51
|
Maintaining Digestive Health in Diabetes: The Role of the Gut Microbiome and the Challenge of Functional Foods. Microorganisms 2021; 9:microorganisms9030516. [PMID: 33802371 PMCID: PMC8001283 DOI: 10.3390/microorganisms9030516] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/22/2021] [Accepted: 02/26/2021] [Indexed: 12/15/2022] Open
Abstract
Over the last decades, the incidence of diabetes has increased in developed countries and beyond the genetic impact, environmental factors, which can trigger the activation of the gut immune system, seem to affect the induction of the disease process. Since the composition of the gut microbiome might disturb the normal interaction with the immune system and contribute to altered immune responses, the restoration of normal microbiota composition constitutes a new target for the prevention and treatment of diabetes. Thus, the interaction of gut microbiome and diabetes, focusing on mechanisms connecting gut microbiota with the occurrence of the disorder, is discussed in the present review. Finally, the challenge of functional food diet on maintaining intestinal health and microbial flora diversity and functionality, as a potential tool for the onset inhibition and management of the disease, is highlighted by reporting key animal studies and clinical trials. Early onset of the disease in the oral cavity is an important factor for the incorporation of a functional food diet in daily routine.
Collapse
|
52
|
Fyfe S, Smyth HE, Schirra HJ, Rychlik M, Sultanbawa Y. The Nutritional Potential of the Native Australian Green Plum ( Buchanania obovata) Compared to Other Anacardiaceae Fruit and Nuts. Front Nutr 2020; 7:600215. [PMID: 33392239 PMCID: PMC7772180 DOI: 10.3389/fnut.2020.600215] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 11/24/2020] [Indexed: 01/04/2023] Open
Abstract
The native Australian green plum (Buchanania obovata) is a small fruit that grows in the northern parts of the Northern Territory and Western Australia. The fruit belongs to the family Anacardiaceae, which includes the other agriculturally important fruit mangoes, pistachios and cashew nuts. The green plum is a favored species of fruit for the Aboriginal communities and an important bush food in the Northern Territory. To date, only minimal scientific studies have been performed on the green plum as a food. This review is about plant foods in the family Anacardiaceae and the key nutritional compounds that occur in these fruit and nuts. It looks at the more traditional nutrient profiles, some key health metabolites, allergens and anti-nutrients that occur, and the role these foods play in the health of populations. This provides a guide for future studies of the green plum to show what nutritional and anti-nutritional properties and compounds should be analyzed and if there are areas where future studies should focus. This review includes an update on studies and analysis of the green plum and how its nutritional properties give it potential as a food for diet diversification in Australia.
Collapse
Affiliation(s)
- Selina Fyfe
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Coopers Plains, QLD, Australia
| | - Heather E. Smyth
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Coopers Plains, QLD, Australia
| | | | - Michael Rychlik
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Coopers Plains, QLD, Australia
- Chair of Analytical Food Chemistry, Technical University of Munich, Freising, Germany
| | - Yasmina Sultanbawa
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Coopers Plains, QLD, Australia
| |
Collapse
|
53
|
Yang F, DeLuca JAA, Menon R, Garcia-Vilarato E, Callaway E, Landrock KK, Lee K, Safe SH, Chapkin RS, Allred CD, Jayaraman A. Effect of diet and intestinal AhR expression on fecal microbiome and metabolomic profiles. Microb Cell Fact 2020; 19:219. [PMID: 33256731 PMCID: PMC7708923 DOI: 10.1186/s12934-020-01463-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 10/28/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Diet, loss of aryl hydrocarbon receptor (AhR) expression and their modification of the gut microbiota community composition and its metabolites affect the development of colorectal cancer (CRC). However, the concordance between fecal microbiota composition and the fecal metabolome is poorly understood. Mice with specific AhR deletion (AhRKO) in intestinal epithelial cell and their wild-type littermates were fed a low-fat diet or a high-fat diet. Shifts in the fecal microbiome and metabolome associated with diet and loss of AhR expression were assessed. Microbiome and metabolome data were integrated to identify specific microbial taxa that contributed to the observed metabolite shifts. RESULTS Our analysis shows that diet has a more pronounced effect on mouse fecal microbiota composition than the impact of the loss of AhR. In contrast, metabolomic analysis showed that the loss of AhR in intestinal epithelial cells had a more pronounced effect on metabolite profile compared to diet. Integration analysis of microbiome and metabolome identified unclassified Clostridiales, unclassified Desulfovibrionaceae, and Akkermansia as key contributors to the synthesis and/or utilization of tryptophan metabolites. CONCLUSIONS Akkermansia are likely to contribute to the synthesis and/or degradation of tryptophan metabolites. Our study highlights the use of multi-omic analysis to investigate the relationship between the microbiome and metabolome and identifies possible taxa that can be targeted to manipulate the microbiome for CRC treatment.
Collapse
Affiliation(s)
- Fang Yang
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX, USA
| | | | - Rani Menon
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX, USA
| | | | - Evelyn Callaway
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX, USA
| | | | - Kyongbum Lee
- Department of Chemical and Biological Engineering, Tufts University, Medford, MA, USA
| | - Stephen H Safe
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX, USA
| | - Robert S Chapkin
- Department of Nutrition, Texas A&M University, College Station, TX, USA
| | - Clinton D Allred
- Department of Nutrition, Texas A&M University, College Station, TX, USA
| | - Arul Jayaraman
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX, USA.
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, USA.
| |
Collapse
|
54
|
Neijat M, Habtewold J, Li S, Jing M, House JD. Effect of dietary n-3 polyunsaturated fatty acids on the composition of cecal microbiome of Lohmann hens. Prostaglandins Leukot Essent Fatty Acids 2020; 162:102182. [PMID: 33038831 DOI: 10.1016/j.plefa.2020.102182] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/24/2020] [Accepted: 09/24/2020] [Indexed: 12/26/2022]
Abstract
Supplementation of n-3 fatty acids to poultry diets is widely acknowledged for its role in enhancing poultry products, however, little is known about the compositional responses of gut microbial communities to type and dosage of these supplements. Here, we compared the effects of n-3 polyunsaturated fatty acids (PUFA), supplied as alpha-linolenic acid (ALA) or docosahexaenoic acid (DHA), on the composition of bacterial communities in ceca of laying hens. Corn-soybean basal diets were supplemented with either flaxseed oil (FO, ALA-rich) or marine algal biomass (MA, DHA-rich), and each supplied 0.20 and 0.60% of total n-3 PUFA in the diet. Lohmann LSL-Classic laying hens (n = 10/treatment) were randomly allocated to one of the 4 diets. After 8 weeks of feeding, blood, liver and cecal digesta samples were obtained for plasma glucose, fatty acids, and short chain fatty acids analyses, respectively. The gut bacterial communities were characterized using genomic DNA extracted from cecal contents, whereby the V3-V4 hypervariable region of the 16S rRNA gene was sequenced using the Illumina Miseq® platform. Firmicutes and Bacteroidetes were the predominant phyla in both the FO- and MA-fed groups. The relative abundance of Tenericutes, often associated with immunomodulation, was relatively higher (P<0.0001) in the FO than MA group. Although the relative abundance of Bacteroides was greater for the FO- than the MA-fed group, this genus was negatively correlated (P<0.05) with total n-3 PUFA in the liver at higher dosages of both FO- and MA-fed hens. Higher dose of FO (0.60%) and both dosages of MA (0.20 and 0.60%) substantially enriched several members of Firmicutes (e.g., Faecalibacterium, Clostridium and Ruminococcus) which are known to produce butyrate. Moreover, co-occurrence network analysis revealed that, in the FO 0.60- and MA 0.20-fed hens, Ruminococcaceae was the most influential taxon accounting for about 31% of the network complexity. These findings demonstrate that supplementation of different type and level of n-3 PUFA in hens' diets could enrich microbial communities with potential role in lipid metabolism and health.
Collapse
Affiliation(s)
- M Neijat
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, Manitoba, R3T 2N2, Canada
| | - J Habtewold
- Agriculture and Agri-Food Canada (AAFC), Ottawa, Ontario, Canada
| | - S Li
- Department of Animal Sciences, University of Manitoba, Winnipeg, Manitoba, R3T 2N2, Canada
| | - M Jing
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, Manitoba, R3T 2N2, Canada
| | - J D House
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, Manitoba, R3T 2N2, Canada; Department of Animal Sciences, University of Manitoba, Winnipeg, Manitoba, R3T 2N2, Canada; Richardson Centre for Functional Foods and Nutraceuticals, University of Manitoba, Winnipeg, Manitoba, R3T 2E1, Canada; Canadian Centre for Agri-Food Research in Health and Medicine, St. Boniface Research Centre, Winnipeg, MB, R2H 2A6, Canada.
| |
Collapse
|
55
|
Wang S, Lv Z, Zhao W, Wang L, He N. Collagen peptide from Walleye pollock skin attenuated obesity and modulated gut microbiota in high-fat diet-fed mice. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.104194] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
56
|
Association of the Gut Microbiota with Weight-Loss Response within a Retail Weight-Management Program. Microorganisms 2020; 8:microorganisms8081246. [PMID: 32824364 PMCID: PMC7463616 DOI: 10.3390/microorganisms8081246] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 08/08/2020] [Accepted: 08/14/2020] [Indexed: 12/22/2022] Open
Abstract
Retail programs offer popular weight-loss options amid the ongoing obesity crisis. However, research on weight-loss outcomes within such programs is limited. This prospective-cohort observational study enrolled 58 men and women between ages 20 and 72 years from a retail program to assess the influence of client features on energy-restriction induced weight-loss response. DESeq2 in R-studio, a linear regression model adjusting for significantly correlating covariates, and Wilcoxon signed-rank and Kruskal–Wallis for within- and between-group differences, respectively, were used for data analyses. An average 10% (~10 kg) reduction in baseline-weight along with lower total-, android-, gynoid-, and android:gynoid-fat were observed at Week 12 (all, p < 0.05). Fifty percent of participants experienced a higher response, losing an average of 14.5 kg compared to 5.9 kg in the remaining low-response group (p < 0.0001). Hemoglobin-A1C (p = 0.005) and heart rate (p = 0.079) reduced in the high-response group only. Fat mass and A1C correlated when individuals had high android:gynoid fat (r = 0.55, p = 0.008). Gut-microbial β-diversity was associated with BMI, body fat%, and android-fat (all, p < 0.05). Microbiota of the high-response group had a higher baseline OTU-richness (p = 0.02) as well as differential abundance and/or associations with B. eggerthi, A. muciniphila, Turicibacter, Prevotella, and Christensenella (all, p/padj < 0.005). These results show that intestinal microbiota as well as sex and body composition differences may contribute to variable weight-loss response. This highlights the importance of various client features in the context of real-world weight control efforts.
Collapse
|
57
|
Lactobacillus plantarum PS128 Improves Physiological Adaptation and Performance in Triathletes through Gut Microbiota Modulation. Nutrients 2020; 12:nu12082315. [PMID: 32752178 PMCID: PMC7468698 DOI: 10.3390/nu12082315] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 07/21/2020] [Accepted: 07/28/2020] [Indexed: 02/06/2023] Open
Abstract
A triathlon is an extremely high-intensity exercise and a challenge for physiological adaptation. A triathlete's microbiome might be modulated by diet, age, medical treatments, lifestyle, and exercise, thereby maintaining aerobiosis and optimum health and performance. Probiotics, prebiotics, and synbiotics have been reported to have health-promoting activities (e.g., immunoregulation and cancer prevention). However, few studies have addressed how probiotics affect the microbiota of athletes and how this translates into functional activities. In our previous study, we found that Lactobacillus plantarum PS128 could ameliorate inflammation and oxidative stress, with improved exercise performance. Thus, here we investigate how the microbiota of triathletes are altered by L. plantarum PS128 supplementation, not only for exercise performance but also for possible physiological adaptation. The triathletes were assigned to two groups: an L. plantarum 128 supplement group (LG, 3 × 1010 colony-forming units (CFU)/day) and a placebo group (PG). Both groups continued with their regular exercise training for the next 4 weeks. The endurance performance, body composition, biochemistries, blood cells, microbiota, and associated metabolites were further investigated. PS128 significantly increased the athletes' endurance, by about 130% as compared to the PG group, but there was no significant difference in maximal oxygen consumption (VO2max) and composition between groups. The PS128 supplementation (LG) modulated the athlete's microbiota with both significant decreases (Anaerotruncus, Caproiciproducens, Coprobacillus, Desulfovibrio, Dielma, Family_XIII, Holdemania, and Oxalobacter) and increases (Akkermansia, Bifidobacterium, Butyricimonas, and Lactobacillus), and the LG showed lower diversity when compared to the PG. Also, the short-chain fatty acids (SCFAs; acetate, propionate, and butyrate) of the LG were significantly higher than the PG, which might be a result of a modulation of the associated microbiota. In conclusion, PS128 supplementation was associated with an improvement on endurance running performance through microbiota modulation and related metabolites, but not in maximal oxygen uptake.
Collapse
|
58
|
Baldassano S, Amato A, Terzo S, Caldara GF, Lentini L, Mulè F. Glucagon-like peptide-2 analog and inflammatory state in obese mice. Endocrine 2020; 68:695-698. [PMID: 32172484 DOI: 10.1007/s12020-020-02261-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 03/03/2020] [Indexed: 02/07/2023]
Affiliation(s)
- Sara Baldassano
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Palermo, Italy
| | - Antonella Amato
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Palermo, Italy
| | - Simona Terzo
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Palermo, Italy
- Department of Neuroscience and Cell Biology, University of Palermo, 90127, Palermo, Italy
| | - Gaetano Felice Caldara
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Palermo, Italy
| | - Laura Lentini
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Palermo, Italy
| | - Flavia Mulè
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Palermo, Italy.
| |
Collapse
|
59
|
Regular Intake of Pistachio Mitigates the Deleterious Effects of a High Fat-Diet in the Brain of Obese Mice. Antioxidants (Basel) 2020; 9:antiox9040317. [PMID: 32326575 PMCID: PMC7222408 DOI: 10.3390/antiox9040317] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 04/07/2020] [Accepted: 04/13/2020] [Indexed: 12/19/2022] Open
Abstract
Obesity has been associated with neurodegeneration and cognitive dysfunctions. Recent data showed that pistachio consumption is able to prevent and ameliorate dyslipidemia, hepatic steatosis, systemic and adipose tissue inflammation in mice fed a high-fat diet (HFD). The present study investigated the neuroprotective effects of pistachio intake in HFD mice. Three groups of mice were fed a standard diet (STD), HFD, or HFD supplemented with pistachio (HFD-P) for 16 weeks. Metabolic parameters (oxidative stress, apoptosis, and mitochondrial dysfunction) were analyzed by using specific assays and biomarkers. The pistachio diet significantly reduced the serum levels of triglycerides and cholesterol in the HFD model. No difference was observed in the index of insulin resistance between HFD and HFD-P. A higher number of fragmented nuclei were found in HFD cerebral cortex compared to STD and HFD-P. A decrease in reactive oxygen species, singlet oxygen and phosphorylated extracellular signal-regulated kinase, and an increase of superoxide dismutase 2 and heme oxygenase expression were found in the brains of the HFD-P samples compared to HFD. Furthermore, the impaired mitochondrial function found in HFD brain was partially recovered in HFD-P mice. These results suggest that the regular intake of pistachio may be useful in preventing obesity-related neurodegeneration, being able to reduce both metabolic and cellular dysfunctions.
Collapse
|