51
|
Durán-Iturbide N, Díaz-Eufracio BI, Medina-Franco JL. In Silico ADME/Tox Profiling of Natural Products: A Focus on BIOFACQUIM. ACS OMEGA 2020; 5:16076-16084. [PMID: 32656429 PMCID: PMC7346235 DOI: 10.1021/acsomega.0c01581] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 06/11/2020] [Indexed: 05/16/2023]
Abstract
Natural products continue to be major sources of bioactive compounds and drug candidates not only because of their unique chemical structures but also because of their overall favorable metabolism and pharmacokinetic properties. The number of publicly accessible natural product databases has increased significantly in the past few years. However, the systematic ADME/Tox profile has been reported on a limited basis. For instance, BIOFACQUIM was recently published as a public database of natural products from Mexico, a country with a rich source of biomolecules. However, its ADME/Tox profile has not been reported. Herein, we discuss the results of an in-depth in silico ADME/Tox profile of natural products in BIOFACQUIM and other large public collections of natural products. It was concluded that the absorption and distribution profiles of compounds in BIOFACQUIM are similar to those of approved drugs, while the metabolism profile is comparable to that in the other natural product databases. The excretion profile of compounds in BIOFACQUIM is different from that of the approved drugs, but their predicted toxicity profile is comparable. This work further contributes to the deeper characterization of natural product collections as major sources of bioactive compounds with therapeutic potential.
Collapse
Affiliation(s)
- Noemi
Angeles Durán-Iturbide
- School of Chemistry, Department
of Pharmacy, National Autonomous University of Mexico, Avenida Universidad 3000, 04510 Mexico City, Mexico
| | - Bárbara I. Díaz-Eufracio
- School of Chemistry, Department
of Pharmacy, National Autonomous University of Mexico, Avenida Universidad 3000, 04510 Mexico City, Mexico
| | - José L. Medina-Franco
- School of Chemistry, Department
of Pharmacy, National Autonomous University of Mexico, Avenida Universidad 3000, 04510 Mexico City, Mexico
| |
Collapse
|
52
|
Allen TEH, Wedlake AJ, Gelžinytė E, Gong C, Goodman JM, Gutsell S, Russell PJ. Neural network activation similarity: a new measure to assist decision making in chemical toxicology. Chem Sci 2020; 11:7335-7348. [PMID: 34123016 PMCID: PMC8159362 DOI: 10.1039/d0sc01637c] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 06/23/2020] [Indexed: 12/03/2022] Open
Abstract
Deep learning neural networks, constructed for the prediction of chemical binding at 79 pharmacologically important human biological targets, show extremely high performance on test data (accuracy 92.2 ± 4.2%, MCC 0.814 ± 0.093 and ROC-AUC 0.96 ± 0.04). A new molecular similarity measure, Neural Network Activation Similarity, has been developed, based on signal propagation through the network. This is complementary to standard Tanimoto similarity, and the combined use increases confidence in the computer's prediction of activity for new chemicals by providing a greater understanding of the underlying justification. The in silico prediction of these human molecular initiating events is central to the future of chemical safety risk assessment and improves the efficiency of safety decision making.
Collapse
Affiliation(s)
- Timothy E H Allen
- MRC Toxicology Unit, University of Cambridge Hodgkin Building, Lancaster Road Leicester LE1 7HB UK
- Centre for Molecular Informatics, Department of Chemistry, University of Cambridge Lensfield Road Cambridge CB2 1EW UK
| | - Andrew J Wedlake
- Centre for Molecular Informatics, Department of Chemistry, University of Cambridge Lensfield Road Cambridge CB2 1EW UK
| | - Elena Gelžinytė
- Centre for Molecular Informatics, Department of Chemistry, University of Cambridge Lensfield Road Cambridge CB2 1EW UK
| | - Charles Gong
- Centre for Molecular Informatics, Department of Chemistry, University of Cambridge Lensfield Road Cambridge CB2 1EW UK
| | - Jonathan M Goodman
- Centre for Molecular Informatics, Department of Chemistry, University of Cambridge Lensfield Road Cambridge CB2 1EW UK
| | - Steve Gutsell
- Unilever Safety and Environmental Assurance Centre, Colworth Science Park Sharnbrook Bedfordshire MK44 1LQ UK
| | - Paul J Russell
- Unilever Safety and Environmental Assurance Centre, Colworth Science Park Sharnbrook Bedfordshire MK44 1LQ UK
| |
Collapse
|
53
|
Machine-Learning Prediction of Oral Drug-Induced Liver Injury (DILI) via Multiple Features and Endpoints. BIOMED RESEARCH INTERNATIONAL 2020; 2020:4795140. [PMID: 32509859 PMCID: PMC7254069 DOI: 10.1155/2020/4795140] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 04/17/2020] [Indexed: 12/17/2022]
Abstract
Drug discovery is a costly process which usually takes more than 10 years and billions of dollars for one successful drug to enter the market. Despite all the safety tests, drugs may still cause adverse reactions and be restricted in use or even withdrawn from the market. Drug-induced liver injury (DILI) is one of the major adverse drug reactions, and computational models may be used to predict and reduce it. To assess the computational prediction performance of DILI, we curated DILI endpoints from three databases and prepared drug features including chemical descriptors, therapeutic classifications, gene expressions, and binding proteins. We trained machine-learning models to predict the various DILI endpoints using different drug features. Using the optimal feature sets, the top-performing models obtained areas under the receiver operating characteristic curve (AUC) around 0.8 for some DILI endpoints. We found that some features, including therapeutic classifications and proteins, have good prediction performance towards DILI. We also discovered that the severity of DILI endpoints as well as the selection of negative samples may significantly affect the prediction results. Overall, our study provided a comprehensive collection, curation, and prediction of DILI endpoints using various drug features, which may help the drug researchers to better understand and prevent DILI during the drug discovery process.
Collapse
|
54
|
Minerali E, Foil DH, Zorn KM, Lane TR, Ekins S. Comparing Machine Learning Algorithms for Predicting Drug-Induced Liver Injury (DILI). Mol Pharm 2020; 17:2628-2637. [PMID: 32422053 DOI: 10.1021/acs.molpharmaceut.0c00326] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Drug-induced liver injury (DILI) is one the most unpredictable adverse reactions to xenobiotics in humans and the leading cause of postmarketing withdrawals of approved drugs. To date, these drugs have been collated by the FDA to form the DILIRank database, which classifies DILI severity and potential. These classifications have been used by various research groups in generating computational predictions for this type of liver injury. Recently, groups from Pfizer and AstraZeneca have collated DILI in vitro data and physicochemical properties for compounds that can be used along with data from the FDA to build machine learning models for DILI. In this study, we have used these data sets, as well as the Biopharmaceutics Drug Disposition Classification System data set, to generate Bayesian machine learning models with our in-house software, Assay Central. The performance of all machine learning models was assessed through both the internal 5-fold cross-validation metrics and prediction accuracy of an external test set of compounds with known hepatotoxicity. The best-performing Bayesian model was based on the DILI-concern category from the DILIRank database with an ROC of 0.814, a sensitivity of 0.741, a specificity of 0.755, and an accuracy of 0.746. A comparison of alternative machine learning algorithms, such as k-nearest neighbors, support vector classification, AdaBoosted decision trees, and deep learning methods, produced similar statistics to those generated with the Bayesian algorithm in Assay Central. This study demonstrates machine learning models grouped in a tool called MegaTox that can be used to predict early-stage clinical compounds, as well as recent FDA-approved drugs, to identify potential DILI.
Collapse
Affiliation(s)
- Eni Minerali
- Collaborations Pharmaceuticals Inc., 840 Main Campus Drive, Lab 3510, Raleigh, North Carolina 27606, United States
| | - Daniel H Foil
- Collaborations Pharmaceuticals Inc., 840 Main Campus Drive, Lab 3510, Raleigh, North Carolina 27606, United States
| | - Kimberley M Zorn
- Collaborations Pharmaceuticals Inc., 840 Main Campus Drive, Lab 3510, Raleigh, North Carolina 27606, United States
| | - Thomas R Lane
- Collaborations Pharmaceuticals Inc., 840 Main Campus Drive, Lab 3510, Raleigh, North Carolina 27606, United States
| | - Sean Ekins
- Collaborations Pharmaceuticals Inc., 840 Main Campus Drive, Lab 3510, Raleigh, North Carolina 27606, United States
| |
Collapse
|
55
|
Mora JR, Marrero-Ponce Y, García-Jacas CR, Suarez Causado A. Ensemble Models Based on QuBiLS-MAS Features and Shallow Learning for the Prediction of Drug-Induced Liver Toxicity: Improving Deep Learning and Traditional Approaches. Chem Res Toxicol 2020; 33:1855-1873. [PMID: 32406679 DOI: 10.1021/acs.chemrestox.0c00030] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Drug-induced liver injury (DILI) is a key safety issue in the drug discovery pipeline and a regulatory concern. Thus, many in silico tools have been proposed to improve the hepatotoxicity prediction of organic-type chemicals. Here, classifiers for the prediction of DILI were developed by using QuBiLS-MAS 0-2.5D molecular descriptors and shallow machine learning techniques, on a training set composed of 1075 molecules. The best ensemble model build, E13, was obtained with good statistical parameters for the learning series, namely, the following: accuracy = 0.840, sensibility = 0.890, specificity = 0.761, Matthew's correlation coefficient = 0.660, and area under the ROC curve = 0.904. The model was also satisfactorily evaluated with Y-scrambling test, and repeated k-fold cross-validation and repeated k-holdout validation. In addition, an exhaustive external validation was also carried out by using two test sets and five external test sets, with an average accuracy value equal to 0.854 (±0.062) and a coverage equal to 98.4% according to its applicability domain. A statistical comparison of the performance of the E13 model, with regard to results and tools (e.g., Padel DDPredictor Software, Deep Learning DILIserver, and Vslead) reported in the literature, was also performed. In general, E13 presented the best global performance in all experiments. The sum of the ranking differences procedure provided a very similar grouping pattern to that of the M-ANOVA statistical analysis, where E13 was identified as the best model for DILI predictions. A noncommercial and fully cross-platform software for the DILI prediction was also developed, which is freely available at http://tomocomd.com/apps/ptoxra. This software was used for the screening of seven data sets, containing natural products, leads, toxic materials, and FDA approved drugs, to assess the usefulness of the QSAR models in the DILI labeling of organic substances; it was found that 50-92% of the evaluated molecules are positive-DILI compounds. All in all, it can be stated that the E13 model is a relevant method for the prediction of DILI risk in humans, as it shows the best results among all of the methods analyzed.
Collapse
Affiliation(s)
- Jose R Mora
- Grupo de Química Computacional y Teórica (QCT-USFQ), Departamento de Ingeniería Química, Universidad San Francisco de Quito (USFQ), Quito 17-1200-841, Ecuador.,Instituto de Simulación Computacional (ISC-USFQ), Universidad San Francisco de Quito (USFQ), Diego de Robles y Vía Interoceánica, Quito 17-1200-841, Ecuador
| | - Yovani Marrero-Ponce
- Instituto de Simulación Computacional (ISC-USFQ), Universidad San Francisco de Quito (USFQ), Diego de Robles y Vía Interoceánica, Quito 17-1200-841, Ecuador.,Grupo de Medicina Molecular y Traslacional (MeM&T), Colegio de Ciencias de la Salud (COCSA), Escuela de Medicina, Edificio de Especialidades Médicas, and Instituto de Simulación Computacional (ISC-USFQ), Universidad San Francisco de Quito (USFQ), Diego de Robles y vía Interoceánica, Quito, Pichincha 170157, Ecuador
| | - César R García-Jacas
- Cátedras Conacyt-Departamento de Ciencias de la Computación, Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE), Ensenada, Baja California 22860, México
| | - Amileth Suarez Causado
- Grupo de Investigación Prometeus & Biomedicina Aplicada a las Ciencias Clínicas, Área de Bioquímica, Campus de Zaragocilla, Facultad de Medicina, Universidad de Cartagena, Cartagena de Indias 130001, Colombia
| |
Collapse
|
56
|
Computational Models Using Multiple Machine Learning Algorithms for Predicting Drug Hepatotoxicity with the DILIrank Dataset. Int J Mol Sci 2020; 21:ijms21062114. [PMID: 32204453 PMCID: PMC7139829 DOI: 10.3390/ijms21062114] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 03/13/2020] [Accepted: 03/17/2020] [Indexed: 02/07/2023] Open
Abstract
Drug-induced liver injury (DILI) remains one of the challenges in the safety profile of both authorized and candidate drugs, and predicting hepatotoxicity from the chemical structure of a substance remains a task worth pursuing. Such an approach is coherent with the current tendency for replacing non-clinical tests with in vitro or in silico alternatives. In 2016, a group of researchers from the FDA published an improved annotated list of drugs with respect to their DILI risk, constituting “the largest reference drug list ranked by the risk for developing drug-induced liver injury in humans” (DILIrank). This paper is one of the few attempting to predict liver toxicity using the DILIrank dataset. Molecular descriptors were computed with the Dragon 7.0 software, and a variety of feature selection and machine learning algorithms were implemented in the R computing environment. Nested (double) cross-validation was used to externally validate the models selected. A total of 78 models with reasonable performance were selected and stacked through several approaches, including the building of multiple meta-models. The performance of the stacked models was slightly superior to other models published. The models were applied in a virtual screening exercise on over 100,000 compounds from the ZINC database and about 20% of them were predicted to be non-hepatotoxic.
Collapse
|
57
|
A Computational Toxicology Approach to Screen the Hepatotoxic Ingredients in Traditional Chinese Medicines: Polygonum multiflorum Thunb as a Case Study. Biomolecules 2019; 9:biom9100577. [PMID: 31591318 PMCID: PMC6843577 DOI: 10.3390/biom9100577] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Revised: 09/29/2019] [Accepted: 10/05/2019] [Indexed: 02/06/2023] Open
Abstract
In recent years, liver injury induced by Traditional Chinese Medicines (TCMs) has gained increasing attention worldwide. Assessing the hepatotoxicity of compounds in TCMs is essential and inevitable for both doctors and regulatory agencies. However, there has been no effective method to screen the hepatotoxic ingredients in TCMs available until now. In the present study, we initially built a large scale dataset of drug-induced liver injuries (DILIs). Then, 13 types of molecular fingerprints/descriptors and eight machine learning algorithms were utilized to develop single classifiers for DILI, which resulted in 5416 single classifiers. Next, the NaiveBayes algorithm was adopted to integrate the best single classifier of each machine learning algorithm, by which we attempted to build a combined classifier. The accuracy, sensitivity, specificity, and area under the curve of the combined classifier were 72.798, 0.732, 0.724, and 0.793, respectively. Compared to several prior studies, the combined classifier provided better performance both in cross validation and external validation. In our prior study, we developed a herb-hepatotoxic ingredient network and a herb-induced liver injury (HILI) dataset based on pre-clinical evidence published in the scientific literature. Herein, by combining that and the combined classifier developed in this work, we proposed the first instance of a computational toxicology to screen the hepatotoxic ingredients in TCMs. Then Polygonum multiflorum Thunb (PmT) was used as a case to investigate the reliability of the approach proposed. Consequently, a total of 25 ingredients in PmT were identified as hepatotoxicants. The results were highly consistent with records in the literature, indicating that our computational toxicology approach is reliable and effective for the screening of hepatotoxic ingredients in Pmt. The combined classifier developed in this work can be used to assess the hepatotoxic risk of both natural compounds and synthetic drugs. The computational toxicology approach presented in this work will assist with screening the hepatotoxic ingredients in TCMs, which will further lay the foundation for exploring the hepatotoxic mechanisms of TCMs. In addition, the method proposed in this work can be applied to research focused on other adverse effects of TCMs/synthetic drugs.
Collapse
|