51
|
Elsayed R, Elashiry M, Liu Y, Morandini AC, El-Awady A, Elashiry MM, Hamrick M, Cutler CW. Microbially-Induced Exosomes from Dendritic Cells Promote Paracrine Immune Senescence: Novel Mechanism of Bone Degenerative Disease in Mice. Aging Dis 2023; 14:136-151. [PMID: 36818565 PMCID: PMC9937696 DOI: 10.14336/ad.2022.0623] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 06/23/2022] [Indexed: 11/18/2022] Open
Abstract
As the aging population grows, chronic age-related bone degenerative diseases become more prevalent and severe. One such disease, periodontitis (PD), rises to 70.1% prevalence in Americans 65 years and older. PD has been linked to increased risk of other age-related diseases with more serious mortality and morbidity profiles such as Alzheimer's disease and cardiovascular disease, but the cellular and biological mechanisms remain unclear. Recent in vitro studies from our group indicate that murine dendritic cells (DCs) and T cells are vulnerable to immune senescence. This occurs through a distinct process involving invasion of DCs by dysbiotic pathogen Porphyromonas gingivalis (Pg) activating the senescence associated secretory phenotype (SASP). Exosomes of the Pg-induced SASP transmit senescence to normal bystander DC and T cells, ablating antigen presentation. The biological significance of these findings in vivo and the mechanisms involved were examined in the present study using young (4-5mo) or old (22-24mo) mice subjected to ligature-induced PD, with or without dysbiotic oral pathogen and injection of Pg-induced DC exosomes. Senescence profiling of gingiva and draining lymph nodes (LN) corroborates role of advanced age and PD in elevation of senescence biomarkers beta galactosidase (SA-β-Gal), p16 INK4A p21Waf1/Clip1, IL6, TNFα, and IL1β, with attendant increase in alveolar bone loss, reversed by senolytic agent rapamycin. Immunophenotyping of gingiva and LN revealed that myeloid CD11c+ DCs and T cells are particularly vulnerable to senescence in vivo under these conditions. Moreover, Pg-induced DC exosomes were the most potent inducers of alveolar bone loss and immune senescence, and capable of overcoming senescence resistance of LN T cells in young mice. We conclude that immune senescence, compounded by advanced age, and accelerated by oral dysbiosis and its induced SASP exosomes, plays a pivotal role in the pathophysiology of experimental periodontitis.
Collapse
Affiliation(s)
- Ranya Elsayed
- Department of Periodontics, Dental College of Georgia at Augusta University, GA, USA.
| | - Mahmoud Elashiry
- Department of Periodontics, Dental College of Georgia at Augusta University, GA, USA.
| | - Yutao Liu
- Department of Cellular Biology and Anatomy, Augusta University, GA, USA.
| | - Ana C. Morandini
- Department of Periodontics, Dental College of Georgia at Augusta University, GA, USA.
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, GA, USA.
| | - Ahmed El-Awady
- Department of Periodontics, Dental College of Georgia at Augusta University, GA, USA.
| | - Mohamed M. Elashiry
- Department of Endodontics, Faculty of Dentistry, Ain Shams University, Cairo Egypt.
| | - Mark Hamrick
- Department of Cellular Biology and Anatomy, Augusta University, GA, USA.
| | - Christopher W. Cutler
- Department of Periodontics, Dental College of Georgia at Augusta University, GA, USA.
| |
Collapse
|
52
|
Inhibitory effect of polysaccharides extracted from Changbai Mountain Ganoderma lucidum on periodontal inflammation. Heliyon 2023; 9:e13205. [PMID: 36814621 PMCID: PMC9939615 DOI: 10.1016/j.heliyon.2023.e13205] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 12/23/2022] [Accepted: 01/20/2023] [Indexed: 01/30/2023] Open
Abstract
As the main bioactive substance of Ganoderma lucidum, Ganoderma lucidum polysaccharide (GLP) has anti-inflammatory, antibacterial, and other biological activities. Studies have shown that GLP can regulate the expression of multiple inflammatory cytokines in different inflammatory models and diseases as part of the anti-infection immune response. We extracted crude Changbai Mountain Ganoderma lucidum polysaccharides (CGLPs), analyzed their physical and chemical properties, and then applied them to the periodontitis model to verify whether they have an inhibitory effect on mouse periodontitis. CGLP was determined to be a heteropolysaccharide with dextran as the main component. Its molecular weight was 17.40 kDa. In vivo experiments in mice showed that CGLP can inhibit the alveolar bone loss and reduced inflammation caused of periodontitis by regulating the expression of the inflammatory factors IL-1β, TNF-α, and IL-10 in a concentration-dependent manner.
Collapse
|
53
|
Zhang X, Xu M, Xue Q, He Y. A modified method for constructing experimental rat periodontitis model. Front Bioeng Biotechnol 2023; 10:1098015. [PMID: 36714614 PMCID: PMC9873956 DOI: 10.3389/fbioe.2022.1098015] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 12/22/2022] [Indexed: 01/12/2023] Open
Abstract
Background: Periodontitis is a prevalent disease caused teeth lost. The present rat models inducing periodontitis with thread ligature and metal steel ligature have some disadvantages. Methods: We modified the existing rat ligature periodontitis model by fixing the thread ligature on the metal steel ligature passed through the gap between the first and second molars of rats with detailed modeling steps and illustrations. We research the pathological process of the periodontitis induced by the modified model, and briefly compared the modified model with the thread ligature model and the metal steel ligature model. Result: Our experimental results showed that there was an aggravation in inflammatory infiltration and alveolar bone resorption in modeling area within 14 days of initial induction. After that, the inflammatory infiltration was reduced. And no significant increase in alveolar bone destruction appeared. The modified model was more reliable compared to the thread ligature model, and had greater ability of bacterial aggregation compared to the metal steel ligature model. Conclusion: The modified method covered pathological process of the periodontitis, and showed sufficient efficiency and reliability in inducing rat periodontitis.
Collapse
Affiliation(s)
- Xuyang Zhang
- Department of Orthodontics, Stomatological Hospital of Chongqing Medical University, Chongqing, China,Chongqing Key Laboratory of Oral Disease and Biomedical Sciences, Stomatological Hospital of Chongqing Medical University, Chongqing, China
| | - Minglu Xu
- Department of Orthodontics, Stomatological Hospital of Chongqing Medical University, Chongqing, China,Chongqing Key Laboratory of Oral Disease and Biomedical Sciences, Stomatological Hospital of Chongqing Medical University, Chongqing, China
| | - Qin Xue
- Department of Orthodontics, Stomatological Hospital of Chongqing Medical University, Chongqing, China,Chongqing Key Laboratory of Oral Disease and Biomedical Sciences, Stomatological Hospital of Chongqing Medical University, Chongqing, China
| | - Yao He
- Department of Orthodontics, Stomatological Hospital of Chongqing Medical University, Chongqing, China,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Stomatological Hospital of Chongqing Medical University, Chongqing, China,*Correspondence: Yao He,
| |
Collapse
|
54
|
Pharmacological Activation of YAP/TAZ by Targeting LATS1/2 Enhances Periodontal Tissue Regeneration in a Murine Model. Int J Mol Sci 2023; 24:ijms24020970. [PMID: 36674487 PMCID: PMC9866423 DOI: 10.3390/ijms24020970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/24/2022] [Accepted: 12/27/2022] [Indexed: 01/06/2023] Open
Abstract
Due to their multi-differentiation potential, periodontal ligament fibroblasts (PDLF) play pivotal roles in periodontal tissue regeneration in vivo. Several in vitro studies have suggested that PDLFs can transmit mechanical stress into favorable basic cellular functions. However, the application of mechanical force for periodontal regeneration therapy is not expected to exhibit an effective prognosis since mechanical forces, such as traumatic occlusion, also exacerbate periodontal tissue degeneration and loss. Herein, we established a standardized murine periodontal regeneration model and evaluated the regeneration process associated with cementum remodeling. By administering a kinase inhibitor of YAP/TAZ suppressor molecules, such as large tumor suppressor homolog 1/2 (LATS1/2), we found that the activation of YAP/TAZ, a key downstream effector of mechanical signals, accelerated periodontal tissue regeneration due to the activation of PDLF cell proliferation. Mechanistically, among six kinds of MAP4Ks previously reported as upstream kinases that suppressed YAP/TAZ transcriptional activity through LATS1/2 in various types of cells, MAP4K4 was identified as the predominant MAP4K in PDLF and contributed to cell proliferation and differentiation depending on its kinase activity. Ultimately, pharmacological activation of YAP/TAZ by inhibiting upstream inhibitory kinase in PDLFs is a valuable strategy for improving the clinical outcomes of periodontal regeneration therapies.
Collapse
|
55
|
Franchin M, Taira TM, da Silva Prado D, Hernandez CAS, de Andrade FB, Abdalla HB, Napimoga MH, Cunha TM, Fukada SY, Rosalen PL. PI3Kγ controls IL-17A expression and attenuates alveolar bone loss in an experimental periodontitis model. Inflamm Res 2023; 72:107-114. [PMID: 36333479 DOI: 10.1007/s00011-022-01662-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 10/18/2022] [Indexed: 11/06/2022] Open
Abstract
OBJECTIVE In this study, we investigated the modulatory effects of PI3Kγ on IL-17A expression and the progression of experimental periodontitis in vivo. METHODS Ligature-induced periodontitis was developed around the first molar of mice. Animals were treated with anti-mouse IL-17A or IPI-549 (PI3Kγ inhibitor). In addition, PI3Kγ-deficient mice (PI3Kγ-/-) were used in the study. Alveolar bone loss was measured and real-time PCR of Il17a and Rankl genes was performed. A bioinformatics analysis was carried out using the Gene Set Enrichment Analysis computational tool. RESULTS Nine days after ligature placement, alveolar bone loss scores were significantly increased, with upregulation of Il17a and Rankl genes in the gingival tissues. Treatment with anti-mouse IL-17A (100 µg/mice) significantly attenuated alveolar bone loss. Mice with ligature-induced periodontitis treated with IPI-549 (3 mg/kg) or PI3Kγ-/- mice showed reduced alveolar bone loss and downregulation of Il17a and Rankl gene expression in the gingival tissues. Consistent with this, the bioinformatics analysis showed upregulation of IL17F, IL17A, IL17D, and STAT3 genes, as well as greater activation of IL-17 and PI3KCI pathways (upregulation of PIK3CG gene) in the gingival tissue of patients with periodontitis. CONCLUSION PI3Kγ plays an important role in modulating IL-17A expression and alveolar bone loss in vivo and can be considered a promising pathway for the management of periodontal disease and the development of new therapies.
Collapse
Affiliation(s)
- Marcelo Franchin
- Department of Physiological Sciences, Piracicaba Dental School, University of Campinas, Piracicaba, SP, Brazil.
- School of Dentistry, Federal University Alfenas (Unifal-MG), Alfenas, MG, Brazil.
| | - Thaise Mayumi Taira
- Department of BioMolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Douglas da Silva Prado
- Center for Research in Inflammatory Diseases (CRID), University of São Paulo, Ribeirão Preto, SP, Brazil
| | | | - Fabio Bonifácio de Andrade
- Center for Research in Inflammatory Diseases (CRID), University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Henrique Ballassini Abdalla
- Laboratory of Neuroimmune Interface of Pain Research, São Leopoldo Mandic Institute and Research Center, Campinas, SP, Brazil
| | - Marcelo Henrique Napimoga
- Laboratory of Neuroimmune Interface of Pain Research, São Leopoldo Mandic Institute and Research Center, Campinas, SP, Brazil
| | - Thiago Mattar Cunha
- Center for Research in Inflammatory Diseases (CRID), University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Sandra Yasuyo Fukada
- Department of BioMolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
- Center for Research in Inflammatory Diseases (CRID), University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Pedro Luiz Rosalen
- Department of Physiological Sciences, Piracicaba Dental School, University of Campinas, Piracicaba, SP, Brazil.
- Graduate Program in Biological Sciences, Federal University of Alfenas (Unifal-MG), Alfenas, MG, Brazil.
| |
Collapse
|
56
|
Kowalski J, Nowak M, Górski B, Górska R. What Has Immunology Brought to Periodontal Disease in Recent Years? Arch Immunol Ther Exp (Warsz) 2022; 70:26. [PMID: 36245042 PMCID: PMC9573852 DOI: 10.1007/s00005-022-00662-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 08/08/2022] [Indexed: 11/29/2022]
Abstract
Recent decades have shed a new light on the pathomechanism of periodontal inflammation. While classic periodontology concentrates on biofilm control, oral hygiene improvement, professional tooth cleaning and surgical correction of damaged periodontal tissues, new aspects of the destruction mechanisms are being raised. Among them, the greatest attention is paid to the influence of host response on the clinical manifestations of the disease. Numerous studies have proved that the shift from gingivitis to periodontitis is not a simple progress of the disease, but an event occurring only in susceptible individuals. Susceptibility may result from appearance of local factors facilitating biofilm accumulation and/or maturation, or from systemic features, among which over-reaction and prolonged agitation of non-specific component of inflammatory response is crucial. The present paper summarizes the association between periodontology and immunology and updates the knowledge accrued mostly in the recent years. After a brief explanation of advances in understanding of the disease aetiology, the most studied and potentially viable immunological markers of periodontal disease are presented. Possible new therapeutic strategies, exploiting knowledge about the nature of host response—immunomodulation and reduction of chronic oxidative stress—are also presented.
Collapse
Affiliation(s)
- Jan Kowalski
- Department of Periodontology and Oral Diseases, Medical University of Warsaw, Warsaw, Poland.
| | - Maciej Nowak
- Department of Periodontology and Oral Diseases, Medical University of Warsaw, Warsaw, Poland
| | - Bartłomiej Górski
- Department of Periodontology and Oral Diseases, Medical University of Warsaw, Warsaw, Poland
| | - Renata Górska
- Department of Periodontology and Oral Diseases, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
57
|
Kim S, Lee JY, Park JY, Kim Y, Kang CH. Lacticaseibacillus rhamnosus MG4706 Suppresses Periodontitis in Osteoclasts, Inflammation-Inducing Cells, and Ligature-Induced Rats. Nutrients 2022; 14:nu14224869. [PMID: 36432555 PMCID: PMC9694000 DOI: 10.3390/nu14224869] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/15/2022] [Accepted: 11/16/2022] [Indexed: 11/19/2022] Open
Abstract
Periodontitis is a chronic inflammatory disease characterized by tooth loss due to inflammation and the loss of alveolar bone. Periodontitis is closely related to various systemic diseases and is emerging as a global health problem. In this study, we investigated the anti-inflammatory effect of lactic acid bacteria (LAB) in vitro on Porphyromonas gingivalis (P. gingivalis) LPS-activated RAW264.7 and human gingival fibroblasts-1 (HGF-1) cells and the anti-osteoclastogenic effect of LAB on RANKL-induced RAW264.7 cells. All LAB strains (Lacticaseibacillus rhamnosus MG4706, MG4709, and MG4711) inhibited nitric oxide (NO)/inducible nitric oxide synthase (iNOS) in P. gingivalis LPS-activated RAW264.7 cells and pro-inflammatory cytokines (IL-1β and IL-6) and matrix metalloproteinase (MMP-8 and MMP-9) in HGF-1 cells. In addition, LAB treatment inhibited osteoclastogenesis by reducing tartrate-resistant acid phosphatase (TRAP) activity and cathepsin K (CtsK) through the downregulation of nuclear factor of activated T cells cytoplasmic 1 (NFATc1) and c-fos gene expression in RANKL-induced RAW264.7 cells. Administration of MG4706 alleviated alveolar bone loss indices and reduced the gene expression of IL-1β, IL-6, MMP-8, MMP-9, and RANKL/OPG ratio in gingival tissue. In conclusion, L. rhamnosus MG4706 has the potential to alleviate periodontitis.
Collapse
|
58
|
Saas P, Vetter M, Maraux M, Bonnefoy F, Perruche S. Resolution therapy: Harnessing efferocytic macrophages to trigger the resolution of inflammation. Front Immunol 2022; 13:1021413. [PMID: 36389733 PMCID: PMC9651061 DOI: 10.3389/fimmu.2022.1021413] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 10/12/2022] [Indexed: 09/03/2023] Open
Abstract
Several chronic inflammatory diseases are associated with non-resolving inflammation. Conventional anti-inflammatory drugs fail to completely cure these diseases. Resolution pharmacology is a new therapeutic approach based on the use of pro-resolving mediators that accelerate the resolution phase of inflammation by targeting the productive phase of inflammation. Indeed, pro-resolving mediators prevent leukocyte recruitment and induce apoptosis of accumulated leukocytes. This approach is now called resolution therapy with the introduction of complex biological drugs and cell-based therapies. The main objective of resolution therapy is to specifically reduce the duration of the resolution phase to accelerate the return to homeostasis. Under physiological conditions, macrophages play a critical role in the resolution of inflammation. Indeed, after the removal of apoptotic cells (a process called efferocytosis), macrophages display anti-inflammatory reprogramming and subsequently secrete multiple pro-resolving factors. These factors can be used as resolution therapy. Here, we review the different mechanisms leading to anti-inflammatory reprogramming of macrophages after efferocytosis and the pro-resolving factors released by these efferocytic macrophages. We classify these mechanisms in three different categories: macrophage reprogramming induced by apoptotic cell-derived factors, by molecules expressed by apoptotic cells (i.e., "eat-me" signals), and induced by the digestion of apoptotic cell-derived materials. We also evoke that macrophage reprogramming may result from cooperative mechanisms, for instance, implicating the apoptotic cell-induced microenvironment (including cellular metabolites, specific cytokines or immune cells). Then, we describe a new drug candidate belonging to this resolution therapy. This candidate, called SuperMApo, corresponds to the secretome of efferocytic macrophages. We discuss its production, the pro-resolving factors present in this drug, as well as the results obtained in experimental models of chronic (e.g., arthritis, colitis) and acute (e.g., peritonitis or xenogeneic graft-versus-host disease) inflammatory diseases.
Collapse
Affiliation(s)
- Philippe Saas
- University Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, RIGHT, Interactions Hôte-Greffon-Tumeur/Ingénierie Cellulaire et Génique, LabEx LipSTIC, Besançon, France
| | - Mathieu Vetter
- University Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, RIGHT, Interactions Hôte-Greffon-Tumeur/Ingénierie Cellulaire et Génique, LabEx LipSTIC, Besançon, France
| | - Melissa Maraux
- University Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, RIGHT, Interactions Hôte-Greffon-Tumeur/Ingénierie Cellulaire et Génique, LabEx LipSTIC, Besançon, France
| | - Francis Bonnefoy
- University Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, RIGHT, Interactions Hôte-Greffon-Tumeur/Ingénierie Cellulaire et Génique, LabEx LipSTIC, Besançon, France
- MED’INN’Pharma, Besançon, France
| | - Sylvain Perruche
- University Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, RIGHT, Interactions Hôte-Greffon-Tumeur/Ingénierie Cellulaire et Génique, LabEx LipSTIC, Besançon, France
- MED’INN’Pharma, Besançon, France
| |
Collapse
|
59
|
Local and systemic effects produced in different models of experimental periodontitis in mice: a systematic review. Arch Oral Biol 2022; 143:105528. [DOI: 10.1016/j.archoralbio.2022.105528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 08/16/2022] [Accepted: 08/18/2022] [Indexed: 12/09/2022]
|
60
|
Ohsugi Y, Hatasa M, Katagiri S, Hirota T, Shimohira T, Shiba T, Komatsu K, Tsuchiya Y, Fukuba S, Lin P, Toyoshima K, Maekawa S, Niimi H, Iwata T, Aoki A. High-frequency pulsed diode laser irradiation inhibits bone resorption in mice with ligature-induced periodontitis. J Clin Periodontol 2022; 49:1275-1288. [PMID: 35817415 DOI: 10.1111/jcpe.13695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 06/08/2022] [Accepted: 07/03/2022] [Indexed: 11/26/2022]
Abstract
AIM The purpose of this study was to elucidate the suppressive effect of high-frequency pulsed diode laser irradiation on bone resorption and its biological effects for gene expression and microbiome composition on the gingival tissue in ligature-induced periodontitis in mice. MATERIALS AND METHODS Ligating ligature around the teeth and/or laser irradiation was performed on the gingival tissue in mice as follows: Co (no ligature and no laser irradiation), Li (ligation without laser irradiation), La (no ligature but with laser irradiation), and LiLa (ligation with laser irradiation). Bone resorption was evaluated using micro-computed tomography. RNA-seq analysis was performed on gingival tissues of all four groups at 3 days post ligation. The differences in microbial composition between Li and LiLa were evaluated based on the number of 16S rRNA gene sequences. RESULTS Bone resorption caused by ligation was significantly suppressed by laser irradiation. RNA-seq in Co and La gingival tissue revealed many differentially expressed genes, suggesting diode laser irradiation altered gene expression. Gene set enrichment analysis revealed mTORC1 signaling and E2F target gene sets were enriched in gingival tissues both in La and LiLa compared to that in Co and Li, respectively. The amount of extracted DNA from ligatures was reduced by laser irradiation, and bacterial network structure was altered between the Li and LiLa. CONCLUSIONS High-frequency pulsed diode laser irradiation showed biological effects and suppressed bone resorption in ligature-induced periodontitis. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Yujin Ohsugi
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Masahiro Hatasa
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Sayaka Katagiri
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Tomomitsu Hirota
- Division of Molecular Genetics, Research Center for Medical Science, The Jikei University School of Medicine, Japan
| | - Tsuyoshi Shimohira
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Takahiko Shiba
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Keiji Komatsu
- Department of Lifetime Oral Health Care Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yosuke Tsuchiya
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Shunsuke Fukuba
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Peiya Lin
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Keita Toyoshima
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Shogo Maekawa
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Hiromi Niimi
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Takanori Iwata
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Akira Aoki
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
61
|
Silva DNDA, Monajemzadeh S, Pirih FQ. Systems Biology in Periodontitis. FRONTIERS IN DENTAL MEDICINE 2022. [DOI: 10.3389/fdmed.2022.853133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Systems biology is a promising scientific discipline that allows an integrated investigation of host factors, microbial composition, biomarkers, immune response and inflammatory mediators in many conditions such as chronic diseases, cancer, neurological disorders, and periodontitis. This concept utilizes genetic decoding, bioinformatic, flux-balance analysis in a comprehensive approach. The aim of this review is to better understand the current literature on systems biology and identify a clear applicability of it to periodontitis. We will mostly focus on the association between this condition and topics such as genomics, transcriptomics, proteomics, metabolomics, as well as contextualize delivery systems for periodontitis treatment, biomarker detection in oral fluids and associated systemic conditions.
Collapse
|
62
|
Dascalu (Rusu) LM, Moldovan M, Sarosi C, Sava S, Dreanca A, Repciuc C, Purdoiu R, Nagy A, Badea ME, Paun AG, Badea IC, Chifor R. Photodynamic Therapy with Natural Photosensitizers in the Management of Periodontal Disease Induced in Rats. Gels 2022; 8:134. [PMID: 35200515 PMCID: PMC8872554 DOI: 10.3390/gels8020134] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 02/11/2022] [Accepted: 02/17/2022] [Indexed: 01/27/2023] Open
Abstract
This study aims to investigate the effect of new natural photosensitizers (PS) (based on oregano essential oil, curcuma extract, and arnica oil) through in vitro cytotoxicity and biological tests in rat-induced periodontal disease, treated with photodynamic therapy (aPDT). The cytotoxicity of PS was performed on human dental pulp mesenchymal stem cells (dMSCs) and human keratinocyte (HaCaT) cell lines. Periodontal disease was induced by ligation of the first mandibular molar of 25 rats, which were divided into 5 groups: control group, periodontitis group, Curcuma and aPDT-treated group, oregano and aPDT-treated group, and aPDT group. The animals were euthanized after 4 weeks of study. Computed tomography imaging has been used to evaluate alveolar bone loss. Hematological and histological evaluation showed a greater magnitude of the inflammatory response and severe destruction of the periodontal ligaments in the untreated group.. For the group with the induced periodontitis and treated with natural photosensitizers, the aPDT improved the results; this therapy could be an important adjuvant treatment. The obtained results of these preliminary studies encourage us to continue the research of periodontitis treated with natural photosensitizers activated by photodynamic therapy.
Collapse
Affiliation(s)
- Laura Monica Dascalu (Rusu)
- Department of Prosthodontics and Dental Materials, Iuliu Hatieganu University of Medicine and Pharmacy, 31 Avram Iancu Str., 400083 Cluj-Napoca, Romania;
| | - Marioara Moldovan
- Raluca Ripan Institute of Chemistry, Babes-Bolyai University, 30 Fantanele Str., 400294 Cluj-Napoca, Romania;
| | - Codruta Sarosi
- Raluca Ripan Institute of Chemistry, Babes-Bolyai University, 30 Fantanele Str., 400294 Cluj-Napoca, Romania;
| | - Sorina Sava
- Department of Prosthodontics and Dental Materials, Iuliu Hatieganu University of Medicine and Pharmacy, 31 Avram Iancu Str., 400083 Cluj-Napoca, Romania;
| | - Alexandra Dreanca
- Pathophysiology/Toxicology Department, Faculty of Veterinary Medicine, University of Agricultural Science and Veterinary Medicine, 3-5 Calea Manastur, 400372 Cluj-Napoca, Romania; (A.D.); (C.R.); (R.P.); (A.N.)
| | - Calin Repciuc
- Pathophysiology/Toxicology Department, Faculty of Veterinary Medicine, University of Agricultural Science and Veterinary Medicine, 3-5 Calea Manastur, 400372 Cluj-Napoca, Romania; (A.D.); (C.R.); (R.P.); (A.N.)
| | - Robert Purdoiu
- Pathophysiology/Toxicology Department, Faculty of Veterinary Medicine, University of Agricultural Science and Veterinary Medicine, 3-5 Calea Manastur, 400372 Cluj-Napoca, Romania; (A.D.); (C.R.); (R.P.); (A.N.)
| | - Andras Nagy
- Pathophysiology/Toxicology Department, Faculty of Veterinary Medicine, University of Agricultural Science and Veterinary Medicine, 3-5 Calea Manastur, 400372 Cluj-Napoca, Romania; (A.D.); (C.R.); (R.P.); (A.N.)
| | - Mîndra Eugenia Badea
- Department of Preventive Dental Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 31 Avram Iancu Str., 400083 Cluj-Napoca, Romania; (M.E.B.); (I.C.B.); (R.C.)
| | - Ariadna Georgiana Paun
- Department Community Medicine, Iuliu Hațieganu University of Medicine and Pharmacy, 31 Avram Iancu Str., 400083 Cluj-Napoca, Romania;
| | - Iulia Clara Badea
- Department of Preventive Dental Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 31 Avram Iancu Str., 400083 Cluj-Napoca, Romania; (M.E.B.); (I.C.B.); (R.C.)
| | - Radu Chifor
- Department of Preventive Dental Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 31 Avram Iancu Str., 400083 Cluj-Napoca, Romania; (M.E.B.); (I.C.B.); (R.C.)
| |
Collapse
|
63
|
Shao F, Panahipour L, Sordi MB, Tang F, Liu R, Gruber R. Heartwood of Dalbergia cochinchinensis: 4,7,2'-Trihydroxy-4'-methoxyisoflavanol and 6,4'-Dihydroxy-7-methoxyflavane Reduce Cytokine and Chemokine Expression In Vitro. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27041321. [PMID: 35209110 PMCID: PMC8879141 DOI: 10.3390/molecules27041321] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/14/2021] [Accepted: 02/11/2022] [Indexed: 02/02/2023]
Abstract
Dalbergia cochinchinensis has been widely used in traditional medicine because of its flavonoids; however, the impact of the flavonoids to modulate the inflammatory response to oral cells remains to be described. For this aim, we isolated 4,7,2'-trihydroxy-4'-methoxyisoflavanol (472T4MIF) and 6,4'-dihydroxy-7-methoxyflavane (64D7MF) from the heartwood of D. cochinchinensis and confirmed the chemical structure by nuclear magnetic resonance. We show here that both flavonoids are inhibitors of an inflammatory response of murine RAW 264.7 inflammatory macrophages stimulated by LPS. This is indicated by interleukin (IL)1, IL6, and chemokine CCL2 production besides the phosphorylation of p65. Consistently, in primary murine macrophages, both flavonoids decreased the inflammatory response by lowering LPS-induced IL1 and IL6 expression. To introduce oral cells, we have used human gingival fibroblasts and provoked the inflammatory response by exposing them to IL1β and TNFα. Under these conditions, 472T4MIF, but not 64D7MF, reduced the expression of chemokines CXCL1 and CXCL2. Taken together, we identified two flavonoids that can reduce the expression of cytokines and chemokines in macrophages and fibroblastic cells.
Collapse
Affiliation(s)
- Feng Shao
- Department of Oral Biology, Medical University of Vienna, 1090 Vienna, Austria; (L.P.); (M.B.S.)
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China; (F.T.); (R.L.)
- Key Laboratory of Innovation Drug and Efficient Energy-Saving Pharmaceutical Equipment, Jiangxi University of Chinese Medicine, Nanchang 330004, China
- Correspondence: (F.S.); (R.G.)
| | - Layla Panahipour
- Department of Oral Biology, Medical University of Vienna, 1090 Vienna, Austria; (L.P.); (M.B.S.)
| | - Mariane Beatriz Sordi
- Department of Oral Biology, Medical University of Vienna, 1090 Vienna, Austria; (L.P.); (M.B.S.)
- Department of Dentistry, Federal University of Santa Catarina, Florianopolis 88040-900, Brazil
| | - Fangrui Tang
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China; (F.T.); (R.L.)
| | - Ronghua Liu
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China; (F.T.); (R.L.)
| | - Reinhard Gruber
- Department of Oral Biology, Medical University of Vienna, 1090 Vienna, Austria; (L.P.); (M.B.S.)
- Department of Periodontology, School of Dental Medicine, University of Bern, 3012 Bern, Switzerland
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria
- Correspondence: (F.S.); (R.G.)
| |
Collapse
|
64
|
Li H, Xu J, Hu J, Hu Q, Fang X, Sun ZJ, Xu Z, Zhang L. Sustained release of chlorogenic acid-loaded nanomicelles alleviates bone loss in mouse periodontitis. Biomater Sci 2022; 10:5583-5595. [DOI: 10.1039/d2bm01099b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Abstract Periodontitis is a prevalent chronic inflammatory disease that destroys the periodontal supporting tissues, impinges on oral health, and is correlative with an increased risk of systemic disease. Currently, the...
Collapse
|
65
|
Wang Y, Huang M, Xu W, Li F, Ma C, Tang X. Calcitriol-enhanced autophagy in gingival epithelium attenuates periodontal inflammation in rats with type 2 diabetes mellitus. Front Endocrinol (Lausanne) 2022; 13:1051374. [PMID: 36704029 PMCID: PMC9872194 DOI: 10.3389/fendo.2022.1051374] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 12/12/2022] [Indexed: 01/11/2023] Open
Abstract
Type 2 diabetes mellitus (T2DM)-associated periodontitis is a common disease with high prevalence, associated with persistent infection and complicated manifestations. Calcitriol (1 alpha, 25-dihydroxyvitamin D3, 1,25D) is the active form of vitamin D that plays a protective role in immune regulation, bone metabolism, and inflammatory response. In this study, we constructed a T2DM model in rats by combining a high-fat diet with low-dose streptozotocin. The periodontitis model in rats was developed by ligation and Porphyromonas gingivalis (ATCC 33277) inoculation. Rats were randomly divided into five groups: non-diabetic blank, diabetic blank, diabetes with calcitriol treatment, diabetes with 3-methyladenine (3-MA) treatment, or diabetes with calcitriol and 3-MA treatment. The diabetic rats exhibited an intense inflammatory response and decreased autophagy compared with the non-diabetic rats. Intraperitoneal injection of calcitriol and autophagy inhibitor (3-MA) allowed us to explore the effect of calcitriol on inflammation in the gingival epithelium and the role of autophagy in this process. Treatment with calcitriol resulted in the decreased expression of NFκB-p65, p62/SQSTM1 and inflammatory response and increased expression of LC3-II/LC3-I. Application of 3-MA significantly suppressed autophagy, which was apparently retrieved by calcitriol. Antibacterial peptide (LL-37) is the only antimicrobial peptide in the cathelicidin family that is found in the human body, and it exhibits a broad spectrum of antibacterial activity and regulates the immune system. In the present study, our findings indicated that calcitriol-enhanced autophagy may attenuated periodontitis and the decrease of LL-37 was rescued by calcitriol treatment in the gingival epithelial cells of T2DM rats. Our study provides evidence for the application of calcitriol as an adjunctive treatment for T2DM-associated periodontitis.
Collapse
|
66
|
The Receptor AT1 Appears to Be Important for the Maintenance of Bone Mass and AT2 Receptor Function in Periodontal Bone Loss Appears to Be Regulated by AT1 Receptor. Int J Mol Sci 2021; 22:ijms222312849. [PMID: 34884653 PMCID: PMC8657877 DOI: 10.3390/ijms222312849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/09/2021] [Accepted: 11/10/2021] [Indexed: 11/24/2022] Open
Abstract
A large number of experimental studies has demonstrated that angiotensin II (Ang II) is involved in key events of the inflammatory process. This study aimed to evaluate the role of Ang II type 1 (AT1) and Ang II type 2 (AT2) receptors on periodontitis. Methods: Experimental periodontitis was induced by placing a 5.0 nylon thread ligature around the second upper left molar of AT1 mice, no-ligature or ligature (AT1-NL and AT1-L), AT2 (AT2-NL or AT2-L) and wild type (WT-NL or L). Alveolar bone loss was scanned using Micro-CT. Cytokines, peptides and enzymes were analyzed from gingival tissues by Elisa and RT-PCR. Results: The blockade of AT1 receptor resulted in bone loss, even in healthy animals. Ang II receptor blockades did not prevent linear bone loss. Ang II and Ang 1-7 levels were significantly increased in the AT2-L (p < 0.01) group compared to AT2-NL and AT1-L. The genic expression of the Mas receptor was significantly increased in WT-L and AT2-L compared to (WT-NL and AT2-NL, respectively) and in AT1-L. Conclusions: Our data suggest that the receptor AT1 appears to be important for the maintenance of bone mass. AT2 receptor molecular function in periodontitis appears to be regulated by AT1.
Collapse
|