51
|
STAT3 and p53: Dual Target for Cancer Therapy. Biomedicines 2020; 8:biomedicines8120637. [PMID: 33371351 PMCID: PMC7767392 DOI: 10.3390/biomedicines8120637] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 12/15/2020] [Accepted: 12/19/2020] [Indexed: 02/06/2023] Open
Abstract
The tumor suppressor p53 is considered the "guardian of the genome" that can protect cells against cancer by inducing cell cycle arrest followed by cell death. However, STAT3 is constitutively activated in several human cancers and plays crucial roles in promoting cancer cell proliferation and survival. Hence, STAT3 and p53 have opposing roles in cellular pathway regulation, as activation of STAT3 upregulates the survival pathway, whereas p53 triggers the apoptotic pathway. Constitutive activation of STAT3 and gain or loss of p53 function due to mutations are the most frequent events in numerous cancer types. Several studies have reported the association of STAT3 and/or p53 mutations with drug resistance in cancer treatment. This review discusses the relationship between STAT3 and p53 status in cancer, the molecular mechanism underlying the negative regulation of p53 by STAT3, and vice versa. Moreover, it underlines prospective therapies targeting both STAT3 and p53 to enhance chemotherapeutic outcomes.
Collapse
|
52
|
da Silva Duarte V, dos Santos Cruz BC, Tarrah A, Sousa Dias R, de Paula Dias Moreira L, Lemos Junior WJF, Fidélis Silva LC, Rocha Santana G, Licursi de Oliveira L, Gouveia Peluzio MDC, Mantovani HC, Corich V, Giacomini A, de Paula SO. Chemoprevention of DMH-Induced Early Colon Carcinogenesis in Male BALB/c Mice by Administration of Lactobacillus Paracasei DTA81. Microorganisms 2020; 8:microorganisms8121994. [PMID: 33327620 PMCID: PMC7765108 DOI: 10.3390/microorganisms8121994] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/08/2020] [Accepted: 12/09/2020] [Indexed: 12/26/2022] Open
Abstract
We evaluated the effects of the probiotic candidate Lactobacillus paracasei DTA81 (DTA81) on liver oxidative stress, colonic cytokine profile, and gut microbiota in mice with induced early colon carcinogenesis (CRC) by 1,2-dimethylhydrazine (DMH). Animals were divided into four different groups (n = 6) and received the following treatments via orogastric gavage for 8 weeks: Group skim milk (GSM): 300 mg/freeze-dried skim milk/day; Group L. paracasei DTA81 (DTA81): 3 × 109 colony-forming units (CFU)/day; Group Lactobacillus rhamnosus GG (LGG): 3 × 109 CFU/day; Group non-intervention (GNI): 0.1 mL/water/day. A single DMH dose (20 mg/kg body weight) was injected intraperitoneally (i.p), weekly, in all animals (seven applications in total). At the end of the experimental period, DTA81 intake reduced hepatic levels of carbonyl protein and malondialdehyde (MDA). Moreover, low levels of the pro-inflammatory cytokines Interleukin-6 (IL-6) and IL-17, as well as a reduced expression level of the proliferating cell nuclear antigen (PCNA) were observed in colonic homogenates. Lastly, animals who received DTA81 showed an intestinal enrichment of the genus Ruminiclostridium and increased concentrations of caecal acetic acid and total short-chain fatty acids. In conclusion, this study indicates that the administration of the probiotic candidate DTA81 can have beneficial effects on the initial stages of CRC development.
Collapse
Affiliation(s)
- Vinícius da Silva Duarte
- Department of Agronomy Food Natural Resources Animals and Environment, University of Padova, Viale dell’Universitá, 16, 35020 Legnaro (PD), Italy; (V.d.S.D.); (A.T.); (L.d.P.D.M.); (V.C.)
- Department of Microbiology, Av. Peter Henry Rolfs, s/n, Campus Universitário, Universidade Federal de Viçosa, 36570-900 Vicosa, Brazil; (L.C.F.S.); (H.C.M.)
| | - Bruna Cristina dos Santos Cruz
- Department of Nutrition and Health, Av. Peter Henry Rolfs, s/n, Campus Universitário, Universidade Federal de Vicosa, 36570-900 Vicosa, Brazil; (B.C.d.S.C.); (M.d.C.G.P.)
| | - Armin Tarrah
- Department of Agronomy Food Natural Resources Animals and Environment, University of Padova, Viale dell’Universitá, 16, 35020 Legnaro (PD), Italy; (V.d.S.D.); (A.T.); (L.d.P.D.M.); (V.C.)
| | - Roberto Sousa Dias
- Department of General Biology, Av. Peter Henry Rolfs, s/n, Campus Universitario, Universidade Federal de Vicosa, 36570-900 Vicosa, Brazil; (R.S.D.); (G.R.S.); (L.L.d.O.)
| | - Luiza de Paula Dias Moreira
- Department of Agronomy Food Natural Resources Animals and Environment, University of Padova, Viale dell’Universitá, 16, 35020 Legnaro (PD), Italy; (V.d.S.D.); (A.T.); (L.d.P.D.M.); (V.C.)
| | | | - Lívia Carneiro Fidélis Silva
- Department of Microbiology, Av. Peter Henry Rolfs, s/n, Campus Universitário, Universidade Federal de Viçosa, 36570-900 Vicosa, Brazil; (L.C.F.S.); (H.C.M.)
| | - Gabriele Rocha Santana
- Department of General Biology, Av. Peter Henry Rolfs, s/n, Campus Universitario, Universidade Federal de Vicosa, 36570-900 Vicosa, Brazil; (R.S.D.); (G.R.S.); (L.L.d.O.)
| | - Leandro Licursi de Oliveira
- Department of General Biology, Av. Peter Henry Rolfs, s/n, Campus Universitario, Universidade Federal de Vicosa, 36570-900 Vicosa, Brazil; (R.S.D.); (G.R.S.); (L.L.d.O.)
| | - Maria do Carmo Gouveia Peluzio
- Department of Nutrition and Health, Av. Peter Henry Rolfs, s/n, Campus Universitário, Universidade Federal de Vicosa, 36570-900 Vicosa, Brazil; (B.C.d.S.C.); (M.d.C.G.P.)
| | - Hilario Cuquetto Mantovani
- Department of Microbiology, Av. Peter Henry Rolfs, s/n, Campus Universitário, Universidade Federal de Viçosa, 36570-900 Vicosa, Brazil; (L.C.F.S.); (H.C.M.)
| | - Viviana Corich
- Department of Agronomy Food Natural Resources Animals and Environment, University of Padova, Viale dell’Universitá, 16, 35020 Legnaro (PD), Italy; (V.d.S.D.); (A.T.); (L.d.P.D.M.); (V.C.)
| | - Alessio Giacomini
- Department of Agronomy Food Natural Resources Animals and Environment, University of Padova, Viale dell’Universitá, 16, 35020 Legnaro (PD), Italy; (V.d.S.D.); (A.T.); (L.d.P.D.M.); (V.C.)
- Correspondence: (A.G.); (S.O.d.P.); Tel.: +39-328-0390077 (A.G.); +55-31-3612-5016 (S.O.d.P.)
| | - Sérgio Oliveira de Paula
- Department of General Biology, Av. Peter Henry Rolfs, s/n, Campus Universitario, Universidade Federal de Vicosa, 36570-900 Vicosa, Brazil; (R.S.D.); (G.R.S.); (L.L.d.O.)
- Correspondence: (A.G.); (S.O.d.P.); Tel.: +39-328-0390077 (A.G.); +55-31-3612-5016 (S.O.d.P.)
| |
Collapse
|
53
|
Bioinformatic analysis of CCA-1.1, a novel curcumin analog, uncovers furthermost noticeable target genes in colon cancer. GENE REPORTS 2020. [DOI: 10.1016/j.genrep.2020.100917] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
54
|
Zhao DM, Diao YE, Xu Q. Association of MDM4 Gene rs4245739 Polymorphism with the Risk and Clinical Characteristics of Colorectal Cancer in a Chinese Han Population. PHARMACOGENOMICS & PERSONALIZED MEDICINE 2020; 13:673-678. [PMID: 33273845 PMCID: PMC7705952 DOI: 10.2147/pgpm.s260209] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 09/07/2020] [Indexed: 11/23/2022]
Abstract
Background Studies show that MDM4 may play a pivotal role in colorectal cancer (CRC). Recently, a host of studies suggest that MDM4 gene rs4245739 polymorphism may modify the risk of different cancers. Methods In this study, we were interested whether MDM4 gene rs4245739 polymorphism correlated with the risk and clinical characteristics of CRC. Logistic regression was adopted to estimate the association of rs4245739 polymorphism and CRC risk. Results We enrolled 444 CRC patients and 530 controls and found MDM4 gene rs4245739 polymorphism may decrease the risk of CRC. Stratified analyses uncovered that this variant was connected to a less risk of CRC in females, non-drinkers, non-smokers, and people under 60 years old. Additionally, rs4245739 polymorphism was related to TNM staging, pathological type, tumor size, and location of CRC. Furthermore, this polymorphism was significantly linked with the survival of CRC. Conclusion Totally, this study suggests that MDM4 rs4245739 polymorphism is linked with the risk and clinical characteristics of CRC.
Collapse
Affiliation(s)
- De-Ming Zhao
- Department of Gastrointestinal Surgery, Dalian Municipal Central Hospital, Dalian, People's Republic of China
| | - Yu-E Diao
- Department of General Surgery, Affiliated Hospital of Jiangnan University, Wuxi, People's Republic of China
| | - Qing Xu
- Department of Anorectal Surgery, Nantong Third People's Hospital, Nantong University, Nantong, Jiangsu, People's Republic of China
| |
Collapse
|
55
|
Garrido-Navas MC, García-Díaz A, Molina-Vallejo MP, González-Martínez C, Alcaide Lucena M, Cañas-García I, Bayarri C, Delgado JR, González E, Lorente JA, Serrano MJ. The Polemic Diagnostic Role of TP53 Mutations in Liquid Biopsies from Breast, Colon and Lung Cancers. Cancers (Basel) 2020; 12:E3343. [PMID: 33198130 PMCID: PMC7696715 DOI: 10.3390/cancers12113343] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 11/02/2020] [Accepted: 11/10/2020] [Indexed: 12/15/2022] Open
Abstract
Being minimally invasive and thus allowing repeated measures over time, liquid biopsies are taking over traditional solid biopsies in certain circumstances such as those for unreachable tumors, very early stages or treatment monitoring. However, regarding TP53 mutation status analysis, liquid biopsies have not yet substituted tissue samples, mainly due to the lack of concordance between the two types of biopsies. This needs to be examined in a study-dependent manner, taking into account the particular type of liquid biopsy analyzed, that is, circulating tumor cells (CTCs) or cell-free DNA (cfDNA), its involvement in the tumor biology and evolution and, finally, the technology used to analyze each biopsy type. Here, we review the main studies analyzing TP53 mutations in either CTCs or cfDNA in the three more prevalent solid tumors: breast, colon and lung cancers. We evaluate the correlation for mutation status between liquid biopsies and tumor tissue, suggesting possible sources of discrepancies, as well as evaluating the clinical utility of using liquid biopsies for the analysis of TP53 mutation status and the future actions that need to be undertaken to make liquid biopsy analysis a reality for the evaluation of TP53 mutations.
Collapse
Affiliation(s)
- M. Carmen Garrido-Navas
- GENYO Centre for Genomics and Oncological Research, formed by Pfizer, the University of Granada and the Andalusian Regional Government, PTS Granada, Liquid Biopsy and Cancer Interception Group, Av. de la Ilustración, 114, 18016 Granada, Spain; (A.G.-D.); (M.P.M.-V.); (C.G.-M.); (M.A.L.); (I.C.-G.); (C.B.); (J.A.L.)
- Universidad Internacional de la Rioja, Avenida de la Paz, 137, 26006 Logroño, Spain
| | - Abel García-Díaz
- GENYO Centre for Genomics and Oncological Research, formed by Pfizer, the University of Granada and the Andalusian Regional Government, PTS Granada, Liquid Biopsy and Cancer Interception Group, Av. de la Ilustración, 114, 18016 Granada, Spain; (A.G.-D.); (M.P.M.-V.); (C.G.-M.); (M.A.L.); (I.C.-G.); (C.B.); (J.A.L.)
- Departamento de Medicina, Facultad de Medicina, Universidad de Granada, 18016 Granada, Spain
| | - Maria Pilar Molina-Vallejo
- GENYO Centre for Genomics and Oncological Research, formed by Pfizer, the University of Granada and the Andalusian Regional Government, PTS Granada, Liquid Biopsy and Cancer Interception Group, Av. de la Ilustración, 114, 18016 Granada, Spain; (A.G.-D.); (M.P.M.-V.); (C.G.-M.); (M.A.L.); (I.C.-G.); (C.B.); (J.A.L.)
| | - Coral González-Martínez
- GENYO Centre for Genomics and Oncological Research, formed by Pfizer, the University of Granada and the Andalusian Regional Government, PTS Granada, Liquid Biopsy and Cancer Interception Group, Av. de la Ilustración, 114, 18016 Granada, Spain; (A.G.-D.); (M.P.M.-V.); (C.G.-M.); (M.A.L.); (I.C.-G.); (C.B.); (J.A.L.)
| | - Miriam Alcaide Lucena
- GENYO Centre for Genomics and Oncological Research, formed by Pfizer, the University of Granada and the Andalusian Regional Government, PTS Granada, Liquid Biopsy and Cancer Interception Group, Av. de la Ilustración, 114, 18016 Granada, Spain; (A.G.-D.); (M.P.M.-V.); (C.G.-M.); (M.A.L.); (I.C.-G.); (C.B.); (J.A.L.)
- Servicio de Cirugía General y del Aparato Digestivo, Hospital Clínico San Cecilio, 18016 Granada, Spain
| | - Inés Cañas-García
- GENYO Centre for Genomics and Oncological Research, formed by Pfizer, the University of Granada and the Andalusian Regional Government, PTS Granada, Liquid Biopsy and Cancer Interception Group, Av. de la Ilustración, 114, 18016 Granada, Spain; (A.G.-D.); (M.P.M.-V.); (C.G.-M.); (M.A.L.); (I.C.-G.); (C.B.); (J.A.L.)
- Servicio de Cirugía General y del Aparato Digestivo, Hospital Clínico San Cecilio, 18016 Granada, Spain
| | - Clara Bayarri
- GENYO Centre for Genomics and Oncological Research, formed by Pfizer, the University of Granada and the Andalusian Regional Government, PTS Granada, Liquid Biopsy and Cancer Interception Group, Av. de la Ilustración, 114, 18016 Granada, Spain; (A.G.-D.); (M.P.M.-V.); (C.G.-M.); (M.A.L.); (I.C.-G.); (C.B.); (J.A.L.)
- Department of Thoracic Surgery, Virgen de las Nieves University Hospital, Av. de las Fuerzas Armadas, 2, 18014 Granada, Spain
| | - Juan Ramón Delgado
- Bio-Health Research Institute (Instituto de Investigación Biosanitaria ibs. GRANADA), Complejo Hospitalario Universitario Granada (CHUG), University of Granada, 18012 Granada, Spain; (J.R.D.); (E.G.)
| | - Encarna González
- Bio-Health Research Institute (Instituto de Investigación Biosanitaria ibs. GRANADA), Complejo Hospitalario Universitario Granada (CHUG), University of Granada, 18012 Granada, Spain; (J.R.D.); (E.G.)
| | - Jose Antonio Lorente
- GENYO Centre for Genomics and Oncological Research, formed by Pfizer, the University of Granada and the Andalusian Regional Government, PTS Granada, Liquid Biopsy and Cancer Interception Group, Av. de la Ilustración, 114, 18016 Granada, Spain; (A.G.-D.); (M.P.M.-V.); (C.G.-M.); (M.A.L.); (I.C.-G.); (C.B.); (J.A.L.)
- Laboratory of Genetic Identification, Department of Legal Medicine, University of Granada, Av. de la Investigación, 11, 18071 Granada, Spain
| | - M. Jose Serrano
- GENYO Centre for Genomics and Oncological Research, formed by Pfizer, the University of Granada and the Andalusian Regional Government, PTS Granada, Liquid Biopsy and Cancer Interception Group, Av. de la Ilustración, 114, 18016 Granada, Spain; (A.G.-D.); (M.P.M.-V.); (C.G.-M.); (M.A.L.); (I.C.-G.); (C.B.); (J.A.L.)
- Bio-Health Research Institute (Instituto de Investigación Biosanitaria ibs. GRANADA), Complejo Hospitalario Universitario Granada (CHUG), University of Granada, 18012 Granada, Spain; (J.R.D.); (E.G.)
- Department of Pathological Anatomy, Faculty of Medicine, Campus de Ciencias de la Salud, University of Granada, 18016 Granada, Spain
| |
Collapse
|
56
|
Martinho MS, Nancarrow DJ, Lawrence TS, Beer DG, Ray D. Chaperones and Ubiquitin Ligases Balance Mutant p53 Protein Stability in Esophageal and Other Digestive Cancers. Cell Mol Gastroenterol Hepatol 2020; 11:449-464. [PMID: 33130332 PMCID: PMC7788241 DOI: 10.1016/j.jcmgh.2020.10.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 10/07/2020] [Accepted: 10/14/2020] [Indexed: 02/07/2023]
Abstract
The incidence of esophageal adenocarcinoma (EAC) and other gastrointestinal (GI) cancers have risen dramatically, thus defining the oncogenic drivers to develop effective therapies are necessary. Patients with Barrett's Esophagus (BE), have an elevated risk of developing EAC. Around 70%-80% of BE cases that progress to dysplasia and cancer have detectable TP53 mutations. Similarly, in other GI cancers higher rates of TP53 mutation are reported, which provide a significant survival advantage to dysplastic/cancer cells. Targeting molecular chaperones that mediate mutant p53 stability may effectively induce mutant p53 degradation and improve cancer outcomes. Statins can achieve this via disrupting the interaction between mutant p53 and the chaperone DNAJA1, promoting CHIP-mediated degradation of mutant p53, and statins are reported to significantly reduce the risk of BE progression to EAC. However, statins demonstrated sub-optimal efficacy depending on cancer types and TP53 mutation specificity. Besides the well-established role of MDM2 in p53 stability, we reported that individual isoforms of the E3 ubiquitin ligase GRAIL (RNF128) are critical, tissue-specific regulators of mutant p53 stability in BE progression to EAC, and targeting the interaction of mutant p53 with these isoforms may help mitigate EAC development. In this review, we discuss the critical ubiquitin-proteasome and chaperone regulation of mutant p53 stability in EAC and other GI cancers with future insights as to how to affect mutant p53 stability, further noting how the precise p53 mutation may influence the efficacy of treatment strategies and identifying necessary directions for further research in this field.
Collapse
Affiliation(s)
- May San Martinho
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan; Section of Thoracic Surgery, Department of Surgery, University of Michigan, Ann Arbor, Michigan
| | - Derek J Nancarrow
- Section of Thoracic Surgery, Department of Surgery, University of Michigan, Ann Arbor, Michigan
| | - Theodore S Lawrence
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan
| | - David G Beer
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan; Section of Thoracic Surgery, Department of Surgery, University of Michigan, Ann Arbor, Michigan
| | - Dipankar Ray
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan.
| |
Collapse
|
57
|
Wang S, Wang T, Wang L, Zhong L, Li K. Overexpression of RNF126 Promotes the Development of Colorectal Cancer via Enhancing p53 Ubiquitination and Degradation. Onco Targets Ther 2020; 13:10917-10929. [PMID: 33149608 PMCID: PMC7604871 DOI: 10.2147/ott.s271855] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Accepted: 09/27/2020] [Indexed: 12/23/2022] Open
Abstract
Background RING finger protein 126 (RNF126), as a novel E3 ubiquitin ligase, plays an oncogenic role in several solid cancers. But its potential role in colorectal cancer (CRC) that harbored 50% mutant p53, to our knowledge, is rarely reported. Materials and Methods We investigated the clinical significance and relationship of RNF126 and p53 in CRC tissues and cells. Meanwhile, WB, qRT-PCR, co-IP, MTT, and transwell were used to investigate the function and molecular mechanism of RNF126 in regulating malignant biology in vitro. Results RNF126 was overexpressed in human CRC specimens, which was tightly associated with tumor size (P=0.021), T stage (P=0.030), lymph node metastasis (P=0.006), TNM stage (P=0.001), and the poor survival (P=0.003) of CRC patients. RNF126 had no association with p53 mutation in CRC specimens, and in p53 mutant Colo-205 and SW620 cells. However, in p53 wildtype HCT116 and HCT-8 cells, RNF126 silencing upregulated p53 and p21 but inhibited Rb phosphorylation at Serine 780 (pRb), which was inhibited by p53siRNA. Conversely, RNF126 overexpression downregulated p53 and p21 but promoted pRb expression, which was reversed by a classic proteasome inhibitor, MG132. However, the mRNA levels of above target genes were unchanged, implying a ubiquitination dependent post-translational modification involving in above regulation. Meanwhile, RNF126 was co-immunoprecipitated with p53 and p21 to form a triple complex. RNF126 silencing and overexpression inhibited and promoted p53 ubiquitination and degradation in vitro, respectively. In addition, p53siRNA reversed RNF126 silencing-inhibited cell proliferation, drug resistance, and cell mobility in HCT116 cells. Conversely, MG132 inhibited RNF126 overexpression-promoted above cell biology in HCT-8 cells. Conclusion Overexpression of RNF126 was remarkably associated with multiple advanced clinical characters of CRC patients independent of mutant p53. RNF126 promotes cell proliferation, mobility, and drug resistance in CRC via enhancing p53 ubiquitination and degradation.
Collapse
Affiliation(s)
- Shiyang Wang
- Department of Geriatric Surgery, The First Hospital, China Medical University, Shenyang 110001, People's Republic of China.,Department of Surgical Oncology, The First Hospital, China Medical University, Shenyang 110001, People's Republic of China
| | - Tianlong Wang
- Department of Geriatric Surgery, The First Hospital, China Medical University, Shenyang 110001, People's Republic of China
| | - Li Wang
- Department of Geriatric Surgery, The First Hospital, China Medical University, Shenyang 110001, People's Republic of China
| | - Liansheng Zhong
- Department of Bioinformatics, College of Life Science, China Medical University, Shenyang 110001, People's Republic of China
| | - Kai Li
- Department of Surgical Oncology, The First Hospital, China Medical University, Shenyang 110001, People's Republic of China
| |
Collapse
|
58
|
Kim S, Lee JW, Park YS. The Application of Next-Generation Sequencing to Define Factors Related to Oral Cancer and Discover Novel Biomarkers. Life (Basel) 2020; 10:E228. [PMID: 33023080 PMCID: PMC7599837 DOI: 10.3390/life10100228] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 09/30/2020] [Accepted: 09/30/2020] [Indexed: 02/07/2023] Open
Abstract
Despite the introduction of next-generation sequencing in the realm of DNA sequencing technology, it is not often used in the investigation of oral squamous cell carcinoma (OSCC). Oral cancer is one of the most frequently occurring malignancies in some parts of the world and has a high mortality rate. Patients with this malignancy are likely to have a poor prognosis and may suffer from severe facial deformity or mastication problems even after successful treatment. Therefore, a thorough understanding of this malignancy is essential to prevent and treat it. This review sought to highlight the contributions of next-generation sequencing (NGS) in unveiling the genetic alterations and differential expressions of miRNAs involved in OSCC progression. By applying an appropriate eligibility criterion, we selected relevant studies for review. Frequently identified mutations in genes such as TP53, NOTCH1, and PIK3CA are discussed. The findings of existing miRNAs (e.g., miR-21) as well as novel discoveries pertaining to OSCC are also covered. Lastly, we briefly mention the latest findings in targeted gene therapy and the potential use of miRNAs as biomarkers. Our goal is to encourage researchers to further adopt NGS in their studies and give an overview of the latest findings of OSCC treatment.
Collapse
Affiliation(s)
| | | | - Young-Seok Park
- Department of Oral Anatomy and Dental Research Institute, School of Dentistry, Seoul National University, Seoul 03968, Korea; (S.K.); (J.W.L.)
| |
Collapse
|
59
|
Therachiyil L, Haroon J, Sahir F, Siveen KS, Uddin S, Kulinski M, Buddenkotte J, Steinhoff M, Krishnankutty R. Dysregulated Phosphorylation of p53, Autophagy and Stemness Attributes the Mutant p53 Harboring Colon Cancer Cells Impaired Sensitivity to Oxaliplatin. Front Oncol 2020; 10:1744. [PMID: 32984059 PMCID: PMC7485421 DOI: 10.3389/fonc.2020.01744] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 08/04/2020] [Indexed: 12/19/2022] Open
Abstract
Colorectal cancer (CRC) forms one of the highest ranked cancer types in the world with its increasing incidence and mortality rates despite the advancement in cancer therapeutics. About 50% of human CRCs are reported to have defective p53 expression resultant of TP53 gene mutation often contributing to drug resistance. The current study was aimed to investigate the response of wild-type TP53 harboring HCT 116 and mutant TP53 harboring HT 29 colon cancer cells to chemotherapeutic drug oxaliplatin (OX) and to elucidate the underlying molecular mechanisms of sensitivity/resistance in correlation to their p53 status. OX inhibited growth of wild-type p53-harboring colon cancer cells via p53/p21-Bax mediated apoptosis. Our study revealed that dysregulated phosphorylation of p53, autophagy as well as cancer stemness attributes the mutant p53-harboring colon cancer cells impaired sensitivity to OX.
Collapse
Affiliation(s)
- Lubna Therachiyil
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
- Department of Pharmaceutical Sciences, College of Pharmacy, Qatar University, Doha, Qatar
| | - Javeria Haroon
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Fairooz Sahir
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Kodappully S. Siveen
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Shahab Uddin
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
- Department of Dermatology and Venereology, Hamad Medical Corporation, Doha, Qatar
| | - Michal Kulinski
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Joerg Buddenkotte
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
- Department of Dermatology and Venereology, Hamad Medical Corporation, Doha, Qatar
| | - Martin Steinhoff
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
- Department of Dermatology and Venereology, Hamad Medical Corporation, Doha, Qatar
- Department of Medicine, Weill Cornell Medicine-Qatar, Qatar Foundation-Education City, Doha, Qatar
- Department of Medicine, Weill Cornell Medicine, New York, NY, United States
- College of Medicine, Qatar University, Doha, Qatar
| | - Roopesh Krishnankutty
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| |
Collapse
|
60
|
Wang C, Liu S, Kuang Y, Hu X, Fang X. Downregulation of ZNF365 by methylation predicts poor prognosis in patients with colorectal cancer by decreasing phospho-p53 (Ser15) expression. Oncol Lett 2020; 20:85. [PMID: 32863918 PMCID: PMC7436887 DOI: 10.3892/ol.2020.11946] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 06/26/2020] [Indexed: 01/11/2023] Open
Abstract
ZNF365 is a transcription factor that plays important roles in different types of cancer, such as colorectal cancer, breast cancer and hepatocellular carcinoma. ZNF365 can promote stalled replication fork recovery to prevent genomic instability, which is a notable feature of sporadic and hereditary types of cancers. However, the function of ZNF365 in the tumor progression of colorectal cancer (CRC) remains unclear. Thus, immunohistochemical staining was used to investigate the association between ZNF365 expression and the clinicopathological characteristics of patients with colorectal cancer. The results demonstrated that ZNF365 protein was strongly expressed in the nucleus and cytoplasm of normal colorectal mucosa. Furthermore ZNF365, which is methylated and downregulated in most cancer cell lines and tissues, was significantly associated with lymph node metastasis (P=0.015), depth of invasion (P=0.031) and histopathological grading (P=0.042). A positive correlation was observed between ZNF365 expression and phosphorylated (P)-p53 (Ser15) protein expression (r=0.18; P=0.038). Survival analysis indicated that patients with high ZNF365 expression had a higher survival rate than those with low ZNF365 expression (P=0.009), suggesting that ZNF365 may be an independent prognostic factor for survival in colorectal cancer (P=0.046). Taken together, the results of the present study demonstrated that ZNF365 was frequently inactivated by promoter methylation and independently predicted poor prognosis in patients with colorectal cancer by downregulating P-p53 (Ser15) expression.
Collapse
Affiliation(s)
- Chan Wang
- Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, Zhejiang 310016, P.R. China
| | - Shuiping Liu
- Department of Cancer Pharmacology and Key Laboratory of Elemene Class Anti-Cancer Chinese Medicine of Zhejiang Province, Holistic Integrative Pharmacy Institutes, College of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang 310012, P.R. China
| | - Yeye Kuang
- Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, Zhejiang 310016, P.R. China
| | - Xiaotong Hu
- Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, Zhejiang 310016, P.R. China.,Department of Pathology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, Zhejiang 310016, P.R. China
| | - Xiao Fang
- Department of Anesthesiology and Key Laboratory of Biotherapy of Zhejiang Province, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, Zhejiang 310016, P.R. China
| |
Collapse
|
61
|
Hajiran A, Bracco T, Zemp L, Spiess PE. Leveraging innovative therapies with an evolving understanding of the molecular pathogenesis of penile squamous cell carcinoma. Urol Oncol 2020; 40:173-178. [PMID: 32690436 DOI: 10.1016/j.urolonc.2020.06.024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 05/17/2020] [Accepted: 06/20/2020] [Indexed: 02/02/2023]
Abstract
Penile squamous cell carcinoma is a rare condition that is associated with significant morbidity and mortality in its advanced stages. In today's rapidly evolving field of oncology, physicians and scientists are learning to harness the power of genomics to drive innovative targeted, immunotherapeutic, and multimodal strategies across different cancer types; however, there remains a pressing need for a deeper understanding of the molecular pathways of penile carcinogenesis in order to help direct individualized therapy for patients with this disease. In this article, we will review our current understanding of some of the biologic mechanisms, including virally and nonvirally based pathways, which are thought to drive the development and progression of penile cancer.
Collapse
Affiliation(s)
- Ali Hajiran
- Department of Genitourinary Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL
| | - Taylor Bracco
- Department of Genitourinary Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL
| | - Logan Zemp
- Department of Genitourinary Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL
| | - Philippe E Spiess
- Department of Genitourinary Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL.
| |
Collapse
|
62
|
Antitumor Activity of New Olivacine Derivatives. Molecules 2020; 25:molecules25112512. [PMID: 32481577 PMCID: PMC7321363 DOI: 10.3390/molecules25112512] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 05/22/2020] [Accepted: 05/25/2020] [Indexed: 12/24/2022] Open
Abstract
Olivacine is an alkaloid-containing pyridocarbazole structure. It is isolated from the bark of the evergreen timber tree, Aspidosperma olivaceum. Its well-documented anticancer activity led to the synthesis of new derivatives, which are semisynthetic and fully synthetic pyridocarbazoles. This study aimed to evaluate the potential antineoplastic activity of four newly synthesized olivacine derivatives. Multidrug resistance is a common phenomenon causing failure in the chemotherapy of many tumors. It is mainly related to increased function of P-glycoprotein, an efflux pump removing cytostatic out of the cells. The cell lines used in the study were colorectal carcinoma cell lines: LoVo (doxorubicin-sensitive) and LoVo/DX (doxorubicin-resistant). The NHDF cell line was used to assess cell viability. First, the cells were incubated with olivacine derivatives. In the next step, the following assays were performed: DCF-DA assay, MTT assay, rhodamine 123 assay, detection of apoptosis, proliferation inhibition-mitotic index. The tested compounds showed higher antineoplastic potential and lower toxicity than the reference compound ellipticine. The results indicate that the new olivacine derivatives are good candidates for future anticancer drugs.
Collapse
|