51
|
Kupnik K, Primožič M, Kokol V, Leitgeb M. Nanocellulose in Drug Delivery and Antimicrobially Active Materials. Polymers (Basel) 2020; 12:E2825. [PMID: 33261198 PMCID: PMC7760654 DOI: 10.3390/polym12122825] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 11/25/2020] [Accepted: 11/26/2020] [Indexed: 12/22/2022] Open
Abstract
In recent years, nanocellulose (NC) has also attracted a great deal of attention in drug delivery systems due to its unique physical properties, specific surface area, low risk of cytotoxicity, and excellent biological properties. This review is focused on nanocellulose based systems acting as carriers to be used in drug or antimicrobial delivery by providing different but controlled and sustained release of drugs or antimicrobial agents, respectively, thus showing potential for different routes of applications and administration. Microorganisms are increasingly resistant to antibiotics, and because, generally, the used metal or metal oxide nanoparticles at some concentration have toxic effects, more research has focused on finding biocompatible antimicrobial agents that have been obtained from natural sources. Our review contains the latest research from the last five years that tested nanocellulose-based materials in the field of drug delivery and antimicrobial activity.
Collapse
Affiliation(s)
- Kaja Kupnik
- Laboratory for Separation Processes and Product Design, Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova ulica 17, SI-2000 Maribor, Slovenia; (K.K.); (M.P.)
- Faculty of Mechanical Engineering, University of Maribor, Smetanova ulica 17, SI-2000 Maribor, Slovenia;
| | - Mateja Primožič
- Laboratory for Separation Processes and Product Design, Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova ulica 17, SI-2000 Maribor, Slovenia; (K.K.); (M.P.)
| | - Vanja Kokol
- Faculty of Mechanical Engineering, University of Maribor, Smetanova ulica 17, SI-2000 Maribor, Slovenia;
| | - Maja Leitgeb
- Laboratory for Separation Processes and Product Design, Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova ulica 17, SI-2000 Maribor, Slovenia; (K.K.); (M.P.)
- Faculty of Medicine, University of Maribor, Taborska ulica 8, SI-2000 Maribor, Slovenia
| |
Collapse
|
52
|
Antibacterial Bio-Based Polymers for Cranio-Maxillofacial Regeneration Applications. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10238371] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Cranio-maxillofacial structure is a region of particular interest in the field of regenerative medicine due to both its anatomical complexity and the numerous abnormalities affecting this area. However, this anatomical complexity is what makes possible the coexistence of different microbial ecosystems in the oral cavity and the maxillofacial region, contributing to the increased risk of bacterial infections. In this regard, different materials have been used for their application in this field. These materials can be obtained from natural and renewable feedstocks, or by synthetic routes with desired mechanical properties, biocompatibility and antimicrobial activity. Hence, in this review, we have focused on bio-based polymers which, by their own nature, by chemical modifications of their structure, or by their combination with other elements, provide a useful antibacterial activity as well as the suitable conditions for cranio-maxillofacial tissue regeneration. This approach has not been reviewed previously, and we have specifically arranged the content of this article according to the resulting material and its corresponding application; we review guided bone regeneration membranes, bone cements and devices and scaffolds for both soft and hard maxillofacial tissue regeneration, including hybrid scaffolds, dental implants, hydrogels and composites.
Collapse
|
53
|
Antibacterial efficiency of silver nanoparticles-loaded locust bean gum/polyvinyl alcohol hydrogels. Polym Bull (Berl) 2020. [DOI: 10.1007/s00289-020-03418-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
54
|
Cao C, Wang Y, Zheng S, Zhang J, Li W, Li B, Guo R, Yu J. Poly (butylene adipate-co-terephthalate)/titanium dioxide/silver composite biofilms for food packaging application. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109874] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
55
|
Synthesis of bio-based polymacrolactones with pendant eugenol moieties as novel antimicrobial thermoplastic materials. REACT FUNCT POLYM 2020. [DOI: 10.1016/j.reactfunctpolym.2020.104714] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
56
|
Litchfield SG, Schulz KG, Kelaher BP. The influence of plastic pollution and ocean change on detrital decomposition. MARINE POLLUTION BULLETIN 2020; 158:111354. [PMID: 32753168 DOI: 10.1016/j.marpolbul.2020.111354] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 06/04/2020] [Accepted: 06/04/2020] [Indexed: 06/11/2023]
Abstract
Plastic pollution and ocean change have mostly been assessed separately, missing potential interactions that either enhance or reduce future impacts on ecosystem processes. Here, we used manipulative experiments with outdoor mesocosms to test hypotheses about the interactive effects of plastic pollution, ocean warming and acidification on macrophyte detrital decomposition. These experiments focused on detritus from kelp, Ecklonia radiata, and eelgrass, Zostera muelleri, and included crossed treatments of (i) no, low and high plastic pollution, (ii) current/future ocean temperatures, and (iii) ambient/future ocean partial pressure of carbon dioxide (pCO2). High levels of plastic pollution significantly reduced the decomposition rate of kelp and eelgrass by approximately 27% and 36% in comparison to controls respectively. Plastic pollution also significantly slowed the nitrogen liberation from seagrass and kelp detritus. Higher seawater temperatures significantly increased the decomposition rate of kelp and eelgrass by 12% and 5% over current conditions, respectively. Higher seawater temperatures were also found to reduce the nitrogen liberation in eelgrass. In contrast, ocean acidification did not significantly influence the rate of macrophyte decomposition or nutrient liberation. Overall, our results show how detrital processes might respond to increasing plastic pollution and ocean temperatures, which has implications for detrital-driven secondary productivity, nutrient dynamics and carbon cycling.
Collapse
Affiliation(s)
- Sebastian G Litchfield
- National Marine Science Centre and Marine Ecology Research Centre, Southern Cross University, PO Box 4321, Coffs Harbour, NSW 2450, Australia.
| | - Kai G Schulz
- Centre for Coastal Biogeochemistry and School of Environment, Science and Engineering, Southern Cross University, PO Box 157, East Lismore, NSW 2480, Australia
| | - Brendan P Kelaher
- National Marine Science Centre and Marine Ecology Research Centre, Southern Cross University, PO Box 4321, Coffs Harbour, NSW 2450, Australia
| |
Collapse
|
57
|
Blachechen TS, Petri DFS. Physicochemical and antimicrobial properties of
in situ
crosslinked alginate/hydroxypropyl methylcellulose/ε‐polylysine films. J Appl Polym Sci 2020. [DOI: 10.1002/app.48832] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Tatiana Schafranski Blachechen
- Department of Fundamental ChemistryInstitute of Chemistry, University of São Paulo, Avenue Prof. Lineu Prestes 748, 05508‐000 São Paulo 55‐11‐30919154 Brazil
| | - Denise Freitas Siqueira Petri
- Department of Fundamental ChemistryInstitute of Chemistry, University of São Paulo, Avenue Prof. Lineu Prestes 748, 05508‐000 São Paulo 55‐11‐30919154 Brazil
| |
Collapse
|
58
|
Abstract
The objective of the present study is the valorization of natural resources and the recycling of vegetal wastes by converting them into novel plasmonic bio-active hybrids. Thus, a “green” approach was used to design pectin-coated bio-nanosilver. Silver nanoparticles were generated from two common garden herbs (Mentha piperita and Amaranthus retroflexus), and pectin was extracted from lemon peels. The samples were characterized by the following methods: Ultraviolet–visible (UV-Vis) absorption spectroscopy, Fourier Transform Infrared (FT-IR), X-ray Diffraction (XRD), X-ray Photoelectron Spectroscopy (XPS), dynamic light scattering (DLS), Atomic Force Microscopy (AFM), Scanning Electron Microscopy (SEM)–Energy-dispersive X-ray Spectroscopy (EDX), and zeta potential measurements. Microscopic investigations revealed the spherical shape and the nano-scale size of the prepared biohybrids. Their bioperformances were checked in terms of antioxidant and antibacterial activity. The developed plasmonic materials exhibited a strong ability to scavenge short-life (96.1% ÷ 98.7%) and long-life (39.1% ÷ 91%) free radicals. Microbiological analyses demonstrated an impressive antibacterial effectiveness of pectin-based hybrids against Escherichia coli. The results are promising, and the obtained biomaterials could be used in many bio-applications, especially as antioxidant and antimicrobial biocoatings.
Collapse
|
59
|
Li F, Zhang C, Weng Y, Diao X, Zhou Y, Song X. Enhancement of Gas Barrier Properties of Graphene Oxide/Poly (Lactic Acid) Films Using a Solvent-free Method. MATERIALS 2020; 13:ma13133024. [PMID: 32640688 PMCID: PMC7372362 DOI: 10.3390/ma13133024] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 06/28/2020] [Accepted: 07/02/2020] [Indexed: 11/23/2022]
Abstract
Graphene oxide(GO)/polylactic acid (PLA) nanocomposite, prepared using a solvent-free melt mixing processing, is investigated as a potential oxygen barrier packaging film in this work. In order to disperse GO homogeneously in PLA matrix, hydrophobic silane coupling agent, i.e., γ-(2,3-epoxypropoxy)propyltrimethoxysilane (KH560), is used to modify the graphene oxide sheets. The modified GO is able to be well bonded to the PLA due to the formation of covalent bonds between the epoxy groups of KH560 and the carboxyl and hydroxyl terminal groups of PLA. Furthermore, the thermal stability of GO is enhanced due to the long alkyl side chain of KH560, which could also increase the crystallinity of PLA. As a result, the crystallinity of PLA is significantly improved because of the linear KH560 chains, which can act as nucleating agents to improve the crystallization. The KH560-GO helps to reduce the O2 permeability of KH560-GO/PLA composite films via a dual-action mechanism: (1) providing physical barrier due to their native barrier properties, and (2) by resulting in higher degree of crystallinity. The as-prepared KH560-GO0.75/PLA is able to exhibit ca. 33% and ca. 13% decrease in the PO2 than the neat PLA and GO0.75/PLA film, respectively. Finally, the mechanical properties and impact fractured surfaces indicate that the increase in the tensile strength and elongation at break value of KH560-GO/PLA are due to the strong interfacial adhesion and the strong bonding between the epoxy group of KH560-GO and hydroxyl and carboxyl acid terminal groups of PLA matrix.
Collapse
Affiliation(s)
- Fenfen Li
- College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, China;
| | - Caili Zhang
- College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, China;
- Beijing Key Laboratory of Quality Evaluation Technology for Hygiene and Safety of Plastics, Beijing Technology and Business University, Beijing 100048, China; (X.D.); (Y.Z.); (X.S.)
- Correspondence: (C.Z.); (Y.W.)
| | - Yunxuan Weng
- College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, China;
- Beijing Key Laboratory of Quality Evaluation Technology for Hygiene and Safety of Plastics, Beijing Technology and Business University, Beijing 100048, China; (X.D.); (Y.Z.); (X.S.)
- Correspondence: (C.Z.); (Y.W.)
| | - Xiaoqian Diao
- Beijing Key Laboratory of Quality Evaluation Technology for Hygiene and Safety of Plastics, Beijing Technology and Business University, Beijing 100048, China; (X.D.); (Y.Z.); (X.S.)
| | - Yingxin Zhou
- Beijing Key Laboratory of Quality Evaluation Technology for Hygiene and Safety of Plastics, Beijing Technology and Business University, Beijing 100048, China; (X.D.); (Y.Z.); (X.S.)
| | - Xinyu Song
- Beijing Key Laboratory of Quality Evaluation Technology for Hygiene and Safety of Plastics, Beijing Technology and Business University, Beijing 100048, China; (X.D.); (Y.Z.); (X.S.)
| |
Collapse
|
60
|
Chang R, Lata R, Rohindra D. Study of mechanical, enzymatic degradation and antimicrobial properties of poly(butylene succinate)/pine-resin blends. Polym Bull (Berl) 2020. [DOI: 10.1007/s00289-019-02938-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
61
|
Clarizia G, Bernardo P, Carroccio SC, Ussia M, Restuccia C, Parafati L, Calarco A, Zampino D. Heterogenized Imidazolium-Based Ionic Liquids in Pebax ®Rnew. Thermal, Gas Transport and Antimicrobial Properties. Polymers (Basel) 2020; 12:E1419. [PMID: 32630521 PMCID: PMC7361949 DOI: 10.3390/polym12061419] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 06/19/2020] [Accepted: 06/23/2020] [Indexed: 01/17/2023] Open
Abstract
Imidazolium-based ionic liquids (ILs) have interesting antimicrobial activity and their inclusion in a flexible film is ideal to take advantage of their properties in practical applications. Poly(ether-block-amide) (Pebax®Rnew) films were prepared by solution casting, loading two synthetized ILs (1-hexadecyl-3-methylimidazolium dimethyl-5-sulfoisophthalate [Hdmim][DMSIP], IL1 and 1-octyloximethyl-3-methylimidazolium hexafluorophosphate [OOMmim][PF6], IL2) up to 5 wt.%. The ILs were characterized by 1H NMR and MALDI-TOF spectroscopy. The films were investigated for miscibility, morphology, wettability, spectral properties and gas transport. The films display a good thermal stability (>200 °C). Differential scanning calorimetry (DSC) proves phase separation in the blends, that is consistent with FTIR analysis and with the island-like surface morphology observed in the micrographs. Gas permeability tests revealed that the IL-loaded films are dense and poreless, keeping the selectivity of the polymer matrix with a somewhat lessened permeability owing to the impermeable ILs crystals. The film antimicrobial activity, evaluated against Gram-negative and Gram-positive bacterial strains, was correlated to the structure of the incorporated ILs. The smaller IL2 salt did not modify the hydrophobic nature of the neat polymer and was readily released from the films. Instead, IL1, having a longer alkyl chain in the cation, provided a promising antimicrobial activity with a good combination of hydrophilicity, permeability and thermal stability.
Collapse
Affiliation(s)
- Gabriele Clarizia
- Institute on Membrane Technology, ITM-CNR (c/o University of Calabria), Via P. Bucci 17/C, 87036 Rende (CS), Italy;
| | - Paola Bernardo
- Institute on Membrane Technology, ITM-CNR (c/o University of Calabria), Via P. Bucci 17/C, 87036 Rende (CS), Italy;
| | - Sabrina C. Carroccio
- Institute of Polymers, Composites and Biomaterials, IPCB-CNR, via P. Gaifami 18, 95126 Catania, Italy;
- Institute for Microelectronics and Microsystems, IMM-CNR (c/o University of Catania), Via Santa Sofia 64, 95123 Catania, Italy;
| | - Martina Ussia
- Institute for Microelectronics and Microsystems, IMM-CNR (c/o University of Catania), Via Santa Sofia 64, 95123 Catania, Italy;
| | - Cristina Restuccia
- Department of Agriculture, Food and Environment (Di3A), University of Catania, Via Santa Sofia 100, 95123 Catania, Italy; (C.R.); (L.P.)
| | - Lucia Parafati
- Department of Agriculture, Food and Environment (Di3A), University of Catania, Via Santa Sofia 100, 95123 Catania, Italy; (C.R.); (L.P.)
| | - Anna Calarco
- Research Institute on Terrestrial Ecosystems, IRET-CNR, Via P. Castellino 111, 80131 Napoli, Italy;
| | - Daniela Zampino
- Institute of Polymers, Composites and Biomaterials, IPCB-CNR, via P. Gaifami 18, 95126 Catania, Italy;
| |
Collapse
|
62
|
Sharma S, Chakraborty N, Jha D, Gautam HK, Roy I. Robust dual modality antibacterial action using silver-Prussian blue nanoscale coordination polymer. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 113:110982. [PMID: 32487399 DOI: 10.1016/j.msec.2020.110982] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 03/28/2020] [Accepted: 04/17/2020] [Indexed: 12/24/2022]
Abstract
We report the synthesis of novel silver-doped Prussian blue nanoscale coordination polymers (SPB NCPs), for dual modality photothermal ablation and oxidative toxicity in bacterial cells. The comparison of SPB NCPs (having Fe-CN-Ag bonds) with the conventionally used Prussian blue nanoscale coordination polymers (PB NCPs, having Fe-CN-Fe bonds) was investigated in terms of their physical and therapeutic properties. It was observed that both PB and SPB NCPs have similar physical dimensions, crystalline phase and optical properties. Both these NCPs showed robust photothermal effect by heat generation (hyperthermia) upon exposure to red laser light. However, among the two, only SPB NCP showed oxidase-like activity by generating H2O2 in aqueous medium, presumably due to its silver content. In vitro antibacterial studies revealed that the SPB NCPs, but not PB NCPs, show inherent toxicity towards bacteria with an IC50 value close to 2.5 μg/ml. It can be inferred that this toxicity is oxidative in nature, as a result of the oxidase-like behaviour shown by SPB NCPs. Furthermore, light activation resulted in substantial additional antibacterial effect (photothermal toxicity) in bacterial cells treated with SPB NCPs. In comparison, marginal additional photothermal toxicity was observed in PB NCP-treated bacteria. Thus, we conclude that the combination of dual modality oxidative and photothermal toxicities demonstrated by SPB NCPs, but not by control PB NCPs, makes the former promising antibacterial agents at low dosages.
Collapse
Affiliation(s)
- Shalini Sharma
- Department of Chemistry, University of Delhi, Delhi, 110007, India
| | | | - Diksha Jha
- Institute of Genomics and Integrative Biology, Sukhdev Vihar, Delhi, 110025, India
| | - Hemant Kumar Gautam
- Institute of Genomics and Integrative Biology, Sukhdev Vihar, Delhi, 110025, India
| | - Indrajit Roy
- Department of Chemistry, University of Delhi, Delhi, 110007, India.
| |
Collapse
|
63
|
Antioxidant and antimicrobial applications of biopolymers: A review. Food Res Int 2020; 136:109327. [PMID: 32846526 DOI: 10.1016/j.foodres.2020.109327] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 05/09/2020] [Accepted: 05/16/2020] [Indexed: 12/26/2022]
Abstract
Biopolymers have generated mounting interest among researchers and industrialists over the recent past. Rising consciousness on the use of eco-friendly materials as green alternatives for fossil-based biopolymers has shifted the research focus towards biopolymers. Advances in technologies have opened up new windows of opportunities to explore the potential of biopolymers. In this context, this review presents a critique on applications of biopolymers in relation to antioxidant and antimicrobial activities. Some biopolymers are reported to contain inherent antioxidant and antimicrobial properties, whereas, some biopolymers, which do not possess such inherent properties, are used as carriers for other biopolymers or additives having these properties. Modifications are often performed in order to improve the properties of biopolymers to suit them for different applications. This review aims at presenting an overview on recent advances in the use of biopolymers with special reference to their antioxidant and antimicrobial applications in various fields.
Collapse
|
64
|
Biological properties of novel polysuccinimide derivatives synthesized via quaternary ammonium grafting. Eur Polym J 2020. [DOI: 10.1016/j.eurpolymj.2020.109705] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
65
|
Mucoadhesive Chitosan Delivery System with Chelidonii Herba Lyophilized Extract as a Promising Strategy for Vaginitis Treatment. J Clin Med 2020; 9:jcm9041208. [PMID: 32331437 PMCID: PMC7230236 DOI: 10.3390/jcm9041208] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 04/10/2020] [Accepted: 04/17/2020] [Indexed: 12/11/2022] Open
Abstract
Chelidonium majus (also known as celandine) contains pharmacologically active compounds such as isoquinoline alkaloids (e.g., chelidonine, sanguinarine), flavonoids, saponins, carotenoids, and organic acids. Due to the presence of isoquinoline alkaloids, Chelidonii herba extracts are widely used as an antibacterial, antifungal, antiviral (including HSV-1 and HIV-1), and anti-inflammatory agent in the treatment of various diseases, while chitosan is a biocompatible and biodegradable carrier with valuable properties for mucoadhesive formulations preparation. Our work aimed to prepare mucoadhesive vaginal drug delivery systems composed of Chelidonii herba lyophilized extract and chitosan as an effective way to treat vaginitis. The pharmacological safety of usage of isoquinoline alkaloids, based on MTT test, were evaluated for the maximum doses 36.34 ± 0.29 µg/mL and 0.89 ± 1.16 µg/mL for chelidonine and sanguinarine, respectively. Dissolution rate profiles and permeability through artificial membranes for chelidonine and sanguinarine after their introduction into the chitosan system were studied. The low permeability for used save doses of isoquinoline alkaloids and results of microbiological studies allow confirmation that system Chelidonii herba lyophilized extract chitosan 80/500 1:1 (w/w) is a promising strategy for vaginal use. Ex vivo studies of mucoadhesive properties and evaluation of tableting features demonstrated that the formulation containing Chelidonii herba lyophilized extract (120.0 mg) with chitosan (80/500—100.0 mg) and polymer content (HPMC—100.0 mg, microcrystalline cellulose—50.0 mg, lactose monohydrate—30.0 mg and magnesium stearate—4.0 mg) is a vaginal dosage form with prolonging dissolution profile and high mucoadhesion properties (up to 4 h).
Collapse
|
66
|
Influence of Extracellular Mimicked Hierarchical Nano-Micro-Topography on the Bacteria/Abiotic Interface. Polymers (Basel) 2020; 12:polym12040828. [PMID: 32260531 PMCID: PMC7240582 DOI: 10.3390/polym12040828] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 03/31/2020] [Accepted: 04/03/2020] [Indexed: 11/29/2022] Open
Abstract
The study of interfaces between engineered surfaces and prokaryotic cells is a subject whose actual relevance has been reinforced by the current outbreaks due to unknown viruses and antibiotic-resistant bacteria. Studies aiming at the development of antibacterial surfaces are based on two pillars: surface chemistry or topographical cues. This work reports the study of only the topographic aspect by the development of thin films of polyamide, which present attractive surface chemistry for bacterial adhesion. The same chemistry with only nano- or hierarchical nano- and micro-topography that mimics the extracellular matrix is obtained by sputter-depositing the thin films onto Si and polydimethylsiloxane (PDMS), respectively. The surface average roughness of the Si-modified surfaces was around 1 nm, while the hierarchical topography presented values from 750 to 1000 nm, with wavelengths and amplitudes ranging from 15–30 µm and 1–3 µm, respectively, depending on the deposition parameters. The surface topography, wettability, surface charge, and mechanical properties were determined and related to interface performance with two Gram+ and two Gram- bacterial strains. The overall results show that surfaces with only nano-topographic features present less density of bacteria, regardless of their cell wall composition or cell shape, if the appropriate surface chemistry is present.
Collapse
|
67
|
Chalapud MC, Baümler ER, Carelli AA. Edible films based on aqueous emulsions of low-methoxyl pectin with recovered and purified sunflower waxes. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2020; 100:2675-2687. [PMID: 31997346 DOI: 10.1002/jsfa.10298] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 12/17/2019] [Accepted: 01/30/2020] [Indexed: 06/10/2023]
Abstract
BACKGROUND Edible films were obtained from aqueous emulsions prepared with low-methoxyl pectin at different concentrations (10, 20 and 30 g kg-1 ) and two sunflower wax samples recovered from two waste samples of filter cakes produced in the winterization process of sunflower oil. The two sunflower waxes samples recovered (from the normal hybrid, NSFW, and from the high-oleic hybrid, HOSFW) were added in three proportions (0.1, 0.2 and 0.3 g g-1 of pectin). Films were evaluated according to their structure, water resistance, water vapor permeability, mechanical properties and thermal behavior. RESULTS In general, good dispersion of the lipid material was observed in the cross-sections of the film. Increase in the water resistance (lower swelling index and water adsorption) was associated with a greater pectin content crosslinked with Ca2+ and the hydrophobic nature of waxes. The reduction in water vapor transfer rates was influenced by the effect of the wax addition, their fatty acid composition and their good distribution on the film. More resistant, rigid and less flexible films were obtained with lower pectin content, finding an inverse relationship between tensile strength and elongation percentage values. CONCLUSION These results evidence a promising alternative in the development of innovative strategies to valorize sunflower waxes derived from waste material. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Mayra C Chalapud
- Departamento de Ingeniería Química, Universidad Nacional del Sur, (UNS), Bahía Blanca, Argentina
- Planta Piloto de Ingeniería Química - PLAPIQUI (UNS-CONICET), Bahía Blanca, Argentina
| | - Erica R Baümler
- Departamento de Ingeniería Química, Universidad Nacional del Sur, (UNS), Bahía Blanca, Argentina
- Planta Piloto de Ingeniería Química - PLAPIQUI (UNS-CONICET), Bahía Blanca, Argentina
| | - Amalia A Carelli
- Departamento de Ingeniería Química, Universidad Nacional del Sur, (UNS), Bahía Blanca, Argentina
- Planta Piloto de Ingeniería Química - PLAPIQUI (UNS-CONICET), Bahía Blanca, Argentina
| |
Collapse
|
68
|
Zayed A, Ulber R. Fucoidans: Downstream Processes and Recent Applications. Mar Drugs 2020; 18:E170. [PMID: 32197549 PMCID: PMC7142712 DOI: 10.3390/md18030170] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 03/14/2020] [Accepted: 03/15/2020] [Indexed: 02/06/2023] Open
Abstract
Fucoidans are multifunctional marine macromolecules that are subjected to numerous and various downstream processes during their production. These processes were considered the most important abiotic factors affecting fucoidan chemical skeletons, quality, physicochemical properties, biological properties and industrial applications. Since a universal protocol for fucoidans production has not been established yet, all the currently used processes were presented and justified. The current article complements our previous articles in the fucoidans field, provides an updated overview regarding the different downstream processes, including pre-treatment, extraction, purification and enzymatic modification processes, and shows the recent non-traditional applications of fucoidans in relation to their characters.
Collapse
Affiliation(s)
- Ahmed Zayed
- Institute of Bioprocess Engineering, Technical University of Kaiserslautern, Gottlieb-Daimler-Straße 49, 67663 Kaiserslautern, Germany;
- Department of Pharmacognosy, Tanta University, College of Pharmacy, El Guish Street, Tanta 31527, Egypt
| | - Roland Ulber
- Institute of Bioprocess Engineering, Technical University of Kaiserslautern, Gottlieb-Daimler-Straße 49, 67663 Kaiserslautern, Germany;
| |
Collapse
|
69
|
Darpentigny C, Marcoux PR, Menneteau M, Michel B, Ricoul F, Jean B, Bras J, Nonglaton G. Antimicrobial Cellulose Nanofibril Porous Materials Obtained by Supercritical Impregnation of Thymol. ACS APPLIED BIO MATERIALS 2020; 3:2965-2975. [DOI: 10.1021/acsabm.0c00033] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Clémentine Darpentigny
- Univ. Grenoble Alpes, CEA, LETI, MINATEC Campus, F-38054 Grenoble, France
- Univ. Grenoble Alpes, CNRS, CERMAV, F-38000 Grenoble, France
- Univ. Grenoble Alpes, CNRS, Grenoble INP, LGP2, F-38000 Grenoble, France
| | - Pierre R. Marcoux
- Univ. Grenoble Alpes, CEA, LETI, MINATEC Campus, F-38054 Grenoble, France
| | - Mathilde Menneteau
- Univ. Grenoble Alpes, CEA, LETI, MINATEC Campus, F-38054 Grenoble, France
| | - Bastien Michel
- Univ. Grenoble Alpes, CEA, LETI, MINATEC Campus, F-38054 Grenoble, France
| | - Florence Ricoul
- Univ. Grenoble Alpes, CEA, LETI, MINATEC Campus, F-38054 Grenoble, France
| | - Bruno Jean
- Univ. Grenoble Alpes, CNRS, CERMAV, F-38000 Grenoble, France
| | - Julien Bras
- Univ. Grenoble Alpes, CNRS, Grenoble INP, LGP2, F-38000 Grenoble, France
| | | |
Collapse
|
70
|
Multifunctional PLA Blends Containing Chitosan Mediated Silver Nanoparticles: Thermal, Mechanical, Antibacterial, and Degradation Properties. NANOMATERIALS 2019; 10:nano10010022. [PMID: 31861765 PMCID: PMC7022492 DOI: 10.3390/nano10010022] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 12/13/2019] [Accepted: 12/16/2019] [Indexed: 11/20/2022]
Abstract
Poly(lactic acid) (PLA) is one of the most commonly employed synthetic biopolymers for facing plastic waste problems. Despite its numerous strengths, its inherent brittleness, low toughness, and thermal stability, as well as a relatively slow crystallization rate represent some limiting properties when packaging is its final intended application. In the present work, silver nanoparticles obtained from a facile and green synthesis method, mediated with chitosan as a reducing and stabilizing agent, have been introduced in the oligomeric lactic acid (OLA) plasticized PLA in order to obtain nanocomposites with enhanced properties to find potential application as antibacterial food packaging materials. In this way, the green character of the matrix and plasticizer was preserved by using an eco-friendly synthesis protocol of the nanofiller. The X-ray diffraction (XRD) and differential scanning calorimetry (DSC) results proved the modification of the crystalline structure as well as the crystallinity of the pristine matrix when chitosan mediated silver nanoparticles (AgCH-NPs) were present. The final effect over the thermal stability, mechanical properties, degradation under composting conditions, and antimicrobial behavior when AgCH-NPs were added to the neat plasticized PLA matrix was also investigated. The obtained results revealed interesting properties of the final nanocomposites to be applied as materials for the targeted application.
Collapse
|
71
|
Khan AM, Abid OUR, Mir S. Assessment of biological activities of chitosan Schiff base tagged with medicinal plants. Biopolymers 2019; 111:e23338. [PMID: 31696516 DOI: 10.1002/bip.23338] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Revised: 10/04/2019] [Accepted: 10/11/2019] [Indexed: 11/05/2022]
Abstract
A chitosan Schiff base with an aromatic aldehyde was synthesized and characterized by FTIR and NMR spectroscopies. Furthermore, the degree of substitution was calculated based on the ratios of the area of the proton of the imine (Aimine ) and the area of the peak of the proton of the pyranose ring (AH-2 ). The antimicrobial activities were determined against bacterial and fungal strains, as well as multiple drug-resistant (MDR) bacteria. The chitosan Schiff base was also tagged with medicinal plants, for example, Curcuma longa, Peganum harmala, Lepidium sativam, and cruciferous vegetables, and the biological activities determined against pathogenic bacterial and fungal strains. The chitosan Schiff base showed maximum zone of inhibition of 22 mm against Staphylococcus aureus with a minimum zone of inhibition of 15 mm against Bacillus cereus. The chitosan Schiff base was fused with C longa, isothiocyanates and a combined mixture of P harmala and L sativam that has shown activities against Escherichia coli with a zone of inhibition of 28, 24, and 30 mm, respectively. The Schiff base of chitosan fused with medicinal plants also showed significant inhibitory activities against MDR bacteria.
Collapse
Affiliation(s)
- Arshad Mehmood Khan
- Department of Chemistry, Hazara University, Mansehra, Pakistan.,Department of Chemistry, Government Postgraduate College Mandian, Abbottabad, Pakistan
| | | | - Sadullah Mir
- Department of Chemistry, COMSAT University, Islamabad, Abbottabad Campus-22060, KPK, Pakistan
| |
Collapse
|
72
|
Echeverría C, Muñoz-Bonilla A, Cuervo-Rodríguez R, López D, Fernández-García M. Antibacterial PLA Fibers Containing Thiazolium Groups as Wound Dressing Materials. ACS APPLIED BIO MATERIALS 2019; 2:4714-4719. [DOI: 10.1021/acsabm.9b00923] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Coro Echeverría
- Instituto de Ciencia y Tecnología de Polímeros (ICTP-CSIC), C/Juan de la Cierva 3, 28006 Madrid, Spain
- Interdisciplinary Platform for “Sustainable Plastics towards a Circular Economy” (SUSPLAST-CSIC), Madrid, Spain
| | - Alexandra Muñoz-Bonilla
- Instituto de Ciencia y Tecnología de Polímeros (ICTP-CSIC), C/Juan de la Cierva 3, 28006 Madrid, Spain
- Interdisciplinary Platform for “Sustainable Plastics towards a Circular Economy” (SUSPLAST-CSIC), Madrid, Spain
| | - Rocío Cuervo-Rodríguez
- Facultad de Ciencias Químicas (UCM), Av. Complutense s/n, Ciudad Universitaria, 28040 Madrid, Spain
| | - Daniel López
- Instituto de Ciencia y Tecnología de Polímeros (ICTP-CSIC), C/Juan de la Cierva 3, 28006 Madrid, Spain
- Interdisciplinary Platform for “Sustainable Plastics towards a Circular Economy” (SUSPLAST-CSIC), Madrid, Spain
| | - Marta Fernández-García
- Instituto de Ciencia y Tecnología de Polímeros (ICTP-CSIC), C/Juan de la Cierva 3, 28006 Madrid, Spain
- Interdisciplinary Platform for “Sustainable Plastics towards a Circular Economy” (SUSPLAST-CSIC), Madrid, Spain
| |
Collapse
|
73
|
Biocompatible Polymer Materials with Antimicrobial Properties for Preparation of Stents. NANOMATERIALS 2019; 9:nano9111548. [PMID: 31683612 PMCID: PMC6915381 DOI: 10.3390/nano9111548] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 10/15/2019] [Accepted: 10/29/2019] [Indexed: 12/17/2022]
Abstract
Biodegradable polymers are promising materials for use in medical applications such as stents. Their properties are comparable to commercially available resistant metal and polymeric stents, which have several major problems, such as stent migration and stent clogging due to microbial biofilm. Consequently, conventional stents have to be removed operatively from the patient's body, which presents a number of complications and can also endanger the patient's life. Biodegradable stents disintegrate into basic substances that decompose in the human body, and no surgery is required. This review focuses on the specific use of stents in the human body, the problems of microbial biofilm, and possibilities of preventing microbial growth by modifying polymers with antimicrobial agents.
Collapse
|
74
|
Chitosan-polycaprolactone blend sponges for management of chronic osteomyelitis: A preliminary characterization and in vitro evaluation. Int J Pharm 2019; 568:118553. [DOI: 10.1016/j.ijpharm.2019.118553] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 07/18/2019] [Accepted: 07/19/2019] [Indexed: 12/15/2022]
|
75
|
Grumezescu V, Gherasim O, Negut I, Banita S, Holban AM, Florian P, Icriverzi M, Socol G. Nanomagnetite-embedded PLGA Spheres for Multipurpose Medical Applications. MATERIALS 2019; 12:ma12162521. [PMID: 31398805 PMCID: PMC6719237 DOI: 10.3390/ma12162521] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Revised: 08/03/2019] [Accepted: 08/05/2019] [Indexed: 12/25/2022]
Abstract
We report on the synthesis and evaluation of biopolymeric spheres of poly(lactide-co-glycolide) containing different amounts of magnetite nanoparticles and Ibuprofen (PLGA-Fe3O4-IBUP), but also chitosan (PLGA-CS-Fe3O4-IBUP), to be considered as drug delivery systems. Besides morphological, structural, and compositional characterizations, the PLGA-Fe3O4-IBUP composite microspheres were subjected to drug release studies, performed both under biomimetically-simulated dynamic conditions and under external radiofrequency magnetic fields. The experimental data resulted by performing the drug release studies evidenced that PLGA-Fe3O4-IBUP microspheres with the lowest contents of Fe3O4 nanoparticles are optimal candidates for triggered drug release under external stimulation related to hyperthermia effect. The as-selected microspheres and their chitosan-containing counterparts were biologically assessed on macrophage cultures, being evaluated as biocompatible and bioactive materials that are able to promote cellular adhesion and proliferation. The composite biopolymeric spheres resulted in inhibited microbial growth and biofilm formation, as assessed against Staphylococcus aureus, Pseudomonas aeruginosa, and Candida albicans microbial strains. Significantly improved antimicrobial effects were reported in the case of chitosan-containing biomaterials, regardless of the microorganisms' type. The nanostructured composite biopolymeric spheres evidenced proper characteristics as prolonged and controlled drug release platforms for multipurpose biomedical applications.
Collapse
Affiliation(s)
- Valentina Grumezescu
- Lasers Department, National Institute for Lasers, Plasma, and Radiation Physics, 077125 Magurele, Romania.
| | - Oana Gherasim
- Lasers Department, National Institute for Lasers, Plasma, and Radiation Physics, 077125 Magurele, Romania
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, Politehnica University of Bucharest, 011061 Bucharest, Romania
| | - Irina Negut
- Lasers Department, National Institute for Lasers, Plasma, and Radiation Physics, 077125 Magurele, Romania
| | - Stefan Banita
- Lasers Department, National Institute for Lasers, Plasma, and Radiation Physics, 077125 Magurele, Romania
| | - Alina Maria Holban
- Microbiology & Immunology Department, Faculty of Biology, University of Bucharest, 77206 Bucharest, Romania
| | - Paula Florian
- Ligand-Receptor Interactions Department, Institute of Biochemistry, Romanian Academy, 060031 Bucharest, Romania
| | - Madalina Icriverzi
- Ligand-Receptor Interactions Department, Institute of Biochemistry, Romanian Academy, 060031 Bucharest, Romania
| | - Gabriel Socol
- Lasers Department, National Institute for Lasers, Plasma, and Radiation Physics, 077125 Magurele, Romania.
| |
Collapse
|
76
|
Galiano F, Mancuso R, Guzzo MG, Lucente F, Gukelberger E, Losso MA, Figoli A, Hoinkis J, Gabriele B. New Polymeric Films with Antibacterial Activity Obtained by UV-induced Copolymerization of Acryloyloxyalkyltriethylammonium Salts with 2-Hydroethyl Methacrylate. Int J Mol Sci 2019; 20:E2696. [PMID: 31159299 PMCID: PMC6600214 DOI: 10.3390/ijms20112696] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 05/29/2019] [Accepted: 05/30/2019] [Indexed: 11/16/2022] Open
Abstract
New polymeric films with antibacterial activity have been prepared, by simple UV-induced copolymerization of readily available ω-(acryloyloxy)-N,N,N-triethylalcan-1-aminium bromides (or acryloyloxyalkyltriethylammonium bromides, AATEABs) with commercially available 2-hydroethyl methacrylate (HEMA), at different relative amounts. In particular, the antibacterial activity of polymeric films derived from 11-(acryloyloxy)-N,N,N-triethylundecan-1-aminium bromide (or acryloyloxyundecyltriethylammonium bromide, AUTEAB; bearing a C-11 alkyl chain linker between the acrylate polymerization function and the quaternary ammonium moiety) and 12-(acryloyloxy)-N,N,N-triethyldodecan-1-aminium bromide (or acryloyldodecyltriethylammonium bromide, ADTEB, bearing a C-12 alkyl chain linker) has been assessed against Gram-negative Escherichia Coli and Gram-positive Staphylococcus aureus cells. The results obtained have shown a clear concentration-dependent activity against both bacterial strains, the films obtained from homopolymerization of pure AUTEAB and ADTEAB being the most effective. Moreover, ADTEAB-based films showed a higher antibacterial activity with respect to the AUTEAB-based ones. Interestingly, however, both types of films presented a significant activity not only toward Gram-positive S. aureus, but also toward Gram-negative E. Coli cells.
Collapse
Affiliation(s)
- Francesco Galiano
- Institute on Membrane Technologies (ITM-CNR), Via Pietro Bucci 17/C, 87036 Arcavacata di Rende (CS), Italy.
| | - Raffaella Mancuso
- Laboratory of Industrial and Synthetic Organic Chemistry (LISOC), Department of Chemistry and Chemical Technologies, University of Calabria, 87036 Arcavacata di Rende (CS), Italy.
| | - Maria Grazia Guzzo
- Department of Biology, Ecology, and Earth Sciences (DiBEST), University of Calabria, 87036 Arcavacata di Rende (CS), Italy.
| | - Fabrizio Lucente
- Department of Biology, Ecology, and Earth Sciences (DiBEST), University of Calabria, 87036 Arcavacata di Rende (CS), Italy.
| | - Ephraim Gukelberger
- Laboratory of Industrial and Synthetic Organic Chemistry (LISOC), Department of Chemistry and Chemical Technologies, University of Calabria, 87036 Arcavacata di Rende (CS), Italy.
- University of Applied Sciences Karlsruhe, Center of Applied Research (CAR), Moltkestraße 30, 76133 Karlsruhe, Germany.
| | - Maria Adele Losso
- Department of Biology, Ecology, and Earth Sciences (DiBEST), University of Calabria, 87036 Arcavacata di Rende (CS), Italy.
| | - Alberto Figoli
- Institute on Membrane Technologies (ITM-CNR), Via Pietro Bucci 17/C, 87036 Arcavacata di Rende (CS), Italy.
| | - Jan Hoinkis
- University of Applied Sciences Karlsruhe, Center of Applied Research (CAR), Moltkestraße 30, 76133 Karlsruhe, Germany.
| | - Bartolo Gabriele
- Laboratory of Industrial and Synthetic Organic Chemistry (LISOC), Department of Chemistry and Chemical Technologies, University of Calabria, 87036 Arcavacata di Rende (CS), Italy.
| |
Collapse
|
77
|
Chen Y, Yu L, Zhang B, Feng W, Xu M, Gao L, Liu N, Wang Q, Huang X, Li P, Huang W. Design and Synthesis of Biocompatible, Hemocompatible, and Highly Selective Antimicrobial Cationic Peptidopolysaccharides via Click Chemistry. Biomacromolecules 2019; 20:2230-2240. [PMID: 31070896 DOI: 10.1021/acs.biomac.9b00179] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Yun Chen
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 211816, P. R. China
| | - Luofeng Yu
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 211816, P. R. China
| | - Biao Zhang
- Xi’an Institute of Flexible Electronics (IFE) & Xi’an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi’an 710072, P. R. China
| | - Wei Feng
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 211816, P. R. China
| | - Miao Xu
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 211816, P. R. China
| | - Lingling Gao
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 211816, P. R. China
| | - Nian Liu
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 211816, P. R. China
| | - Qianqian Wang
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 211816, P. R. China
| | - Xiao Huang
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 211816, P. R. China
| | - Peng Li
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 211816, P. R. China
- Xi’an Institute of Flexible Electronics (IFE) & Xi’an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi’an 710072, P. R. China
| | - Wei Huang
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 211816, P. R. China
- Xi’an Institute of Flexible Electronics (IFE) & Xi’an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi’an 710072, P. R. China
| |
Collapse
|
78
|
Polymeric Materials: Surfaces, Interfaces and Bioapplications. MATERIALS 2019; 12:ma12081312. [PMID: 31013649 PMCID: PMC6515436 DOI: 10.3390/ma12081312] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 04/19/2019] [Accepted: 04/21/2019] [Indexed: 01/02/2023]
Abstract
This special issue “Polymeric Materials: Surfaces, Interfaces and Bioapplications” was proposed to cover all the aspects related to recent innovations on surfaces, interfaces and bioapplications of polymeric materials. The collected articles show the advances in polymeric materials, which have tremendous applications in agricultural films, food packaging, dental restoration, antimicrobial systems and tissue engineering. We hope that readers will be able to enjoy highly relevant topics that are related to polymers. Therefore, we hope to prove that plastics can be a solution and not a problem.
Collapse
|
79
|
Wang Q, Wang L, Gao L, Yu L, Feng W, Liu N, Xu M, Li X, Li P, Huang W. Stable and self-healable LbL coating with antibiofilm efficacy based on alkylated polyethyleneimine micelles. J Mater Chem B 2019. [DOI: 10.1039/c9tb00498j] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
An antibacterial and self-healing coating was fabricated via LbL assembly based on N-decyl PEI (DPEI) micelles.
Collapse
|