51
|
Liu N, Liu M, Fu S, Wang J, Tang H, Isah AD, Chen D, Wang X. Ang2-Targeted Combination Therapy for Cancer Treatment. Front Immunol 2022; 13:949553. [PMID: 35874764 PMCID: PMC9305611 DOI: 10.3389/fimmu.2022.949553] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 06/13/2022] [Indexed: 11/21/2022] Open
Abstract
Angiopoietin-2 (Ang2), a member of the angiopoietin family, is widely involved in the process of vascular physiology, bone physiology, adipose tissue physiology and the occurrence and development of inflammation, cardiac hypertrophy, rheumatoid, tumor and other diseases under pathological conditions. Proliferation and metastasis of cancer largely depend on angiogenesis. Therefore, anti-angiogenesis has become the target of tumor therapy. Due to the Ang2 plays a key role in promoting angiogenesis and stability in vascular physiology, the imbalance of its expression is an important condition for the occurrence and development of cancer. It has been proved that blocking Ang2 can inhibit the growth, invasion and metastasis of cancer cells. In recent years, research has been constantly supplemented. We focus on the mechanisms that regulate the expression of Ang2 mRNA and protein levels in different cancers, contributing to a better understanding of how Ang2 exerts different effects in different cancers and stages, as well as facilitating more specific targeting of relevant molecules in cancer therapy. At the same time, the importance of Ang2 in cancer growth, metastasis, prognosis and combination therapy is pointed out. And finally, we will discuss the current investigations and future challenges of combining Ang2 inhibition with chemotherapy, immunotherapy, and radiotherapy to increase its efficacy in cancer patients. This review provides a theoretical reference for the development of new targets and effective combination therapy strategies for cancer treatment in the future.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Deyu Chen
- *Correspondence: Xu wang, ; Deyu Chen,
| | - Xu Wang
- *Correspondence: Xu wang, ; Deyu Chen,
| |
Collapse
|
52
|
Qin Y, Dinabandhu A, Cao X, Sanchez JC, Jee K, Rodrigues M, Guo C, Zhang J, Vancel J, Menon D, Khan NS, Ma T, Tzeng SY, Daoud Y, Green JJ, Semenza GL, Montaner S, Sodhi A. ANGPTL4 influences the therapeutic response of patients with neovascular age-related macular degeneration by promoting choroidal neovascularization. JCI Insight 2022; 7:e157896. [PMID: 35653189 PMCID: PMC9310537 DOI: 10.1172/jci.insight.157896] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 05/18/2022] [Indexed: 01/14/2023] Open
Abstract
Most patients with neovascular age-related macular degeneration (nvAMD), the leading cause of severe vision loss in elderly US citizens, respond inadequately to current therapies targeting a single angiogenic mediator, vascular endothelial growth factor (VEGF). Here, we report that aqueous fluid levels of a second vasoactive mediator, angiopoietin-like 4 (ANGPTL4), can help predict the response of patients with nvAMD to anti-VEGF therapies. ANGPTL4 expression was higher in patients who required monthly treatment with anti-VEGF therapies compared with patients who could be effectively treated with less-frequent injections. We further demonstrate that ANGPTL4 acts synergistically with VEGF to promote the growth and leakage of choroidal neovascular (CNV) lesions in mice. Targeting ANGPTL4 expression was as effective as targeting VEGF expression for treating CNV in mice, while simultaneously targeting both was more effective than targeting either factor alone. To help translate these findings to patients, we used a soluble receptor that binds to both VEGF and ANGPTL4 and effectively inhibited the development of CNV lesions in mice. Our findings provide an assay that can help predict the response of patients with nvAMD to anti-VEGF monotherapy and suggest that therapies targeting both ANGPTL4 and VEGF will be a more effective approach for the treatment of this blinding disease.
Collapse
Affiliation(s)
- Yu Qin
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Ophthalmology, the Fourth Affiliated Hospital of China Medical University, Eye Hospital of China Medical University, Key Lens Research Laboratory of Liaoning Province, Shenyang, China
| | - Aumreetam Dinabandhu
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Oncology and Diagnostic Sciences, School of Dentistry, Greenebaum Comprehensive Cancer Center, University of Maryland, Baltimore, Maryland, USA
| | - Xuan Cao
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jaron Castillo Sanchez
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Kathleen Jee
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Murilo Rodrigues
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Chuanyu Guo
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jing Zhang
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- State Key Laboratory of Ophthalmology, Clinical Research Center, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, China
| | - Jordan Vancel
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Deepak Menon
- Department of Oncology and Diagnostic Sciences, School of Dentistry, Greenebaum Comprehensive Cancer Center, University of Maryland, Baltimore, Maryland, USA
| | - Noore-Sabah Khan
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Tao Ma
- Department of Oncology and Diagnostic Sciences, School of Dentistry, Greenebaum Comprehensive Cancer Center, University of Maryland, Baltimore, Maryland, USA
| | - Stephany Y. Tzeng
- Department of Biomedical Engineering, Institute for NanoBioTechnology, and
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Yassine Daoud
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jordan J. Green
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Biomedical Engineering, Institute for NanoBioTechnology, and
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Gregg L. Semenza
- Department of Genetic Medicine
- Department of Pediatrics
- Department of Medicine
- Department of Oncology
- Department of Radiation Oncology, and
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Silvia Montaner
- Department of Oncology and Diagnostic Sciences, School of Dentistry, Greenebaum Comprehensive Cancer Center, University of Maryland, Baltimore, Maryland, USA
| | - Akrit Sodhi
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
53
|
Chauhan MZ, Rather PA, Samarah SM, Elhusseiny AM, Sallam AB. Current and Novel Therapeutic Approaches for Treatment of Diabetic Macular Edema. Cells 2022; 11:1950. [PMID: 35741079 PMCID: PMC9221813 DOI: 10.3390/cells11121950] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 06/14/2022] [Accepted: 06/16/2022] [Indexed: 12/13/2022] Open
Abstract
Diabetic macular edema (DME) is a major ocular complication of diabetes mellitus (DM), leading to significant visual impairment. DME's pathogenesis is multifactorial. Focal edema tends to occur when primary metabolic abnormalities lead to a persistent hyperglycemic state, causing the development of microaneurysms, often with extravascular lipoprotein in a circinate pattern around the focal leakage. On the other hand, diffusion edema is due to a generalized breakdown of the inner blood-retinal barrier, leading to profuse early leakage from the entire capillary bed of the posterior pole with the subsequent extravasation of fluid into the extracellular space. The pathogenesis of DME occurs through the interaction of multiple molecular mediators, including the overexpression of several growth factors, including vascular endothelial growth factor (VEGF), insulin-like growth factor-1, angiopoietin-1, and -2, stromal-derived factor-1, fibroblast growth factor-2, and tumor necrosis factor. Synergistically, these growth factors mediate angiogenesis, protease production, endothelial cell proliferation, and migration. Treatment for DME generally involves primary management of DM, laser photocoagulation, and pharmacotherapeutics targeting mediators, namely, the anti-VEGF pathway. The emergence of anti-VEGF therapies has resulted in significant clinical improvements compared to laser therapy alone. However, multiple factors influencing the visual outcome after anti-VEGF treatment and the presence of anti-VEGF non-responders have necessitated the development of new pharmacotherapies. In this review, we explore the pathophysiology of DME and current management strategies. In addition, we provide a comprehensive analysis of emerging therapeutic approaches to the treatment of DME.
Collapse
Affiliation(s)
- Muhammad Z. Chauhan
- Department of Ophthalmology, Harvey and Bernice Jones Eye Institute, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (M.Z.C.); (P.A.R.); (S.M.S.); (A.M.E.)
- Miami Integrative Metabolomics Research Center, Bascom Palmer Eye Institute, University of Miami, Miami, FL 33136, USA
| | - Peyton A. Rather
- Department of Ophthalmology, Harvey and Bernice Jones Eye Institute, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (M.Z.C.); (P.A.R.); (S.M.S.); (A.M.E.)
| | - Sajida M. Samarah
- Department of Ophthalmology, Harvey and Bernice Jones Eye Institute, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (M.Z.C.); (P.A.R.); (S.M.S.); (A.M.E.)
| | - Abdelrahman M. Elhusseiny
- Department of Ophthalmology, Harvey and Bernice Jones Eye Institute, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (M.Z.C.); (P.A.R.); (S.M.S.); (A.M.E.)
| | - Ahmed B. Sallam
- Department of Ophthalmology, Harvey and Bernice Jones Eye Institute, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (M.Z.C.); (P.A.R.); (S.M.S.); (A.M.E.)
| |
Collapse
|
54
|
Chatziralli I, Touhami S, Cicinelli MV, Agapitou C, Dimitriou E, Theodossiadis G, Theodossiadis P. Disentangling the association between retinal non-perfusion and anti-VEGF agents in diabetic retinopathy. Eye (Lond) 2022; 36:692-703. [PMID: 34408316 PMCID: PMC8956693 DOI: 10.1038/s41433-021-01750-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 07/29/2021] [Accepted: 08/06/2021] [Indexed: 02/07/2023] Open
Abstract
Diabetic retinopathy (DR) is the most common microvascular complication of diabetes mellitus (DM) and the leading cause of blindness in patients with DM. In the pathogenesis of DR, chronic hyperglycemia leads to biochemical and structural alterations in retinal blood vessels' wall, resulting in hyperpermeability and non-perfusion. Since vascular endothelial growth factor (VEGF) has been found to play a significant role in the pathogenesis of DR, this review sheds light on the effect of intravitreal anti-VEGF agents on retinal non-perfusion in patients with DR. Based on the existing literature, anti-VEGF agents have been shown to improve DR severity, although they cannot reverse retinal ischemia. The results of the published studies are controversial and differ based on the location of retinal non-perfusion, as well as the imaging modality used to assess retinal non-perfusion. In cases of macular non-perfusion, most of studies showed no change in both fundus fluorescein angiography (FFA) and optical coherence tomography (OCTA) in patients with DR treated with intravitreal anti-VEGF agents, while few studies reported worsening of non-perfusion with enlargement of foveal avascular zone (FAZ). Regarding peripheral ischemia, studies using wide-field-FFA demonstrated an improvement or stability in non-perfusion areas after anti-VEGF treatment. However, the use of wide-field-OCTA revealed no signs of re-perfusion of retinal vessels post anti-VEGF treatment. Further prospective studies with long follow-up and large sample size are still needed to draw solid conclusions.
Collapse
Affiliation(s)
- Irini Chatziralli
- grid.5216.00000 0001 2155 08002nd Department of Ophthalmology, National and Kapodistrian University of Athens, Athens, Greece
| | - Sara Touhami
- grid.462844.80000 0001 2308 1657Department of Ophthalmology, Reference Center in Rare diseases, DHU Sight Restore, Hôpital Pitié Salpêtrière, Sorbonne Université, Paris, France
| | - Maria Vittoria Cicinelli
- grid.15496.3f0000 0001 0439 0892School of Medicine, Vita-Salute San Raffaele University, Milan, Italy ,grid.18887.3e0000000417581884Department of Ophthalmology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Chrysa Agapitou
- grid.5216.00000 0001 2155 08002nd Department of Ophthalmology, National and Kapodistrian University of Athens, Athens, Greece
| | - Eleni Dimitriou
- grid.5216.00000 0001 2155 08002nd Department of Ophthalmology, National and Kapodistrian University of Athens, Athens, Greece
| | - George Theodossiadis
- grid.5216.00000 0001 2155 08002nd Department of Ophthalmology, National and Kapodistrian University of Athens, Athens, Greece
| | - Panagiotis Theodossiadis
- grid.5216.00000 0001 2155 08002nd Department of Ophthalmology, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
55
|
De Rossi G, Da Vitoria Lobo ME, Greenwood J, Moss SE. LRG1 as a novel therapeutic target in eye disease. Eye (Lond) 2022; 36:328-340. [PMID: 34987199 PMCID: PMC8807626 DOI: 10.1038/s41433-021-01807-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 09/22/2021] [Accepted: 10/01/2021] [Indexed: 02/08/2023] Open
Abstract
Retinal and choroidal diseases are major causes of blindness and visual impairment in the developed world and on the rise due to an ageing population and diabetes epidemic. Standard of care is centred around blockade of vascular endothelial growth factor (VEGF), but despite having halved the number of patients losing sight, a high rate of patient non-response and loss of efficacy over time are key challenges. Dysregulation of vascular homoeostasis, coupled with fibrosis and inflammation, are major culprits driving sight-threatening eye diseases. Improving our knowledge of these pathological processes should inform the development of new drugs to address the current clinical challenges for patients. Leucine-rich α-2 glycoprotein 1 (LRG1) is an emerging key player in vascular dysfunction, inflammation and fibrosis. Under physiological conditions, LRG1 is constitutively expressed by the liver and granulocytes, but little is known about its normal biological function. In pathological scenarios, such as diabetic retinopathy (DR) and neovascular age-related macular degeneration (nvAMD), its expression is ectopically upregulated and it acquires a much better understood pathogenic role. Context-dependent modulation of the transforming growth-factor β (TGFβ) pathway is one of the main activities of LRG1, but additional roles have recently been emerging. This review aims to highlight the clinical and pre-clinical evidence for the pathogenic contribution of LRG1 to vascular retinopathies, as well as extrapolate from other diseases, functions which may be relevant to eye disease. Finally, we will provide a current update on the development of anti-LRG1 therapies for the treatment of nvAMD.
Collapse
Affiliation(s)
- Giulia De Rossi
- Institute of Ophthalmology, University College London, 11-43 Bath Street, London, EC1V 9EL, UK.
| | | | - John Greenwood
- Institute of Ophthalmology, University College London, 11-43 Bath Street, London, EC1V 9EL, UK
| | - Stephen E Moss
- Institute of Ophthalmology, University College London, 11-43 Bath Street, London, EC1V 9EL, UK
| |
Collapse
|
56
|
Markan A, Neupane S, Agrawal R, Gupta V. Newer therapeutic agents for retinal diseases. EXPERT REVIEW OF OPHTHALMOLOGY 2022. [DOI: 10.1080/17469899.2022.2030709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Ashish Markan
- Advanced Eye Centre, Department of Ophthalmology, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Swechya Neupane
- Advanced Eye Centre, Department of Ophthalmology, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Rupesh Agrawal
- Department of Ophthalmology, National Healthcare Group Eye Institute, Tan Tock Sen Hospital, Novena, Singapore
| | - Vishali Gupta
- Advanced Eye Centre, Department of Ophthalmology, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| |
Collapse
|
57
|
Martinez-Alejo JM, Baiza-Duran LM, Quintana-Hau JDD. Novel therapies for proliferative retinopathies. Ther Adv Chronic Dis 2022; 13:20406223221140395. [DOI: 10.1177/20406223221140395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 11/03/2022] [Indexed: 12/05/2022] Open
Abstract
Proliferative retinopathies, such as neovascular age–related macular degeneration and proliferative diabetic retinopathy, are a special health issue due to their contribution to irreversible blindness. Although the promoting conditions and physiopathology of proliferative retinopathies are different, these feature a highly detrimental angiogenesis driven by the overproduction of vascular endothelial growth factor (VEGF). This article describes the mechanism of action of ocular antiangiogenic therapies currently found in clinical development. Systems classify accordingly as (a) novel anti-VEGF systems, (b) molecules targeting non-VEGF pathways, and (c) gene therapies. Whereas most therapies are designed to neutralize VEGF, there is a significant set of products with diverse complexity and mechanism of action. Anti-VEGF therapies are still the most studied approach to tackle angiogenesis. Therapies targeting non-VEGF pathways, however, are highlighted because they could be an option for patients nonresponsive to anti-VEGF therapies. Finally, gene therapy is a promissory technology platform but still is subject to demonstrate safety and efficacy.
Collapse
Affiliation(s)
| | | | - Juan de Dios Quintana-Hau
- Centro de Investigación Sophia, Laboratorios Sophia SA de CV, Paseo del Valle 4896, Technology Park, 45010 Zapopan, Jalisco, Mexico
| |
Collapse
|
58
|
Pollmann S, Scharnetzki D, Manikowski D, Lenders M, Brand E. Endothelial Dysfunction in Fabry Disease Is Related to Glycocalyx Degradation. Front Immunol 2021; 12:789142. [PMID: 34917096 PMCID: PMC8670230 DOI: 10.3389/fimmu.2021.789142] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 11/15/2021] [Indexed: 12/31/2022] Open
Abstract
Fabry disease (FD) is an X-linked multisystemic lysosomal storage disease due to a deficiency of α-galactosidase A (GLA/AGAL). Progressive cellular accumulation of the AGAL substrate globotriaosylceramide (Gb3) leads to endothelial dysfunction. Here, we analyzed endothelial function in vivo and in vitro in an AGAL-deficient genetic background to identify the processes underlying this small vessel disease. Arterial stiffness and endothelial function was prospectively measured in five males carrying GLA variants (control) and 22 FD patients under therapy. AGAL-deficient endothelial cells (EA.hy926) and monocytes (THP1) were used to analyze endothelial glycocalyx structure, function, and underlying inflammatory signals. Glycocalyx thickness and small vessel function improved significantly over time (p<0.05) in patients treated with enzyme replacement therapy (ERT, n=16) and chaperones (n=6). AGAL-deficient endothelial cells showed reduced glycocalyx and increased monocyte adhesion (p<0.05). In addition, increased expression of angiopoietin-2, heparanase and NF-κB was detected (all p<0.05). Incubation of wild-type endothelial cells with pathological globotriaosylsphingosine concentrations resulted in comparable findings. Treatment of AGAL-deficient cells with recombinant AGAL (p<0.01), heparin (p<0.01), anti-inflammatory (p<0.001) and antioxidant drugs (p<0.05), and a specific inhibitor (razuprotafib) of angiopoietin-1 receptor (Tie2) (p<0.05) improved glycocalyx structure and endothelial function in vitro. We conclude that chronic inflammation, including the release of heparanases, appears to be responsible for the degradation of the endothelial glycocalyx and may explain the endothelial dysfunction in FD. This process is partially reversible by FD-specific and anti-inflammatory treatment, such as targeted protective Tie2 treatment.
Collapse
Affiliation(s)
- Solvey Pollmann
- Department of Internal Medicine D, and Interdisciplinary Fabry Center (IFAZ), University Hospital Muenster, Muenster, Germany
| | - David Scharnetzki
- Department of Internal Medicine D, and Interdisciplinary Fabry Center (IFAZ), University Hospital Muenster, Muenster, Germany
| | - Dominique Manikowski
- Institute of Physiological Chemistry and Pathobiochemistry and Cells-in-Motion Cluster of Excellence (EXC1003-CiM), University of Muenster, Muenster, Germany
| | - Malte Lenders
- Department of Internal Medicine D, and Interdisciplinary Fabry Center (IFAZ), University Hospital Muenster, Muenster, Germany
| | - Eva Brand
- Department of Internal Medicine D, and Interdisciplinary Fabry Center (IFAZ), University Hospital Muenster, Muenster, Germany
| |
Collapse
|
59
|
Chu C, Chen X, Hasan AA, Szakallova A, Krämer BK, Tepel M, Hocher B. Angiopoietin-2 predicts all-cause mortality in male but not female end-stage kidney disease patients on hemodialysis. Nephrol Dial Transplant 2021; 37:1348-1356. [PMID: 34792167 PMCID: PMC9217660 DOI: 10.1093/ndt/gfab332] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Indexed: 11/29/2022] Open
Abstract
Background Angiopoietin-2 (Ang-2) plays a pivotal role in pathological vascular remodeling and angiogenesis. Both vascular mechanisms are active in patients with end-stage renal disease (ESRD) and may contribute to the high mortality in these patients. The aim of this multicenter prospective cohort study was to investigate baseline serum Ang-2 concentrations in ESRD patients on hemodialysis (HD) for their ability to predict all-cause mortality. Methods We conducted a prospective cohort study in 340 stable HD patients from different chronic dialysis centers in Berlin, Germany. The primary endpoint was all-cause mortality during a 5-year follow-up period. Blood samples and clinical data were collected at baseline. Serum Ang-2 was measured with a validated enzyme-linked immunosorbent assay (Biomedica, Vienna, Austria). Results A total of 313 HD patients (206 men and 107 women) were finally included in the study. Receiver operating characteristic (ROC) analysis of Ang-2 concentrations yielded an area under the curve (AUC) of 0.65 (P < 0.0001) for predicting all-cause mortality in the entire study population and was used to determine the optimal cut-off (111.0 pmol/L) for all-cause mortality. Kaplan–Meier survival analysis indicated that male but not female end-stage kidney disease patients on HD with higher Ang-2 concentrations had a significantly lower survival (log-rank test, P < 0.0001 and P = 0.380 for male and female patients, respectively). Multivariable Cox regression analyses adjusted for age, comorbidity, smoking, dialysis vintage, serum creatinine, hemoglobin, C-reactive protein, serum albumin, intact parathyroid hormone (iPTH), low-density lipoprotein (LDL) and Kt/V likewise indicated that elevated Ang-2 concentrations are associated with all-cause mortality in male {hazard ratio [HR] 3.294 [95% confidence interval (CI) 1.768–6.138]; P = 0.0002} but not in female end-stage kidney disease patients on HD [HR 1.084 (95% CI 0.476–2.467); P = 0.847]. Conclusion Ang-2 at baseline is independently associated with all-cause mortality in male ESRD patients on HD.
Collapse
Affiliation(s)
- Chang Chu
- Fifth Department of Medicine (Nephrology/Endocrinology/Rheumatology), University Medical Centre Mannheim, University of Heidelberg, Mannheim, Germany.,Department of Nephrology, Charité - Universitätsmedizin Berlin, Campus Mitte, Berlin, Germany
| | - Xin Chen
- Fifth Department of Medicine (Nephrology/Endocrinology/Rheumatology), University Medical Centre Mannheim, University of Heidelberg, Mannheim, Germany.,Department of Nephrology, Charité - Universitätsmedizin Berlin, Campus Mitte, Berlin, Germany
| | - Ahmed A Hasan
- Fifth Department of Medicine (Nephrology/Endocrinology/Rheumatology), University Medical Centre Mannheim, University of Heidelberg, Mannheim, Germany
| | | | - Bernhard K Krämer
- Fifth Department of Medicine (Nephrology/Endocrinology/Rheumatology), University Medical Centre Mannheim, University of Heidelberg, Mannheim, Germany.,European Center for Angioscience ECAS, Medical Faculty Mannheim of the University of Heidelberg, Mannheim, Germany
| | - Martin Tepel
- Department of Nephrology, Charité - Universitätsmedizin Berlin, Campus Mitte, Berlin, Germany.,Department of Nephrology, Odense University Hospital, Odense, Denmark
| | - Berthold Hocher
- Fifth Department of Medicine (Nephrology/Endocrinology/Rheumatology), University Medical Centre Mannheim, University of Heidelberg, Mannheim, Germany.,Institute of Medical Diagnostics, IMD Berlin-Potsdam, Berlin, Germany.,Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, School of Medicine, Hunan Normal University, Changsha, China.,Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China
| |
Collapse
|
60
|
Inoda S, Takahashi H, Inoue Y, Tan X, Tampo H, Arai Y, Yanagi Y, Kawashima H. Cytokine profiles of macular neovascularization in the elderly based on a classification from a pachychoroid/drusen perspective. Graefes Arch Clin Exp Ophthalmol 2021; 260:747-758. [PMID: 34714383 DOI: 10.1007/s00417-021-05445-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 09/28/2021] [Accepted: 10/04/2021] [Indexed: 11/26/2022] Open
Abstract
PURPOSE To classify macular neovascularization (MNV) based on pachychoroid and drusen features and to examine the aqueous humor cytokine signatures of each group. METHODS In total, 106 consecutive eyes with treatment-naïve MNV and 104 control eyes were examined. The aqueous humor concentrations of 15 cytokines were compared among the MNV groups classified based on the presence of drusen and/or pachychoroid features. Multidimensional scaling analysis was used to visualize the similarity level of the MNV subtypes according to their cytokine profiles. RESULTS Thirty-one, 18, 43, and 10 eyes were classified into the pachychoroid-associated, drusen-associated, pachychoroid/drusen-associated, and non-drusen/non-pachychoroid MNV groups, respectively. Compared with the control group, cytokines were differently upregulated among the MNV groups. CRP and CXCL12 were significantly upregulated in all MNV groups, whereas CXCL13 and IL-8 were significantly upregulated in three MNV groups, excluding the non-pachychoroid/non-drusen-associated MNV group. Ang-2 was significantly upregulated in three MNV groups except the drusen-associated MNV group. PlGF was significantly upregulated in the pachychoroid-associated and drusen-associated MNV groups. CCL-2 was significantly upregulated in the pachychoroid-associated and pachychoroid/drusen-associated MNV groups. VEGF was downregulated in the pachychoroid-associated and drusen-associated MNV groups, respectively. Multidimensional scaling analysis showed a distinct cytokine profile for each MNV group. CONCLUSION All MNV groups showed distinct cytokine profiles. Eyes with "neovascular age-related macular degeneration with drusen and concomitant pachychoroid" may share a similar etiology to those with "pachychoroid neovasculopathy" and "choroidal neovascularization with drusen," but have a distinct etiology to those without these. These findings suggest the importance of evaluating drusen and the choroid during the diagnosis of neovascular age-related macular degeneration.
Collapse
Affiliation(s)
- Satoru Inoda
- Department of Ophthalmology, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke-shi, Tochigi, 329-0431, Japan
| | - Hidenori Takahashi
- Department of Ophthalmology, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke-shi, Tochigi, 329-0431, Japan.
- Department of Ophthalmology Japan Community Healthcare Organization, Tokyo Shinjuku Medical Center, Shinjuku-ku, Tokyo, Japan.
| | - Yuji Inoue
- Department of Ophthalmology, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke-shi, Tochigi, 329-0431, Japan
| | - Xue Tan
- Department of Ophthalmology Japan Community Healthcare Organization, Tokyo Shinjuku Medical Center, Shinjuku-ku, Tokyo, Japan
| | - Hironobu Tampo
- Department of Ophthalmology, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke-shi, Tochigi, 329-0431, Japan
| | - Yusuke Arai
- Department of Ophthalmology, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke-shi, Tochigi, 329-0431, Japan
| | - Yasuo Yanagi
- Department of Ophthalmology, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke-shi, Tochigi, 329-0431, Japan
- Singapore National Eye Centre, Singapore Eye Research Institute, Singapore, Singapore
| | - Hidetoshi Kawashima
- Department of Ophthalmology, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke-shi, Tochigi, 329-0431, Japan
| |
Collapse
|
61
|
Wang S, Chen K, Lei Q, Ma P, Yuan AQ, Zhao Y, Jiang Y, Fang H, Xing S, Fang Y, Jiang N, Miao H, Zhang M, Sun S, Yu Z, Tao W, Zhu Q, Nie Y, Li N. The state of the art of bispecific antibodies for treating human malignancies. EMBO Mol Med 2021; 13:e14291. [PMID: 34431224 PMCID: PMC8422067 DOI: 10.15252/emmm.202114291] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 07/08/2021] [Accepted: 07/09/2021] [Indexed: 12/26/2022] Open
Abstract
Bispecific antibodies (bsAb) that target two independent epitopes or antigens have been extensively explored in translational and clinical studies since they were first developed in the 1960s. Many bsAbs are being tested in clinical trials for treating a variety of diseases, mostly cancer. Here, we provide an overview of various types of bsAbs in clinical studies and discuss their targets, safety profiles, and efficacy. We also highlight the current challenges, potential solutions, and future directions of bsAb development for cancer treatment.
Collapse
Affiliation(s)
- Shuhang Wang
- Clinical Cancer Center/National Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Kun Chen
- NHC Key Laboratory of Pulmonary Immunological Diseases is supported by the non‐profit Central Research Institute fund of Chinese Academy of Medical Sciences (2019PT320003)Guizhou Provincial People’s HospitalGuiyangChina
| | - Qi Lei
- Clinical Cancer Center/National Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Peiwen Ma
- Clinical Cancer Center/National Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | | | - Yong Zhao
- Nanjing Umab‐biopharma Co., LtdNanjingChina
| | | | - Hong Fang
- Clinical Cancer Center/National Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Shujun Xing
- Clinical Cancer Center/National Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Yuan Fang
- Clinical Cancer Center/National Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Ning Jiang
- Clinical Cancer Center/National Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Huilei Miao
- Clinical Cancer Center/National Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Minghui Zhang
- Department of Medical OncologyHarbin Medical University Cancer HospitalHarbinChina
| | - Shujun Sun
- Queen Mary SchoolNanchang UniversityNanchangChina
| | | | - Wei Tao
- China Pharmaceutical UniversityNanjingChina
| | - Qi Zhu
- China Pharmaceutical UniversityNanjingChina
| | - Yingjie Nie
- NHC Key Laboratory of Pulmonary Immunological Diseases is supported by the non‐profit Central Research Institute fund of Chinese Academy of Medical Sciences (2019PT320003)Guizhou Provincial People’s HospitalGuiyangChina
| | - Ning Li
- Clinical Cancer Center/National Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| |
Collapse
|
62
|
In Uveal Melanoma, Angiopoietin-2 but Not Angiopoietin-1 Is Increased in High-Risk Tumors, Providing a Potential Druggable Target. Cancers (Basel) 2021; 13:cancers13163986. [PMID: 34439141 PMCID: PMC8391938 DOI: 10.3390/cancers13163986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/28/2021] [Accepted: 08/04/2021] [Indexed: 11/17/2022] Open
Abstract
Uveal melanoma (UM) metastasize haematogeneously, and tumor blood vessel density is an important prognostic factor. We hypothesized that proangiogenic factors such as angiopoietin-1 (ANG-1) and angiopoietin-2 (ANG-2), two targetable cytokines, might play a role in tumor development and metastatic behavior. mRNA levels of ANG-1 and ANG-2 were determined in 64 tumors using an Illumina HT-12 v4 mRNA chip and compared to clinical, pathologic, and genetic tumor parameters. Tissue expression was also determined by immunohistochemistry (IHC). Samples of aqueous humor were collected from 83 UM-containing enucleated eyes and protein levels that were determined in a multiplex proximity extension assay. High tissue gene expression of ANG-2, but not of ANG-1, was associated with high tumor thickness, high largest basal diameter, involvement of the ciliary body, and with UM-related death (ANG-2 mRNA p < 0.001; ANG-2 aqueous protein p < 0.001). The presence of the ANG-2 protein in aqueous humor correlated with its mRNA expression in the tumor (r = 0.309, p = 0.03). IHC showed that ANG-2 was expressed in macrophages as well as tumor cells. The presence of ANG-2 in the tumor and in aqueous humor, especially in high-risk tumors, make ANG-2 a potential targetable cytokine in uveal melanoma.
Collapse
|
63
|
Mucopolysaccharide polysulfate promotes microvascular stabilization and barrier integrity of dermal microvascular endothelial cells via activation of the angiopoietin-1/Tie2 pathway. J Dermatol Sci 2021; 103:25-32. [PMID: 34148739 DOI: 10.1016/j.jdermsci.2021.05.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 04/28/2021] [Accepted: 05/31/2021] [Indexed: 01/01/2023]
Abstract
BACKGROUND Mucopolysaccharide polysulfate (MPS) is a heparinoid and MPS-containing formulations are widely used as moisturizers for dry skin and to treat peripheral vascular insufficiency. Although MPS has therapeutic effects in skin diseases with microvascular abnormalities, the effects of MPS on microvascular function remain incompletely understood. OBJECTIVE The aim of this study was to evaluate the functional activities of MPS on human pericytes (HPC) and human dermal microvascular endothelial cells (HDMEC) in vitro, and on microvascular permeability of the skin. METHODS The protein expression of angiopoietin (Ang)-1 in HPC, and platelet-derived growth factor-BB (PDGF-BB) and phosphorylated tyrosine-protein kinase receptor 2 (Tie2) in HDMEC were measured in the presence or absence of MPS. The vascular barrier was evaluated by the expressions of claudin-5 and vascular endothelial (VE)-cadherin, and transendothelial electrical resistance (TEER). RESULTS In HPC, MPS dose-dependently enhanced Ang-1 secretion, which activated Tie2 in HDMEC. In HDMEC, MPS significantly increased the production of PDGF-BB, which is important for the recruitment of HPC to the vascular endothelium, and significantly increased the phosphorylation of Tie2, which results in the activation of the Ang-1/Tie2 signaling . MPS significantly increased the expression of tight junction protein claudin-5 and TEER in the HDMEC. Moreover, the intradermal injection of MPS prevented vascular endothelial growth factor-induced increase in vascular permeability in mouse skin. CONCLUSION We found that MPS promoted microvascular stabilization and barrier integrity in HDMEC via Ang-1/Tie2 activation. These results suggest that MPS might improve microvascular abnormalities in various diseases accompanied by disturbances in Ang-1/Tie2 signaling.
Collapse
|
64
|
New and Innovative Treatments for Neovascular Age-Related Macular Degeneration (nAMD). J Clin Med 2021; 10:jcm10112436. [PMID: 34070899 PMCID: PMC8198303 DOI: 10.3390/jcm10112436] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/28/2021] [Accepted: 05/28/2021] [Indexed: 12/20/2022] Open
Abstract
Age-related macular degeneration (AMD) is one of the most common causes of vision loss. Advanced forms of AMD are seen in primarily two types—neovascular AMD (nAMD) with the presence of choroid neovascularization and non-neovascular AMD (nnAMD) with geographic atrophy. Neovascular AMD is characterized by choroidal neovascularization (CNV), which leads to a cascade of complications, including exudation, leakage, and ultimately fibrosis with photoreceptor loss. Inhibition of VEGF represents the current standard of care. However, there is a tremendous gap between the outcomes in randomized clinical trials and real-world settings. New agents for nAMD might offer the potential to improve treatment outcomes and reduce treatment of frequent intravitreal injections. We summarize all the newer molecules, their pivotal clinical trial results, and their unique mechanisms of action; these include longer-acting agents, combination strategies, sustained release, and genetic therapies.
Collapse
|
65
|
Kodjikian L, Mehanna CJ, Cohen SY, Devin F, Razavi S, Querques G, Massin P, Coscas F, Souied E. The role of future treatments in the management of neovascular age-related macular degeneration in Europe. Eur J Ophthalmol 2021; 31:2179-2188. [PMID: 34053331 DOI: 10.1177/11206721211018348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Anti-vascular endothelial growth factor (VEGF) agents have transformed the management of patients with neovascular age-related macular degeneration (nAMD) over the past two decades. However, as more long-term real-world data become available, it is clear that treatment outcomes are inferior to those reported in large, controlled clinical trials. This is largely driven by undertreatment, that is, not maintaining a consistent injection frequency to achieve sustained VEGF suppression, whether due to patient non-compliance, an important injection burden, or non/incomplete anatomical response. Newer therapeutic advances under evaluation hold promise in achieving more, for less. We review the latest drugs currently in or having successfully finished phase III clinical trials, and determine their potential place in the management of patients with nAMD in Europe.
Collapse
Affiliation(s)
- Laurent Kodjikian
- Department of Ophthalmology, Croix-Rousse University Hospital, Claude Bernard University Lyon 1, Lyon, Rhône-Alpes, France.,UMR-CNRS 5510 Mateis Laboratory, University Lyon 1, Villeurbanne, France
| | - Carl Joe Mehanna
- Intercommunal Hospital of Créteil, Paris-Est University, Créteil, France
| | | | - François Devin
- Center Monticelli-Paradis, Juge Clinic, Marseille, France
| | - Sam Razavi
- St. Exupery Ophthalmic Center, Saint Cyr sur Loire, France
| | - Giuseppe Querques
- Department of Ophthalmology, IRCCS Ospedale San Raffaele, Vita-Salute University, Milan, Lombardy, Italy
| | - Pascale Massin
- Ophthalmic Center of Breteuil, Paris, Île-de-France, France
| | | | - Eric Souied
- Intercommunal Hospital of Créteil, Paris-Est University, Créteil, France
| |
Collapse
|
66
|
Junker F, Gulati P, Wessels U, Seeber S, Stubenrauch KG, Codarri-Deak L, Markert C, Klein C, Camillo Teixeira P, Kao H. A human receptor occupancy assay to measure anti-PD-1 binding in patients with prior anti-PD-1. Cytometry A 2021; 99:832-843. [PMID: 33704890 PMCID: PMC8451911 DOI: 10.1002/cyto.a.24334] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 02/08/2021] [Accepted: 03/04/2021] [Indexed: 12/19/2022]
Abstract
Receptor occupancy (RO) assessment by flow cytometry is an important pharmacodynamic (PD) biomarker in the clinical development of large molecules such as monoclonal therapeutic antibodies (mAbs). The total‐drug‐bound RO assay format directly assesses mAb binding to cell surface targets using anti‐drug detection antibodies. Here, we generated a flow cytometry detection antibody specifically binding to mAbs of the IgG1 P329GLALA backbone. Using this reagent, we developed a total‐drug‐bound RO assay format for RG7769, a bi‐specific P329GLALA containing mAb targeting PD‐1 and TIM3 on T cells. In its fit‐for‐purpose validated version, this RO assay has been used in the Phase‐I dose escalation study of RG7769, informing on peripheral T cell RO and RG7769 antibody binding capacity (ABC). We assessed RG7769 RO in checkpoint‐inhibitor (CPI) naïve patients and anti‐PD‐1 CPI experienced patients using our novel assay. Here, we show that in both groups, complete T cell RO can be achieved (~100%). However, we found that the maximum number of T cell binding sites for RG7769 pre‐dosing was roughly twofold lower in patients recently having undergone anti‐PD‐1 treatment. We show that this is due to steric hindrance exerted by competing mAbs masking the available drug binding sites. Our findings highlight the importance of quantitative mAb assessment in addition to relative RO especially in the context of patients who have previously received anti‐PD‐1 treatment.
Collapse
Affiliation(s)
- Fabian Junker
- Roche Pharma Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Pratiksha Gulati
- Roche Pharma Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Uwe Wessels
- Roche Pharma Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Munich, F. Hoffmann-La Roche Ltd, Penzberg, Germany
| | - Stefan Seeber
- Roche Pharma Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Munich, F. Hoffmann-La Roche Ltd, Penzberg, Germany
| | - Kay-Gunnar Stubenrauch
- Roche Pharma Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Munich, F. Hoffmann-La Roche Ltd, Penzberg, Germany
| | - Laura Codarri-Deak
- Roche Pharma Research and Early Development, Discovery Oncology, Roche Innovation Center Zurich, Schlieren, Switzerland
| | | | - Christian Klein
- Roche Pharma Research and Early Development, Discovery Oncology, Roche Innovation Center Zurich, Schlieren, Switzerland
| | - Priscila Camillo Teixeira
- Roche Pharma Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Henry Kao
- Roche Pharma Research and Early Development, Early Biomarker Development Oncology, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| |
Collapse
|
67
|
Nicolò M, Ferro Desideri L, Vagge A, Traverso CE. Faricimab: an investigational agent targeting the Tie-2/angiopoietin pathway and VEGF-A for the treatment of retinal diseases. Expert Opin Investig Drugs 2021; 30:193-200. [PMID: 33471572 DOI: 10.1080/13543784.2021.1879791] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Intravitreal antivascular endothelial growth factor (VEGF) drugs represent the first-line treatment option for wet age-related macular degeneration (w-AMD) and diabetic macular edema (DME); however, the frequent injection intervals have illuminated to the necessity for new molecules allowing a more prolonged treatment regimen. Faricimab is a promising bispecific drug targeting VEGF-A and the Ang-Tie/pathway. Phase II STAIRWAY and AVENUE Trials showed its clinical efficacy for the treatment of w-AMD, while the phase II BOULEVARD Trial revealed its superiority to monthly ranibizumab in the management of DME with a monthly treatment regimen. The agents are awaiting approval for the treatment of w-AMD and DME. AREAS COVERED This article presents an overview of w-AMD and diabetic retinopathy and examines the progress of Faricimab through clinical trials. It offers insights on where Faricimab may be placed in the future market of anti-VEGF treatments and discusses the role of Ang/Tie pathway as a potential additive weapon for the treatment of w-AMD, DME, and retinal vein occlusion (RVO). EXPERT OPINION The possibility of administering faricimab with more prolonged treatment intervals represents an important advantage to decrease the treatment burden and improve patient compliance. Further phase III trials should provide more evidence on clinical efficacy.
Collapse
Affiliation(s)
- Massimo Nicolò
- University Eye Clinic, Ospedale Policlinico San Martino IRCCS, Genoa, Italy.,Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (Dinogmi), University of Genoa, Italy.,Fondazione per La Macula Onlus, Genoa, Italy
| | - Lorenzo Ferro Desideri
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (Dinogmi), University of Genoa, Italy
| | - Aldo Vagge
- University Eye Clinic, Ospedale Policlinico San Martino IRCCS, Genoa, Italy.,Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (Dinogmi), University of Genoa, Italy
| | - Carlo Enrico Traverso
- University Eye Clinic, Ospedale Policlinico San Martino IRCCS, Genoa, Italy.,Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (Dinogmi), University of Genoa, Italy
| |
Collapse
|
68
|
Aziz AA, Khan M, Baumal CR, Khanani AM. Faricimab: An Emerging Therapy for the Treatment of Neovascular Age-related Macular Degeneration. Ophthalmology 2021. [DOI: 10.17925/opht.2021.15.1.23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|