintain extracellular ROS levels and redox homeostasis during the aging process, an effect which is similar to CR. Thus Baicalein may be a potent CRM candidate for anti-aging interventions.
Collapse
Affiliation(s)
- Shambhoo Sharan Tripathi
- University of Allahabad, Department of Biochemistry, Fauclty of Science, UNIVERSITY OF ALLAHABAD, PRYAGRAJ, Uttar Pradesh, India, 211002;
| | - Raushan Kumar
- University of Allahabad, Department of Biochemistry, Allahabad, Uttar Pradesh, India;
| | - Akalabya Bissoyi
- 2Institute of Biochemistry, Food Science and Nutrition, The Hebrew University of Jerusalem, Rehovot-7610001, , Rehovot, Israel;
| | - Syed Ibrahim Rizvi
- University of Allahabad, Department of Biochemistry, faculty of Science, Allahabad, Uttar Pradesh, India, 211002.,India;
| |
Collapse
|
55
|
Chen M, Peng L, Gong P, Zheng X, Sun T, Zhang X, Huo J. Baicalein Induces Mitochondrial Autophagy to Prevent Parkinson's Disease in Rats via miR-30b and the SIRT1/AMPK/mTOR Pathway. Front Neurol 2022; 12:646817. [PMID: 35237220 PMCID: PMC8883053 DOI: 10.3389/fneur.2021.646817] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 12/20/2021] [Indexed: 12/20/2022] Open
Abstract
Parkinson's disease (PD) is a prevailing neurodegenerative disorder. Baicalein has neuroprotective effects on PD animals, but its mechanism is not clarified. We explored baicalein effects on PD rats. PD rat models were established by injecting 6-hydroxydopamine into the striatum of substantia nigra on the left side of the rat brain and treated with baicalein. Dopamine (DA) content, neuronal apoptosis, neuronal injury, neuronal mitochondria, and autophagy were assessed. Baicalein-treated PD rats were treated with autophagy inhibitor 3-methyladenine to identify the role of autophagy in PD. PD rats were injected with AgomiR-30b-5p or sh-SIRT1 plasmids and treated with baicalein. PD rats elicited decreased neurological score and DA secretion of the striatum, increased neuronal apoptosis, and injury, and reduced number of mitochondria and autophagy, whereas baicalein alleviated neuronal injury and partly recovered mitochondrial dysfunction, 3-methyladenine inhibited the protection of baicalein. miR-30b-5p was elevated and SIRT1 was diminished in PD rats and inhibited by baicalein. miR-30b-5p targeted SIRT1. miR-30b-5p overexpression or SIRT1 silencing annulled the protection of baicalein. The phosphorylation level of AMPK in the substantia nigra of PD rats was decreased and mTOR was increased, whereas baicalein annulled these trends. Briefly, baicalein activated mitochondrial autophagy via miR-30b-5p and the SIRT1/AMPK/mTOR pathway, thus protecting PD rats.
Collapse
Affiliation(s)
- Min Chen
- Department of Geriatrics, Taihe Hospital, Hubei University of Medicine, Hubei, China
| | - Li Peng
- Department of Geriatrics, Taihe Hospital, Hubei University of Medicine, Hubei, China
| | - Ping Gong
- Department of Geriatrics, Taihe Hospital, Hubei University of Medicine, Hubei, China
| | - Xiaoli Zheng
- Department of Geriatrics, Taihe Hospital, Hubei University of Medicine, Hubei, China
| | - Tao Sun
- Department of Surgery, Traditional Chinese Medicine Hospital, Guizhou, China
| | - Xiaoqiao Zhang
- Department of Geriatrics, Taihe Hospital, Hubei University of Medicine, Hubei, China
| | - Jiangtao Huo
- Department of Geriatrics, Taihe Hospital, Hubei University of Medicine, Hubei, China
- *Correspondence: Jiangtao Huo
| |
Collapse
|
56
|
Liu Z, Zhang Y, Zhou ZP, Ma ZX, Li WX, Zhu W, Feng Y, Wu ZD. A restored humoral environment ameliorates acute brain injury after Angiostrongylus cantonensis infection. Acta Trop 2022; 226:106232. [PMID: 34801477 DOI: 10.1016/j.actatropica.2021.106232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 10/31/2021] [Accepted: 11/10/2021] [Indexed: 11/17/2022]
Abstract
Circulating factors in the circulatory system support important functions of living tissues and the body. Parabiosis is a condition in which two living animals are connected using surgical methods and share a single circulatory system. Angiostrongylus cantonensis is the major cause of infectious eosinophilic meningitis, which causes severe damage to the central nervous system (CNS) and immune system. However, the mechanism of immunopathology remains largely unknown. We hypothesize that a restored humoral environment can help relieve damage to the CNS and immune system. In the present study, we found that administration of normal serum significantly reduced mortality, alleviated thymic atrophy and reduced inflammation in the brains of mice infected with A. cantonensis. We further generated parabiotic pairs between two healthy mice, one of which was then orally infected with A. cantonensis. The results showed that compared with singleton mice, mice connected with a healthy parabiotic partner were protected against CNS and immune system damage, as revealed by significantly reduced inflammation in the brain, alleviated thymic atrophy, and decreased expression of proinflammatory cytokines. These findings revealed that a healthy systemic environment can relieve damage to the CNS and immune system in infected mice, suggesting novel therapeutic approaches for diseases involving severe brain and immune system damage.
Collapse
Affiliation(s)
- Zhen Liu
- Department of Blood Transfusion, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong 510180, China; Guangdong Engineering Research Center of Precise Transfusion, Guangzhou, Guangdong 510180, China
| | - Yan Zhang
- Guangzhou Center for Disease Control and Prevention, Guangzhou, Guangdong 510440, China
| | - Zhong-Pu Zhou
- School of Medicine, South China University of Technology, Guangzhou, Guangdong 510640, China
| | - Zhi-Xuan Ma
- School of Medicine, South China University of Technology, Guangzhou, Guangdong 510640, China
| | - Wen-Xue Li
- Guangzhou Center for Disease Control and Prevention, Guangzhou, Guangdong 510440, China
| | - Wei Zhu
- Guangzhou Center for Disease Control and Prevention, Guangzhou, Guangdong 510440, China
| | - Ying Feng
- School of Medicine, South China University of Technology, Guangzhou, Guangdong 510640, China.
| | - Zhong-Dao Wu
- Department of parasitology of Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China.
| |
Collapse
|
57
|
Bin-Jumah MN, Nadeem MS, Gilani SJ, Al-Abbasi FA, Ullah I, Alzarea SI, Ghoneim MM, Alshehri S, Uddin A, Murtaza BN, Kazmi I. Genes and Longevity of Lifespan. Int J Mol Sci 2022; 23:1499. [PMID: 35163422 PMCID: PMC8836117 DOI: 10.3390/ijms23031499] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 01/04/2022] [Accepted: 01/26/2022] [Indexed: 12/12/2022] Open
Abstract
Aging is a complex process indicated by low energy levels, declined physiological activity, stress induced loss of homeostasis leading to the risk of diseases and mortality. Recent developments in medical sciences and an increased availability of nutritional requirements has significantly increased the average human lifespan worldwide. Several environmental and physiological factors contribute to the aging process. However, about 40% human life expectancy is inherited among generations, many lifespan associated genes, genetic mechanisms and pathways have been demonstrated during last decades. In the present review, we have evaluated many human genes and their non-human orthologs established for their role in the regulation of lifespan. The study has included more than fifty genes reported in the literature for their contributions to the longevity of life. Intact genomic DNA is essential for the life activities at the level of cell, tissue, and organ. Nucleic acids are vulnerable to oxidative stress, chemotherapies, and exposure to radiations. Efficient DNA repair mechanisms are essential for the maintenance of genomic integrity, damaged DNA is not replicated and transferred to next generations rather the presence of deleterious DNA initiates signaling cascades leading to the cell cycle arrest or apoptosis. DNA modifications, DNA methylation, histone methylation, histone acetylation and DNA damage can eventually lead towards apoptosis. The importance of calorie restriction therapy in the extension of lifespan has also been discussed. The role of pathways involved in the regulation of lifespan such as DAF-16/FOXO (forkhead box protein O1), TOR and JNK pathways has also been particularized. The study provides an updated account of genetic factors associated with the extended lifespan and their interactive contributory role with cellular pathways.
Collapse
Affiliation(s)
- May Nasser Bin-Jumah
- Biology Department, College of Science, Princess Nourah Bint Abdulrahman University, Riyadh 11671, Saudi Arabia;
- Environment and Biomaterial Unit, Health Sciences Research Center, Princess Nourah Bint Abdulrahman University, Riyadh 11671, Saudi Arabia
| | - Muhammad Shahid Nadeem
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Sadaf Jamal Gilani
- Department of Basic Health Sciences, Princess Nourah Bint Abdulrahman University, Riyadh 11671, Saudi Arabia;
| | - Fahad A. Al-Abbasi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Inam Ullah
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore 54000, Pakistan;
| | - Sami I. Alzarea
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka 72341, Saudi Arabia;
| | - Mohammed M. Ghoneim
- Department of Pharmacy Practice, College of Pharmacy, AlMaarefa University, Ad Diriyah 13713, Saudi Arabia;
| | - Sultan Alshehri
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Aziz Uddin
- Department of Biotechnology and Genetic Engineering, Hazara University, Mansehra 21300, Pakistan;
| | - Bibi Nazia Murtaza
- Department of Zoology, Abbottabad University of Science and Technology (AUST), Abbottabad 22310, Pakistan;
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| |
Collapse
|
58
|
Chen M, Fu Y, Wang X, Wu R, Su D, Zhou N, Qi Y. Metformin protects lens epithelial cells against senescence in a naturally aged mouse model. Cell Death Dis 2022; 8:8. [PMID: 35013152 PMCID: PMC8748516 DOI: 10.1038/s41420-021-00800-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 11/11/2021] [Accepted: 12/13/2021] [Indexed: 11/21/2022]
Abstract
The senescence of lens epithelial cells (LECs) is a major factor leading to age-related cataract (ARC). ARC results in visual impairment and severe vision loss in elderly patients. However, the specific mechanism of ARC remains unclear, and there are no effective therapeutic agents to halt the formation of ARC. This study aimed to assess the underlying mechanism of the formation of ARC and investigate the potential anti-ageing effect of metformin (MET) on ARC. Male C57BL/6 mice were divided into three groups: the control group having young mice (3 months old, n = 40), the naturally aged group (aged 20 months, n = 60) and the MET group (MET, 20 months, n = 60). Mice in the control and the naturally aged groups were fed a standard purified mouse diet ad libitum and water, whereas those in the MET group were fed chows supplemented with 0.1% MET for 10 months. The transparency of the lens and age-associated proteins p21 and p53 were analysed in the LECs of these three groups. Furthermore, we determined the expressions of the adenosine monophosphate (AMP)-activated protein kinase (AMPK) pathway and the effect of MET on this pathway in LECs during the ageing process of ARC. In addition, the relationship between autophagy and the senescence of LECs and the role of MET in the autophagy of LECs during the ageing process of ARC were examined. Our results indicated that age-related inactivation of the AMPK pathway and impairment of autophagy might contribute to the senescence of LECs and the occurrence of ARC. More importantly, these results demonstrated that MET effectively alleviated the senescence of LECs and the formation of ARC probably via inactivation of the AMPK pathway and augmentation of autophagy. These findings revealed that MET can be exploited as a potentially useful drug for ARC prevention. Our study will help in enlightening the development of innovative strategies for the clinical treatment of ARC.
Collapse
Affiliation(s)
- Mengmeng Chen
- Department of Ophthalmology, The Second Affiliated Hospital of Harbin Medical University, 150001, Harbin, China
| | - Yushan Fu
- Department of Ophthalmology, The Second Affiliated Hospital of Harbin Medical University, 150001, Harbin, China
| | - Xu Wang
- Department of Ophthalmology, Xixi Hospital of Hangzhou, 310023, Hangzhou, China
| | - Ruitong Wu
- Department of Ophthalmology, The Second Affiliated Hospital of Harbin Medical University, 150001, Harbin, China
| | - Dongmei Su
- Department of Genetics, National Research Institute for Family Planning, Health Department, 100000, Beijing, China
| | - Nan Zhou
- Department of Ophthalmology, The Second Affiliated Hospital of Harbin Medical University, 150001, Harbin, China.
| | - Yanhua Qi
- Department of Ophthalmology, The Second Affiliated Hospital of Harbin Medical University, 150001, Harbin, China.
| |
Collapse
|
59
|
Kumar A, Rani M, Mani S, Shah P, Singh DB, Kudapa H, Varshney RK. Nutritional Significance and Antioxidant-Mediated Antiaging Effects of Finger Millet: Molecular Insights and Prospects. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2021. [DOI: 10.3389/fsufs.2021.684318] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Aging is a multifaceted process that is associated with progressive, lethal, and unalterable changes like damage to different molecules (DNA, proteins, and lipids), cells, tissues, and organs. It is an inevitable process but can be delayed by both genetic and dietary interventions. Besides aging, premature death and age-associated diseases can be dealt with diet regulation and the use of compounds that inhibit the stress responsiveness or promote the damage repair signaling pathways. Natural compounds offer a repertoire of highly diverse structural scaffolds that can offer hopeful candidate chemical entities with antiaging potential. One such source of natural compounds is millets, which are minor cereals with an abundance of high fiber, methionine, calcium, iron, polyphenols, and secondary metabolites, responsible for numerous potential health benefits. The present review article elucidates the nature and significance of different phytochemicals derived from millets with a major focus on finger millet and highlights all the important studies supporting their health benefits with special emphasis on the antiaging effect of these compounds. The present article also proposes the possible mechanisms through which millets can play a significant role in the suppression of aging processes and aging-related diseases by influencing genetic repair, protein glycation, and stress-responsive pathways. We further discuss well-established natural compounds for their use as antiaging drugs and recommend raising awareness for designing novel formulations/combinations from them so that their maximum antiaging potential can be harnessed for the benefit of mankind.
Collapse
|
60
|
Maiese K. Neurodegeneration, memory loss, and dementia: the impact of biological clocks and circadian rhythm. FRONT BIOSCI-LANDMRK 2021; 26:614-627. [PMID: 34590471 PMCID: PMC8756734 DOI: 10.52586/4971] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 07/26/2021] [Accepted: 08/10/2021] [Indexed: 11/23/2022]
Abstract
Introduction: Dementia and cognitive loss impact a significant proportion of the global population and present almost insurmountable challenges for treatment since they stem from multifactorial etiologies. Innovative avenues for treatment are highly warranted. Methods and results: Novel work with biological clock genes that oversee circadian rhythm may meet this critical need by focusing upon the pathways of the mechanistic target of rapamycin (mTOR), the silent mating type information regulation 2 homolog 1 (Saccharomyces cerevisiae) (SIRT1), mammalian forkhead transcription factors (FoxOs), the growth factor erythropoietin (EPO), and the wingless Wnt pathway. These pathways are complex in nature, intimately associated with autophagy that can maintain circadian rhythm, and have an intricate relationship that can lead to beneficial outcomes that may offer neuroprotection, metabolic homeostasis, and prevention of cognitive loss. However, biological clocks and alterations in circadian rhythm also have the potential to lead to devastating effects involving tumorigenesis in conjunction with pathways involving Wnt that oversee angiogenesis and stem cell proliferation. Conclusions: Current work with biological clocks and circadian rhythm pathways provide exciting possibilities for the treating dementia and cognitive loss, but also provide powerful arguments to further comprehend the intimate and complex relationship among these pathways to fully potentiate desired clinical outcomes.
Collapse
Affiliation(s)
- Kenneth Maiese
- Cellular and Molecular Signaling, New York, NY 10022, USA
| |
Collapse
|
61
|
Maiese K. Cognitive Impairment and Dementia: Gaining Insight through Circadian Clock Gene Pathways. Biomolecules 2021; 11:1002. [PMID: 34356626 PMCID: PMC8301848 DOI: 10.3390/biom11071002] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 07/05/2021] [Accepted: 07/07/2021] [Indexed: 01/18/2023] Open
Abstract
Neurodegenerative disorders affect fifteen percent of the world's population and pose a significant financial burden to all nations. Cognitive impairment is the seventh leading cause of death throughout the globe. Given the enormous challenges to treat cognitive disorders, such as Alzheimer's disease, and the inability to markedly limit disease progression, circadian clock gene pathways offer an exciting strategy to address cognitive loss. Alterations in circadian clock genes can result in age-related motor deficits, affect treatment regimens with neurodegenerative disorders, and lead to the onset and progression of dementia. Interestingly, circadian pathways hold an intricate relationship with autophagy, the mechanistic target of rapamycin (mTOR), the silent mating type information regulation 2 homolog 1 (Saccharomyces cerevisiae) (SIRT1), mammalian forkhead transcription factors (FoxOs), and the trophic factor erythropoietin. Autophagy induction is necessary to maintain circadian rhythm homeostasis and limit cortical neurodegenerative disease, but requires a fine balance in biological activity to foster proper circadian clock gene regulation that is intimately dependent upon mTOR, SIRT1, FoxOs, and growth factor expression. Circadian rhythm mechanisms offer innovative prospects for the development of new avenues to comprehend the underlying mechanisms of cognitive loss and forge ahead with new therapeutics for dementia that can offer effective clinical treatments.
Collapse
Affiliation(s)
- Kenneth Maiese
- Cellular and Molecular Signaling, New York, NY 10022, USA
| |
Collapse
|
62
|
Licochalcone D Ameliorates Oxidative Stress-Induced Senescence via AMPK Activation. Int J Mol Sci 2021; 22:ijms22147324. [PMID: 34298945 PMCID: PMC8304008 DOI: 10.3390/ijms22147324] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/30/2021] [Accepted: 07/05/2021] [Indexed: 01/21/2023] Open
Abstract
Increased oxidative stress is a crucial factor for the progression of cellular senescence and aging. The present study aimed to investigate the effects of licochalcone D (Lico D) on oxidative stress-induced senescence, both in vitro and in vivo, and explore its potential mechanisms. Hydrogen peroxide (200 µM for double time) and D-galactose (D-Gal) (150 mg/kg) were used to induce oxidative stress in human bone marrow-mesenchymal stem cells (hBM-MSCs) and mice, respectively. We performed the SA-β-gal assay and evaluated the senescence markers, activation of AMPK, and autophagy. Lico D potentially reduced oxidative stress-induced senescence by upregulating AMPK-mediated activation of autophagy in hBM-MSCs. D-Gal treatment significantly increased the expression levels of senescence markers, such as p53 and p21, in the heart and hippocampal tissues, while this effect was reversed in the Lico D-treated animals. Furthermore, a significant increase in AMPK activation was observed in both tissues, while the activation of autophagy was only observed in the heart tissue. Interestingly, we found that Lico D significantly reduced the expression levels of the receptors for advanced glycation end products (RAGE) in the hippocampal tissue. Taken together, our findings highlight the antioxidant, anti-senescent, and cardioprotective effects of Lico D and suggest that the activation of AMPK and autophagy ameliorates the oxidative stress-induced senescence.
Collapse
|
63
|
MicroRNA Sequences Modulated by Beta Cell Lipid Metabolism: Implications for Type 2 Diabetes Mellitus. BIOLOGY 2021; 10:biology10060534. [PMID: 34203703 PMCID: PMC8232095 DOI: 10.3390/biology10060534] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 06/08/2021] [Accepted: 06/09/2021] [Indexed: 12/23/2022]
Abstract
Alterations in lipid metabolism within beta cells and islets contributes to dysfunction and apoptosis of beta cells, leading to loss of insulin secretion and the onset of type 2 diabetes. Over the last decade, there has been an explosion of interest in understanding the landscape of gene expression which influences beta cell function, including the importance of small non-coding microRNA sequences in this context. This review sought to identify the microRNA sequences regulated by metabolic challenges in beta cells and islets, their targets, highlight their function and assess their possible relevance as biomarkers of disease progression in diabetic individuals. Predictive analysis was used to explore networks of genes targeted by these microRNA sequences, which may offer new therapeutic strategies to protect beta cell function and delay the onset of type 2 diabetes.
Collapse
|