51
|
The impact of oxidative stress and inflammation on RPE degeneration in non-neovascular AMD. Prog Retin Eye Res 2017; 60:201-218. [PMID: 28336424 DOI: 10.1016/j.preteyeres.2017.03.002] [Citation(s) in RCA: 500] [Impact Index Per Article: 71.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 03/13/2017] [Accepted: 03/14/2017] [Indexed: 02/07/2023]
Abstract
The retinal pigment epithelium (RPE) is a highly specialized, unique epithelial cell that interacts with photoreceptors on its apical side and with Bruch's membrane and the choriocapillaris on its basal side. Due to vital functions that keep photoreceptors healthy, the RPE is essential for maintaining vision. With aging and the accumulated effects of environmental stresses, the RPE can become dysfunctional and die. This degeneration plays a central role in age-related macular degeneration (AMD) pathobiology, the leading cause of blindness among the elderly in western societies. Oxidative stress and inflammation have both physiological and potentially pathological roles in RPE degeneration. Given the central role of the RPE, this review will focus on the impact of oxidative stress and inflammation on the RPE with AMD pathobiology. Physiological sources of oxidative stress as well as unique sources from photo-oxidative stress, the phagocytosis of photoreceptor outer segments, and modifiable factors such as cigarette smoking and high fat diet ingestion that can convert oxidative stress into a pathological role, and the negative impact of impairing the cytoprotective roles of mitochondrial dynamics and the Nrf2 signaling system on RPE health in AMD will be discussed. Likewise, the response by the innate immune system to an inciting trigger, and the potential role of local RPE production of inflammation, as well as a potential role for damage by inflammation with chronicity if the inciting trigger is not neutralized, will be debated.
Collapse
|
52
|
Melatonin in Retinal Physiology and Pathology: The Case of Age-Related Macular Degeneration. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:6819736. [PMID: 27688828 PMCID: PMC5027321 DOI: 10.1155/2016/6819736] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 08/09/2016] [Indexed: 12/16/2022]
Abstract
Melatonin, an indoleamine, is synthesized mainly in the pineal gland in a circadian fashion, but it is produced in many other organs, including the retina, which seems to be especially important as the eye is a primary recipient of circadian signals. Melatonin displays strong antioxidative properties, which predispose it to play a protective role in many human pathologies associated with oxidative stress, including premature aging and degenerative disease. Therefore, melatonin may play a role in age-related macular degeneration (AMD), a disease affecting photoreceptors, and retinal pigment epithelium (RPE) with an established role of oxidative stress in its pathogenesis. Several studies have shown that melatonin could exert the protective effect against damage to RPE cells evoked by reactive oxygen species (ROS), but it has also been reported to increase ROS-induced damage to photoreceptors and RPE. Melatonin behaves like synthetic mitochondria-targeted antioxidants, which concentrate in mitochondria at relatively high levels; thus, melatonin may prevent mitochondrial damage in AMD. The retina contains telomerase, an enzyme implicated in maintaining the length of telomeres, and oxidative stress inhibits telomere synthesis, while melatonin overcomes this effect. These features support considering melatonin as a preventive and therapeutic agent in the treatment of AMD.
Collapse
|
53
|
Lone MI, Nazam N, Hussain A, Singh SK, Dar AH, Najar RA, Al-Qahtani MH, Ahmad W. Genotoxicity and immunotoxic effects of 1,2-dichloroethane in Wistar rats. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART C, ENVIRONMENTAL CARCINOGENESIS & ECOTOXICOLOGY REVIEWS 2016; 34:169-186. [PMID: 27229631 DOI: 10.1080/10590501.2016.1193924] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Dichloroethane is widely used as a solvent, degreasing agent and in a variety of commercial products, and is known for being a ubiquitous contaminant in the environment. Important sources principally include the emissions from industrial processes, improper consumption, storage, and disposal methods. In view of the fact that the mechanism of its genotoxicity has not been satisfactorily elucidated, the acute in vivo toxicological impact is assessed in Rattus norvegicus. A systematic investigation has been made involving the use of conventional methods along with molecular and flow cytometric approaches. The micronucleus and chromosomal aberration frequencies were significantly elevated in bone marrow cells exposed to three concentrations at multiple treatment durations indicating positive time- and dose-response relationships. The mitotic index significantly decreased in similar concentrations in contrast to normal control. Separate studies were performed on blood cells for comet assay. It revealed dichloroethane-induced DNA damage in all exposures readily explainable in a dose- and time-dependent manner. Recent molecular techniques were further employed using leukocytes for the cell apoptosis/cycle and mitochondrial membrane potential employing propidium iodide staining and rhodamine-123, respectively. The effect on mitochondrial membrane permeability, cell cycle phases, and the DNA damage was analyzed through flow cytometry. These indicators revealed dichloroethane treatment decreased the mitochondrial membrane potential, affected the cell cycle, and confirmed the DNA damage, leading to apoptosis of the cells of the immune system responsible for immunotoxic effects of dichloroethane on rat leukocytes.
Collapse
Affiliation(s)
- Mohammad Iqbal Lone
- a Gene-Tox Laboratory, Division of Genetics, Department of Zoology, Aligarh Muslim University , Aligarh , UP , India
- b Cancer Pharmacology Division, CSIR-Indian Institute of Integrative Medicine , Jammu , India
| | - Nazia Nazam
- a Gene-Tox Laboratory, Division of Genetics, Department of Zoology, Aligarh Muslim University , Aligarh , UP , India
| | - Aashiq Hussain
- b Cancer Pharmacology Division, CSIR-Indian Institute of Integrative Medicine , Jammu , India
| | - Shashank K Singh
- b Cancer Pharmacology Division, CSIR-Indian Institute of Integrative Medicine , Jammu , India
| | - Abid Hamid Dar
- b Cancer Pharmacology Division, CSIR-Indian Institute of Integrative Medicine , Jammu , India
- c Department of Dermatology , University of Wisconsin , Madison , Wisconsin , USA
| | - Rauf Ahmad Najar
- b Cancer Pharmacology Division, CSIR-Indian Institute of Integrative Medicine , Jammu , India
| | | | - Waseem Ahmad
- a Gene-Tox Laboratory, Division of Genetics, Department of Zoology, Aligarh Muslim University , Aligarh , UP , India
- d Center of Excellence in Genomic Medicine Research, King Abdulaziz University , Kingdom of Saudi Arabia
| |
Collapse
|
54
|
Bandyopadhaya A, Constantinou C, Psychogios N, Ueki R, Yasuhara S, Martyn JAJ, Wilhelmy J, Mindrinos M, Rahme LG, Tzika AA. Bacterial-excreted small volatile molecule 2-aminoacetophenone induces oxidative stress and apoptosis in murine skeletal muscle. Int J Mol Med 2016; 37:867-78. [PMID: 26935176 PMCID: PMC4790710 DOI: 10.3892/ijmm.2016.2487] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 11/04/2015] [Indexed: 12/18/2022] Open
Abstract
Oxidative stress induces mitochondrial dysfunction and facilitates apoptosis, tissue damage or metabolic alterations following infection. We have previously discovered that the Pseudomonas aeruginosa (PA) quorum sensing (QS)-excreted small volatile molecule, 2-aminoacetophenone (2-AA), which is produced in infected human tissue, promotes bacterial phenotypes that favor chronic infection, while also compromising muscle function and dampens the pathogen-induced innate immune response, promoting host tolerance to infection. In this study, murine whole-genome expression data have demonstrated that 2-AA affects the expression of genes involved in reactive oxygen species (ROS) homeostasis, thus producing an oxidative stress signature in skeletal muscle. The results of the present study demonstrated that the expression levels of genes involved in apoptosis signaling pathways were upregulated in the skeletal muscle of 2-AA-treated mice. To confirm the results of our transcriptome analysis, we used a novel high-resolution magic-angle-spinning (HRMAS), proton (1H) nuclear magnetic resonance (NMR) method and observed increased levels of bisallylic methylene fatty acyl protons and vinyl protons, suggesting that 2-AA induces skeletal muscle cell apoptosis. This effect was corroborated by our results demonstrating the downregulation of mitochondrial membrane potential in vivo in response to 2-AA. The findings of the present study indicate that the bacterial infochemical, 2-AA, disrupts mitochondrial functions by inducing oxidative stress and apoptosis signaling and likely promotes skeletal muscle dysfunction, which may favor chronic/persistent infection.
Collapse
Affiliation(s)
- Arunava Bandyopadhaya
- Department of Surgery, Microbiology and Immunobiology, Harvard Medical School and Molecular Surgery Laboratory, Center for Surgery, Innovation and Bioengineering, Department of Surgery, Massachusetts General and Shriners Burns Hospitals, Harvard Medical School, Boston, MA 02114, USA
| | - Caterina Constantinou
- Department of Surgery, Microbiology and Immunobiology, Harvard Medical School and Molecular Surgery Laboratory, Center for Surgery, Innovation and Bioengineering, Department of Surgery, Massachusetts General and Shriners Burns Hospitals, Harvard Medical School, Boston, MA 02114, USA
| | - Nikolaos Psychogios
- NMR Surgical Laboratory, Center for Surgery, Innovation and Bioengineering, Department of Surgery, Massachusetts General and Shriners Burns Hospitals, Harvard Medical School, Boston, MA 02114, USA
| | - Ryusuke Ueki
- Department of Anesthesiology and Critical Care, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Shingo Yasuhara
- Department of Anesthesiology and Critical Care, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - J A Jeevendra Martyn
- Department of Anesthesiology and Critical Care, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Julie Wilhelmy
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Michael Mindrinos
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Laurence G Rahme
- Department of Surgery, Microbiology and Immunobiology, Harvard Medical School and Molecular Surgery Laboratory, Center for Surgery, Innovation and Bioengineering, Department of Surgery, Massachusetts General and Shriners Burns Hospitals, Harvard Medical School, Boston, MA 02114, USA
| | - A Aria Tzika
- NMR Surgical Laboratory, Center for Surgery, Innovation and Bioengineering, Department of Surgery, Massachusetts General and Shriners Burns Hospitals, Harvard Medical School, Boston, MA 02114, USA
| |
Collapse
|
55
|
Dib B, Lin H, Maidana DE, Tian B, Miller JB, Bouzika P, Miller JW, Vavvas DG. Mitochondrial DNA has a pro-inflammatory role in AMD. BIOCHIMICA ET BIOPHYSICA ACTA 2015; 1853:2897-906. [PMID: 26305120 PMCID: PMC5330253 DOI: 10.1016/j.bbamcr.2015.08.012] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Revised: 08/10/2015] [Accepted: 08/20/2015] [Indexed: 12/13/2022]
Abstract
Age-related macular degeneration (AMD) is the leading cause of irreversible blindness in the elderly of industrialized nations, and there is increasing evidence to support a role for chronic inflammation in its pathogenesis. Mitochondrial DNA (mtDNA) has been recently reported to be pro-inflammatory in various diseases such as Alzheimer's and heart failure. Here, we report that intracellular mtDNA induces ARPE-19 cells to secrete inflammatory cytokines IL-6 and IL-8, which have been consistently associated with AMD onset and progression. The induction was dependent on the size of mtDNA, but not on specific sequence. Oxidative stress plays a major role in the development of AMD, and our findings indicate that mtDNA induces IL-6 and IL-8 more potently when oxidized. Cytokine induction was mediated by STING (Stimulator of Interferon Genes) and NF-κB as evidenced by abrogation of the cytokine response with the use of specific inhibitors (siRNA and BAY 11-7082, respectively). Finally, mtDNA primed the NLRP3 inflammasome. This study contributes to our understanding of the potential pro-inflammatory role of mtDNA in the pathogenesis of AMD.
Collapse
Affiliation(s)
- Bernard Dib
- Retina Service, Angiogenesis Laboratory, Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, United States
| | - Haijiang Lin
- Retina Service, Angiogenesis Laboratory, Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, United States
| | - Daniel E Maidana
- Retina Service, Angiogenesis Laboratory, Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, United States
| | - Bo Tian
- Retina Service, Angiogenesis Laboratory, Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, United States
| | - John B Miller
- Retina Service, Angiogenesis Laboratory, Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, United States
| | - Peggy Bouzika
- Retina Service, Angiogenesis Laboratory, Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, United States
| | - Joan W Miller
- Retina Service, Angiogenesis Laboratory, Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, United States
| | - Demetrios G Vavvas
- Retina Service, Angiogenesis Laboratory, Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, United States.
| |
Collapse
|
56
|
Sinha D, Valapala M, Shang P, Hose S, Grebe R, Lutty GA, Zigler JS, Kaarniranta K, Handa JT. Lysosomes: Regulators of autophagy in the retinal pigmented epithelium. Exp Eye Res 2015; 144:46-53. [PMID: 26321509 DOI: 10.1016/j.exer.2015.08.018] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Revised: 07/09/2015] [Accepted: 08/18/2015] [Indexed: 12/19/2022]
Abstract
The retinal pigmented epithelium (RPE) is critically important to retinal homeostasis, in part due to its very active processes of phagocytosis and autophagy. Both of these processes depend upon the normal functioning of lysosomes, organelles which must fuse with (auto)phagosomes to deliver the hydrolases that effect degradation of cargo. It has become clear that signaling through mTOR complex 1 (mTORC1), is very important in the regulation of lysosomal function. This signaling pathway is becoming a target for therapeutic intervention in diseases, including age-related macular degeneration (AMD), where lysosomal function is defective. In addition, our laboratory has been studying animal models in which the gene (Cryba1) for βA3/A1-crystallin is deficient. These animals exhibit impaired lysosomal clearance in the RPE and pathological signs that are similar to some of those seen in AMD patients. The data demonstrate that βA3/A1-crystallin localizes to lysosomes in the RPE and that it is a binding partner of V-ATPase, the proton pump that acidifies the lysosomal lumen. This suggests that βA3/A1-crystallin may also be a potential target for therapeutic intervention in AMD. In this review, we focus on effector molecules that impact the lysosomal-autophagic pathway in RPE cells.
Collapse
Affiliation(s)
- Debasish Sinha
- Wilmer Eye Institute, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Mallika Valapala
- Wilmer Eye Institute, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Peng Shang
- Wilmer Eye Institute, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Ophthalmology of Shanghai Tenth Hospital and Tongji Eye Institute, Tongji University School of Medicine, Shanghai, China
| | - Stacey Hose
- Wilmer Eye Institute, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Rhonda Grebe
- Wilmer Eye Institute, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Gerard A Lutty
- Wilmer Eye Institute, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - J Samuel Zigler
- Wilmer Eye Institute, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kai Kaarniranta
- Department of Ophthalmology, Institute of Clinical Medicine and Kuopio University Hospital, University of Eastern Finland, Kuopio, Finland
| | - James T Handa
- Wilmer Eye Institute, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
57
|
Endophenotypes for Age-Related Macular Degeneration: Extending Our Reach into the Preclinical Stages of Disease. J Clin Med 2015; 3:1335-56. [PMID: 25568804 PMCID: PMC4284143 DOI: 10.3390/jcm3041335] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The key to reducing the individual and societal burden of age-related macular degeneration (AMD)-related vision loss, is to be able to initiate therapies that slow or halt the progression at a point that will yield the maximum benefit while minimizing personal risk and cost. There is a critical need to find clinical markers that, when combined with the specificity of genetic testing, will identify individuals at the earliest stages of AMD who would benefit from preventive therapies. These clinical markers are endophenotypes for AMD, present in those who are likely to develop AMD, as well as in those who have clinical evidence of AMD. Clinical characteristics associated with AMD may also be possible endophenotypes if they can be detected before or at the earliest stages of the condition, but we and others have shown that this may not always be valid. Several studies have suggested that dynamic changes in rhodopsin regeneration (dark adaptation kinetics and/or critical flicker fusion frequencies) may be more subtle indicators of AMD-associated early retinal dysfunction. One can test for the relevance of these measures using genetic risk profiles based on known genetic risk variants. These functional measures may improve the sensitivity and specificity of predictive models for AMD and may also serve to delineate clinical subtypes of AMD that may differ with respect to prognosis and treatment.
Collapse
|
58
|
Ratnayaka JA, Serpell LC, Lotery AJ. Dementia of the eye: the role of amyloid beta in retinal degeneration. Eye (Lond) 2015; 29:1013-26. [PMID: 26088679 PMCID: PMC4541342 DOI: 10.1038/eye.2015.100] [Citation(s) in RCA: 116] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 04/23/2015] [Indexed: 11/09/2022] Open
Abstract
Age-related macular degeneration (AMD) is one of the most common causes of irreversible blindness affecting nearly 50 million individuals globally. The disease is characterised by progressive loss of central vision, which has significant implications for quality of life concerns in an increasingly ageing population. AMD pathology manifests in the macula, a specialised region of the retina, which is responsible for central vision and perception of fine details. The underlying pathology of this complex degenerative disease is incompletely understood but includes both genetic as well as epigenetic risk factors. The recent discovery that amyloid beta (Aβ), a highly toxic and aggregate-prone family of peptides, is elevated in the ageing retina and is associated with AMD has opened up new perspectives on the aetiology of this debilitating blinding disease. Multiple studies now link Aβ with key stages of AMD progression, which is both exciting and potentially insightful, as this identifies a well-established toxic agent that aggressively targets cells in degenerative brains. Here, we review the most recent findings supporting the hypothesis that Aβ may be a key factor in AMD pathology. We describe how multiple Aβ reservoirs, now reported in the ageing eye, may target the cellular physiology of the retina as well as associated layers, and propose a mechanistic pathway of Aβ-mediated degenerative change leading to AMD.
Collapse
Affiliation(s)
- J A Ratnayaka
- Clinical and Experimental Science, Faculty of Medicine, University of Southampton, Southampton, UK
| | - L C Serpell
- School of Life Sciences (Biochemistry, Dementia Research Group), University of Sussex, Brighton, UK
| | - A J Lotery
- Clinical and Experimental Science, Faculty of Medicine, University of Southampton, Southampton, UK
| |
Collapse
|
59
|
Tresguerres IF, Tamimi F, Eimar H, Barralet J, Torres J, Blanco L, Tresguerres JAF. Resveratrol as anti-aging therapy for age-related bone loss. Rejuvenation Res 2015; 17:439-45. [PMID: 24956408 DOI: 10.1089/rej.2014.1551] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
INTRODUCTION Previous studies have indicated that resveratrol, a natural phytoestrogen, can act as an anti-aging therapy to resist age-related changes of several body tissues. However, the anti-aging effects of resveratrol on bone have been poorly investigated in this natural aging population. Accordingly, this study was design to evaluate the effects of resveratrol on bone mass and biomechanical properties in old rat femora. METHODS Twenty 22-month-old male Wistar rats were divided into two randomly assigned groups (n=10). The first group was treated for 10 weeks with resveratrol (10 mg/kg per day) and the second group was left untreated (control). Rat femora were collected. Bone mass and bone microestructure were investigated by microcomputed tomography and histomorphometry. Biomechanical properties were determined by a three-point bending test. Plasma levels of CTX (carboxy-terminal telopeptide of type I collagen) and osteocalcin were also determined. Statistical analyses were performed by a Student two-tailed unpaired t-test. In all experiments, a value of p<0.05 was considered significant. RESULTS Microcomputed tomography analyses demonstrated that resveratrol-treated rats had significant higher bone volume, bone trabecular number, and cortical thickness and lower spacing between trabeculae in comparison to the control group. Histomorphometric analyses confirmed the increase of bone volume in resveratrol-treated rats compared to controls. Resveratrol-treated rats had significant higher bone flexural modulus, stiffness, and ultimate load compared to control group. Treatment was not associated with changes in plasma CTX or osteocalcin. CONCLUSION These findings demonstrate that resveratrol increases bone microstructure and bone mechanical properties in old male rats, suggesting that resveratrol might be used as anti-aging therapy to resist age-induced bone loss.
Collapse
Affiliation(s)
- Isabel F Tresguerres
- 1 Department of Medicine and Oral Surgery. School of Dentistry. Complutense University , Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
60
|
Qiu GH. Protection of the genome and central protein-coding sequences by non-coding DNA against DNA damage from radiation. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2015; 764:108-17. [DOI: 10.1016/j.mrrev.2015.04.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Revised: 03/11/2015] [Accepted: 04/22/2015] [Indexed: 01/08/2023]
|
61
|
Chiras D, Kitsos G, Petersen MB, Skalidakis I, Kroupis C. Oxidative stress in dry age-related macular degeneration and exfoliation syndrome. Crit Rev Clin Lab Sci 2014; 52:12-27. [PMID: 25319011 DOI: 10.3109/10408363.2014.968703] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Oxidative stress refers to cellular or molecular damage caused by reactive oxygen species, which especially occurs in age-related conditions as a result of an imbalance between the production of reactive oxygen species and the antioxidant defense response. Dry age-related macular degeneration (AMD) and exfoliation syndrome (XFS) are two common and complex age-related conditions that can cause irreversible vision loss. Two subtypes of AMD, which is the leading cause of blindness in the Western world, exist: the most prevalent dry type and the most severe wet type. Early dry AMD is characterized by formation of drusen, which are sub-retinal deposits, in the macular area and may progress to geographic atrophy with more dramatic manifestation. XFS is a systemic disorder of the extracellular matrix characterized by the accumulation of elastic fibrils that leads, in most cases, to glaucoma development with progressive and irreversible vision loss. Due to the aging population, the prevalence of these already-widespread conditions is increasing and is resulting in significant economic and psychological costs for individuals and for society. The exact composition of the abnormal drusen and XFS material as well as the mechanisms responsible for their production and accumulation still remain elusive, and consequently treatment for both diseases is lacking. However, recent epidemiologic, genetic and molecular studies support a major role for oxidative stress in both dry AMD and XFS development. Understanding the early molecular events in their pathogenesis and the exact role of oxidative stress may provide novel opportunities for therapeutic intervention for the prevention of progression to advanced disease.
Collapse
Affiliation(s)
- Dimitrios Chiras
- Department of Ophthalmology, University Hospital of Ioannina , Ioannina , Greece
| | | | | | | | | |
Collapse
|
62
|
Malik D, Hsu T, Falatoonzadeh P, Cáceres-del-Carpio J, Tarek M, Chwa M, Atilano SR, Ramirez C, Nesburn AB, Boyer DS, Kuppermann BD, Jazwinski SM, Miceli MV, Wallace DC, Udar N, Kenney MC. Human retinal transmitochondrial cybrids with J or H mtDNA haplogroups respond differently to ultraviolet radiation: implications for retinal diseases. PLoS One 2014; 9:e99003. [PMID: 24919117 PMCID: PMC4053329 DOI: 10.1371/journal.pone.0099003] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Accepted: 05/08/2014] [Indexed: 01/04/2023] Open
Abstract
Background It has been recognized that cells do not respond equally to ultraviolet (UV) radiation but it is not clear whether this is due to genetic, biochemical or structural differences of the cells. We have a novel cybrid (cytoplasmic hybrids) model that allows us to analyze the contribution of mitochondrial DNA (mtDNA) to cellular response after exposure to sub-lethal dose of UV. mtDNA can be classified into haplogroups as defined by accumulations of specific single nucleotide polymorphisms (SNPs). Recent studies have shown that J haplogroup is high risk for age-related macular degeneration while the H haplogroup is protective. This study investigates gene expression responses in J cybrids versus H cybrids after exposure to sub-lethal doses of UV-radiation. Methodology/Principal Findings Cybrids were created by fusing platelets isolated from subjects with either H (n = 3) or J (n = 3) haplogroups with mitochondria-free (Rho0) ARPE-19 cells. The H and J cybrids were cultured for 24 hours, treated with 10 mJ of UV-radiation and cultured for an additional 120 hours. Untreated and treated cybrids were analyzed for growth rates and gene expression profiles. The UV-treated and untreated J cybrids had higher growth rates compared to H cybrids. Before treatment, J cybrids showed lower expression levels for CFH, CD55, IL-33, TGF-A, EFEMP-1, RARA, BCL2L13 and BBC3. At 120 hours after UV-treatment, the J cybrids had decreased CFH, RARA and BBC3 levels but increased CD55, IL-33 and EFEMP-1 compared to UV-treated H cybrids. Conclusion/Significance In cells with identical nuclei, the cellular response to sub-lethal UV-radiation is mediated in part by the mtDNA haplogroup. This supports the hypothesis that differences in growth rates and expression levels of complement, inflammation and apoptosis genes may result from population-specific, hereditary SNP variations in mtDNA. Therefore, when analyzing UV-induced damage in tissues, the mtDNA haplogroup background may be important to consider.
Collapse
Affiliation(s)
- Deepika Malik
- Gavin Herbert Eye Institute, University California Irvine, Irvine, California, United States of America
| | - Tiffany Hsu
- Gavin Herbert Eye Institute, University California Irvine, Irvine, California, United States of America
| | - Payam Falatoonzadeh
- Gavin Herbert Eye Institute, University California Irvine, Irvine, California, United States of America
| | - Javier Cáceres-del-Carpio
- Gavin Herbert Eye Institute, University California Irvine, Irvine, California, United States of America
| | - Mohamed Tarek
- Gavin Herbert Eye Institute, University California Irvine, Irvine, California, United States of America
- Department of Ophthalmology, El-Minya University, El-Minya, Egypt
| | - Marilyn Chwa
- Gavin Herbert Eye Institute, University California Irvine, Irvine, California, United States of America
| | - Shari R. Atilano
- Gavin Herbert Eye Institute, University California Irvine, Irvine, California, United States of America
| | - Claudio Ramirez
- Gavin Herbert Eye Institute, University California Irvine, Irvine, California, United States of America
| | - Anthony B. Nesburn
- Gavin Herbert Eye Institute, University California Irvine, Irvine, California, United States of America
- Cedars-Sinai Medical Center, Los Angeles, California, United States of America
| | - David S. Boyer
- Retina-Vitreous Associates Medical Group; Beverly Hills, California, United States of America
| | - Baruch D. Kuppermann
- Gavin Herbert Eye Institute, University California Irvine, Irvine, California, United States of America
| | - S. Michal Jazwinski
- Tulane Center for Aging, Tulane University, New Orleans, Louisiana, United States of America
| | - Michael V. Miceli
- Tulane Center for Aging, Tulane University, New Orleans, Louisiana, United States of America
| | - Douglas C. Wallace
- Center for Mitochondrial and Epigenomic Medicine, Children’s Hospital of Philadelphia and Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Nitin Udar
- Gavin Herbert Eye Institute, University California Irvine, Irvine, California, United States of America
| | - M. Cristina Kenney
- Gavin Herbert Eye Institute, University California Irvine, Irvine, California, United States of America
- Department of Pathology and Laboratory Medicine, University California Irvine, Irvine, California, United States of America
- * E-mail:
| |
Collapse
|
63
|
Kaarniranta K, Machalińska A, Veréb Z, Salminen A, Petrovski G, Kauppinen A. Estrogen signalling in the pathogenesis of age-related macular degeneration. Curr Eye Res 2014; 40:226-33. [PMID: 24911983 DOI: 10.3109/02713683.2014.925933] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Age-related macular degeneration (AMD) is a multifactorial eye disease that is associated with aging, family history, smoking, obesity, cataract surgery, arteriosclerosis, hypertension, hypercholesterolemia and unhealthy diet. Gender has commonly been classified as a weak or inconsistent risk factor for AMD. This disease is characterized by degeneration of retinal pigment epithelial (RPE) cells, Bruch's membrane, and choriocapillaris, which secondarily lead to damage and death of photoreceptor cells and central visual loss. Pathogenesis of AMD involves constant oxidative stress, chronic inflammation, and increased accumulation of lipofuscin and drusen. Estrogen has both anti-oxidative and anti-inflammatory capacity and it regulates signaling pathways that are involved in the pathogenesis of AMD. In this review, we discuss potential cellular signaling targets of estrogen in retinal cells and AMD pathology.
Collapse
Affiliation(s)
- Kai Kaarniranta
- Department of Ophthalmology, Institute of Clinical Medicine, University of Eastern Finland , Kuopio , Finland
| | | | | | | | | | | |
Collapse
|
64
|
Chu XK, Meyerle CB, Liang X, Chew EY, Chan CC, Tuo J. In-depth analyses unveil the association and possible functional involvement of novel RAD51B polymorphisms in age-related macular degeneration. AGE (DORDRECHT, NETHERLANDS) 2014; 36:9627. [PMID: 24526414 PMCID: PMC4082603 DOI: 10.1007/s11357-014-9627-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Accepted: 02/03/2014] [Indexed: 05/02/2023]
Abstract
The contribution of DNA damage to the pathogenesis of age-related macular degeneration (AMD) has been reported. Recently, a genomewide association study detected the association of a single-nucleotide polymorphism (SNP) in RAD51B (rs8017304 A>G) with AMD. RAD51B is involved in recombinational repair of DNA double-strand breaks. We analyzed RAD51B influence on AMD using two cohorts from Caucasian and Han Chinese populations. The Caucasian set replicated the rs8017304 A>G association and revealed two novel AMD-associated SNPs in RAD51B, rs17105278 T>C and rs4902566 C>T. Under the dominant model, these two SNPs exhibit highly significant disease risk. SNP-SNP interaction analysis on rs17105278 T>C and rs4902566 C>T homozygous demonstrated a synergistic effect on AMD risk, reaching an odds ratio multifold higher than well-established AMD susceptibility loci in genes such as CFH, HTRA1, and ARMS2. Functional study revealed lower RAD51B mRNA expression in cultured primary human fetal retinal pigment epithelium (hfRPE) carrying rs17105278 T>C variants than in hfRPE carrying rs17105278 wild type. We concluded that the risk of developing AMD exhibits dose dependency as well as an epistatic combined effect in rs17105278 T>C and rs4902566 C>T carriers and that the elevated risk for rs17105278 T>C carriers may be due to decreased transcription of RAD51B. This study further confirms the role of DNA damage/DNA repair in AMD pathogenesis.
Collapse
Affiliation(s)
- Xi K. Chu
- />Laboratory of Immunology, National Eye Institute, National Institutes of Health, 10/10N103, 10 Center Dr., Bethesda, MD 20892-1857 USA
| | - Catherine B. Meyerle
- />Division of Epidemiology and Clinical Applications, National Eye Institute, National Institutes of Health, 10/10N103, 10 Center Dr., Bethesda, MD USA
| | - Xiaoling Liang
- />State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangzhou, China
| | - Emily Y. Chew
- />Division of Epidemiology and Clinical Applications, National Eye Institute, National Institutes of Health, 10/10N103, 10 Center Dr., Bethesda, MD USA
| | - Chi-Chao Chan
- />Laboratory of Immunology, National Eye Institute, National Institutes of Health, 10/10N103, 10 Center Dr., Bethesda, MD 20892-1857 USA
| | - Jingsheng Tuo
- />Laboratory of Immunology, National Eye Institute, National Institutes of Health, 10/10N103, 10 Center Dr., Bethesda, MD 20892-1857 USA
| |
Collapse
|
65
|
Uebermuth C. Mitochondrial DNA plays an important role. DEUTSCHES ARZTEBLATT INTERNATIONAL 2014; 111:366. [PMID: 24882632 PMCID: PMC4047608 DOI: 10.3238/arztebl.2014.0366a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
|
66
|
Gene therapy for mitochondrial diseases: Leber Hereditary Optic Neuropathy as the first candidate for a clinical trial. C R Biol 2014; 337:193-206. [PMID: 24702846 DOI: 10.1016/j.crvi.2013.11.011] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Accepted: 11/28/2013] [Indexed: 12/30/2022]
Abstract
Mitochondrial disorders cannot be ignored anymore in most medical disciplines; indeed their minimum estimated prevalence is superior to 1 in 5000 births. Despite the progress made in the last 25 years on the identification of gene mutations causing mitochondrial pathologies, only slow progress was made towards their effective treatments. Ocular involvement is a frequent feature in mitochondrial diseases and corresponds to severe and irreversible visual handicap due to retinal neuron loss and optic atrophy. Interestingly, three clinical trials for Leber Congenital Amaurosis due to RPE65 mutations are ongoing since 2007. Overall, the feasibility and safety of ocular Adeno-Associated Virus delivery in adult and younger patients and consistent visual function improvements have been demonstrated. The success of gene-replacement therapy for RPE65 opens the way for the development of similar approaches for a broad range of eye disorders, including those with mitochondrial etiology such as Leber Hereditary Optic Neuropathy (LHON).
Collapse
|
67
|
Oxidative stress, hypoxia, and autophagy in the neovascular processes of age-related macular degeneration. BIOMED RESEARCH INTERNATIONAL 2014; 2014:768026. [PMID: 24707498 PMCID: PMC3950832 DOI: 10.1155/2014/768026] [Citation(s) in RCA: 163] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2013] [Revised: 10/13/2013] [Accepted: 10/13/2013] [Indexed: 11/25/2022]
Abstract
Age-related macular degeneration (AMD) is the leading cause of severe and irreversible loss of vision in the elderly in developed countries. AMD is a complex chronic neurodegenerative disease associated with many environmental, lifestyle, and genetic factors. Oxidative stress and the production of reactive oxygen species (ROS) seem to play a pivotal role in AMD pathogenesis. It is known that the macula receives the highest blood flow of any tissue in the body when related to size, and anything that can reduce the rich blood supply can cause hypoxia, malfunction, or disease. Oxidative stress can affect both the lipid rich retinal outer segment structure and the light processing in the macula. The response to oxidative stress involves several cellular defense reactions, for example, increases in antioxidant production and proteolysis of damaged proteins. The imbalance between production of damaged cellular components and degradation leads to the accumulation of detrimental products, for example, intracellular lipofuscin and extracellular drusen. Autophagy is a central lysosomal clearance system that may play an important role in AMD development. There are many anatomical changes in retinal pigment epithelium (RPE), Bruch's membrane, and choriocapillaris in response to chronic oxidative stress, hypoxia, and disturbed autophagy and these are estimated to be crucial components in the pathology of neovascular processes in AMD.
Collapse
|
68
|
Antioxidant drug therapy approaches for neuroprotection in chronic diseases of the retina. Int J Mol Sci 2014; 15:1865-86. [PMID: 24473138 PMCID: PMC3958826 DOI: 10.3390/ijms15021865] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Revised: 01/18/2014] [Accepted: 01/21/2014] [Indexed: 12/31/2022] Open
Abstract
The molecular pathways contributing to visual signal transduction in the retina generate a high energy demand that has functional and structural consequences such as vascularization and high metabolic rates contributing to oxidative stress. Multiple signaling cascades are involved to actively regulate the redox state of the retina. Age-related processes increase the oxidative load, resulting in chronically elevated levels of oxidative stress and reactive oxygen species, which in the retina ultimately result in pathologies such as glaucoma or age-related macular degeneration, as well as the neuropathic complications of diabetes in the eye. Specifically, oxidative stress results in deleterious changes to the retina through dysregulation of its intracellular physiology, ultimately leading to neurodegenerative and potentially also vascular dysfunction. Herein we will review the evidence for oxidative stress-induced contributions to each of the three major ocular pathologies, glaucoma, age-related macular degeneration, and diabetic retinopathy. The premise for neuroprotective strategies for these ocular disorders will be discussed in the context of recent clinical and preclinical research pursuing novel therapy development approaches.
Collapse
|
69
|
Pinazo-Durán MD, Gómez-Ulla F, Arias L, Araiz J, Casaroli-Marano R, Gallego-Pinazo R, García-Medina JJ, López-Gálvez MI, Manzanas L, Salas A, Zapata M, Diaz-Llopis M, García-Layana A. Do nutritional supplements have a role in age macular degeneration prevention? J Ophthalmol 2014; 2014:901686. [PMID: 24672708 PMCID: PMC3941929 DOI: 10.1155/2014/901686] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Accepted: 10/12/2013] [Indexed: 11/18/2022] Open
Abstract
Purpose. To review the proposed pathogenic mechanisms of age macular degeneration (AMD), as well as the role of antioxidants (AOX) and omega-3 fatty acids ( ω -3) supplements in AMD prevention. Materials and Methods. Current knowledge on the cellular/molecular mechanisms of AMD and the epidemiologic/experimental studies on the effects of AOX and ω -3 were addressed all together with the scientific evidence and the personal opinion of professionals involved in the Retina Group of the OFTARED (Spain). Results. High dietary intakes of ω -3 and macular pigments lutein/zeaxanthin are associated with lower risk of prevalence and incidence in AMD. The Age-Related Eye Disease study (AREDS) showed a beneficial effect of high doses of vitamins C, E, beta-carotene, and zinc/copper in reducing the rate of progression to advanced AMD in patients with intermediate AMD or with one-sided late AMD. The AREDS-2 study has shown that lutein and zeaxanthin may substitute beta-carotene because of its potential relationship with increased lung cancer incidence. Conclusion. Research has proved that elder people with poor diets, especially with low AOX and ω -3 micronutrients intake and subsequently having low plasmatic levels, are more prone to developing AMD. Micronutrient supplementation enhances antioxidant defense and healthy eyes and might prevent/retard/modify AMD.
Collapse
Affiliation(s)
- Maria D Pinazo-Durán
- University of Valencia, Spain ; The Ophthalmic Research Unit "Santiago Grisolía", Valencia, Spain
| | - Francisco Gómez-Ulla
- University of Santiago de Compostela, Spain ; The Institute Gomez-Ulla, Santiago de Compostela, Spain ; Foundation RetinaPlus, Spain
| | - Luis Arias
- University of Barcelona, Spain ; Retina Section, Department of Ophthalmology, Bellvitge University Hospital, Barcelona, Spain
| | - Javier Araiz
- Vitreous and Retina Department, UPV/EHU and Instituto Clínico Quirúrgico de Oftalmología (ICQO), University of the Basque Country, Bilbao, Spain
| | - Ricardo Casaroli-Marano
- Clinic Institute of Ophthalmology, Clinic Hospital of Barcelona, University of Barcelona, Barcelona, Spain
| | - Roberto Gallego-Pinazo
- Macula Section, Department of Ophthalmology, University and Polytechnic Hospital La Fe, Valencia, Spain
| | - Jose J García-Medina
- University of Murcia, General University Hospital Reina Sofia, Murcia, Spain ; Ophthalmic Reseach Unit "Santiago Grisolia", Valencia, Spain
| | - Maria Isabel López-Gálvez
- The University of Valladolid, Diabetes and Telemedicine Unit at the IOBA, Spain ; The Retina Unit of the Clinic University Hospital of Valladolid, Spain
| | - Lucía Manzanas
- The University of Valladolid, Spain ; The Vitreo-Retina Unit of the Clinic University Hospital of Valladolid, Spain
| | - Anna Salas
- Research Institute of the Hospital of Vall Hebron, Barcelona, Spain
| | - Miguel Zapata
- Retina Section of the Hospital of Vall Hebron, The Universidad Autònoma de Barcelona, Barcelona, Spain
| | - Manuel Diaz-Llopis
- Faculty of Medicine, University of Valencia, Valencia, Spain ; University and Polytechnic Hospital La Fe, Valencia, Spain
| | | |
Collapse
|
70
|
Synowiec E, Wojcik KA, Izdebska J, Binczyk E, Blasiak J, Szaflik J, Szaflik JP. Polymorphisms of the homologous recombination gene RAD51 in keratoconus and Fuchs endothelial corneal dystrophy. DISEASE MARKERS 2013; 35:353-62. [PMID: 24223453 PMCID: PMC3809973 DOI: 10.1155/2013/851817] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Accepted: 08/28/2013] [Indexed: 01/20/2023]
Abstract
PURPOSE We investigated the association between genotypes and haplotypes of the c.-61G>T (rs 1801320) and c.-98G>C (rs 1801321) polymorphisms of the RAD51 gene and the occurrence of keratoconus (KC) and Fuchs endothelial corneal dystrophy (FECD) in dependence on some environmental factors. METHODS The polymorphisms were genotyped in peripheral blood lymphocytes of 100 KC and 100 FECD patients as well as 150 controls with PCR-RFLP. RESULTS The G/T genotype of the c.-61G>T polymorphism was associated with significantly increased frequency occurrence of KC (crude OR 2.99, 95% CI 1.75-5.13). On the other hand, the G/G genotype of this polymorphism was positively correlated with a decreased occurrence of this disease (crude OR 0.52, 95% CI 0.31-0.88). We did not find any correlation between genotypes/alleles of the c.-98G>C polymorphism and the occurrence of KC. We also found that the G/G genotype and G allele of the c.-98G>C polymorphism had a protective effect against FECD (crude OR 0.51, 95% CI 0.28-0.92; crude OR 0.53, 95% CI 0.30-0.92, resp.), while the G/C genotype and the C allele increased FECD occurrence (crude OR 1.85, 95% CI 1.01-3.36; crude OR 1.90, 95% CI 1.09-3.29, resp.). CONCLUSIONS The c.-61T/T and c.-98G>C polymorphisms of the RAD51 gene may have a role in the KC and FECD pathogenesis and can be considered as markers in these diseases.
Collapse
Affiliation(s)
- Ewelina Synowiec
- Department of Molecular Genetics, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland
| | - Katarzyna A. Wojcik
- Department of Molecular Genetics, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland
| | - Justyna Izdebska
- Department of Ophthalmology, Medical University of Warsaw and Samodzielny Publiczny Kliniczny Szpital Okulistyczny, Sierakowskiego 13, 03-710 Warsaw, Poland
| | - Ewelina Binczyk
- Department of Ophthalmology, Medical University of Warsaw and Samodzielny Publiczny Kliniczny Szpital Okulistyczny, Sierakowskiego 13, 03-710 Warsaw, Poland
| | - Janusz Blasiak
- Department of Molecular Genetics, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland
| | - Jerzy Szaflik
- Department of Ophthalmology, Medical University of Warsaw and Samodzielny Publiczny Kliniczny Szpital Okulistyczny, Sierakowskiego 13, 03-710 Warsaw, Poland
| | - Jacek P. Szaflik
- Department of Ophthalmology, Medical University of Warsaw and Samodzielny Publiczny Kliniczny Szpital Okulistyczny, Sierakowskiego 13, 03-710 Warsaw, Poland
| |
Collapse
|
71
|
Tokarz P, Kaarniranta K, Blasiak J. Role of antioxidant enzymes and small molecular weight antioxidants in the pathogenesis of age-related macular degeneration (AMD). Biogerontology 2013; 14:461-82. [PMID: 24057278 PMCID: PMC3824279 DOI: 10.1007/s10522-013-9463-2] [Citation(s) in RCA: 115] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Accepted: 09/03/2013] [Indexed: 12/20/2022]
Abstract
Cells in aerobic condition are constantly exposed to reactive oxygen species (ROS), which may induce damage to biomolecules, including proteins, nucleic acids and lipids. In normal circumstances, the amount of ROS is counterbalanced by cellular antioxidant defence, with its main components—antioxidant enzymes, DNA repair and small molecular weight antioxidants. An imbalance between the production and neutralization of ROS by antioxidant defence is associated with oxidative stress, which plays an important role in the pathogenesis of many age-related and degenerative diseases, including age-related macular degeneration (AMD), affecting the macula—the central part of the retina. The retina is especially prone to oxidative stress due to high oxygen pressure and exposure to UV and blue light promoting ROS generation. Because oxidative stress has an established role in AMD pathogenesis, proper functioning of antioxidant defence may be crucial for the occurrence and progression of this disease. Antioxidant enzymes play a major role in ROS scavenging and changes of their expression or/and activity are reported to be associated with AMD. Therefore, the enzymes in the retina along with their genes may constitute a perspective target in AMD prevention and therapy.
Collapse
Affiliation(s)
- Paulina Tokarz
- Department of Molecular Genetics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236, Lodz, Poland,
| | | | | |
Collapse
|
72
|
Glowacki S, Synowiec E, Blasiak J. The role of mitochondrial DNA damage and repair in the resistance of BCR/ABL-expressing cells to tyrosine kinase inhibitors. Int J Mol Sci 2013; 14:16348-64. [PMID: 23965958 PMCID: PMC3759915 DOI: 10.3390/ijms140816348] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Revised: 07/24/2013] [Accepted: 07/26/2013] [Indexed: 12/22/2022] Open
Abstract
Chronic myeloid leukemia (CML) is a hematological malignancy that arises from the transformation of stem hematopoietic cells by the fusion oncogene BCR/ABL and subsequent clonal expansion of BCR/ABL-positive progenitor leukemic cells. The BCR/ABL protein displays a constitutively increased tyrosine kinase activity that alters many regulatory pathways, leading to uncontrolled growth, impaired differentiation and increased resistance to apoptosis featured by leukemic cells. Current CML therapy is based on tyrosine kinase inhibitors (TKIs), primarily imatinib, which induce apoptosis in leukemic cells. However, some patients show primary resistance to TKIs while others develop it in the course of therapy. In both cases, resistance may be underlined by perturbations in apoptotic signaling in leukemic cells. As mitochondria may play an important role in such signaling, alteration in mitochondrial metabolism may change resistance to pro-apoptotic action of TKIs in BCR/ABL-positive cells. Because BCR/ABL may induce reactive oxygen species and unfaithful DNA repair, it may affect the stability of mitochondrial DNA, influencing mitochondrial apoptotic signaling and in this way change the sensitivity of CML cells to TKIs. Moreover, cancer cells, including BCR/ABL-positive cells, show an increased level of glucose metabolism, resulting from the shift from oxidative phosphorylation to glycolysis to supply ATP for extensive proliferation. Enhanced level of glycolysis may be associated with TKI resistance and requires change in the expression of several genes regulated mostly by hypoxia-inducible factor-1α, HIF-1α. Such regulation may be associated with the impaired mitochondrial respiratory system in CML cells. In summary, mitochondria and mitochondria-associated molecules and pathways may be attractive targets to overcome TKI resistance in CML.
Collapse
Affiliation(s)
- Sylwester Glowacki
- Department of Molecular Genetics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, Lodz 90-236, Poland; E-Mails: (S.G.); (E.S.)
| | - Ewelina Synowiec
- Department of Molecular Genetics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, Lodz 90-236, Poland; E-Mails: (S.G.); (E.S.)
| | - Janusz Blasiak
- Department of Molecular Genetics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, Lodz 90-236, Poland; E-Mails: (S.G.); (E.S.)
| |
Collapse
|
73
|
Shadrach KG, Rayborn ME, Hollyfield JG, Bonilha VL. DJ-1-dependent regulation of oxidative stress in the retinal pigment epithelium (RPE). PLoS One 2013; 8:e67983. [PMID: 23844142 PMCID: PMC3699467 DOI: 10.1371/journal.pone.0067983] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Accepted: 05/23/2013] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND DJ-1 is found in many tissues, including the brain, where it has been extensively studied due to its association with Parkinson's disease. DJ-1 functions as a redox-sensitive molecular chaperone and transcription regulator that robustly protects cells from oxidative stress. METHODOLOGY Retinal pigment epithelial (RPE) cultures were treated with H2O2 for various times followed by biochemical and immunohistological analysis. Cells were transfected with adenoviruses carrying the full-length human DJ-1 cDNA and a mutant construct, which has the cysteine residues at amino acid 46, 53 and 106 mutated to serine (C to S) prior to stress experiments. DJ-1 localization, levels of expression and reactive oxygen species (ROS) generation were also analyzed in cells expressing exogenous DJ-1 under baseline and oxidative stress conditions. The presence of DJ-1 and oxidized DJ-1 was evaluated in human RPE total lysates. The distribution of DJ-1 was assessed in AMD and non-AMD cryosectionss and in isolated human Bruch's membrane (BM)/choroid from AMD eyes. PRINCIPAL FINDINGS DJ-1 in RPE cells under baseline conditions, displays a diffuse cytoplasmic and nuclear staining. After oxidative challenge, more DJ-1 was associated with mitochondria. Increasing concentrations of H2O2 resulted in a dose-dependent increase in DJ-1. Overexpression of DJ-1 but not the C to S mutant prior to exposure to oxidative stress led to significant decrease in the generation of ROS. DJ-1 and oxDJ-1 intensity of immunoreactivity was significantly higher in the RPE lysates from AMD eyes. More DJ-1 was localized to RPE cells from AMD donors with geographic atrophy and DJ-1 was also present in isolated human BM/choroid from AMD eyes. CONCLUSIONS/SIGNIFICANCE DJ-1 regulates RPE responses to oxidative stress. Most importantly, increased DJ-1 expression prior to oxidative stress leads to decreased generation of ROS, which will be relevant for future studies of AMD since oxidative stress is a known factor affecting this disease.
Collapse
Affiliation(s)
- Karen G. Shadrach
- Department of Ophthalmic Research, The Cole Eye Institute, Cleveland Clinic Lerner College of Medicine, Cleveland, Ohio, United States of America
| | - Mary E. Rayborn
- Department of Ophthalmic Research, The Cole Eye Institute, Cleveland Clinic Lerner College of Medicine, Cleveland, Ohio, United States of America
| | - Joe G. Hollyfield
- Department of Ophthalmic Research, The Cole Eye Institute, Cleveland Clinic Lerner College of Medicine, Cleveland, Ohio, United States of America
| | - Vera L. Bonilha
- Department of Ophthalmic Research, The Cole Eye Institute, Cleveland Clinic Lerner College of Medicine, Cleveland, Ohio, United States of America
- * E-mail:
| |
Collapse
|