51
|
Ong KS, Mawang CI, Daniel-Jambun D, Lim YY, Lee SM. Current anti-biofilm strategies and potential of antioxidants in biofilm control. Expert Rev Anti Infect Ther 2018; 16:855-864. [PMID: 30308132 DOI: 10.1080/14787210.2018.1535898] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
INTRODUCTION Biofilm formation is a strategy for microorganisms to adapt and survive in hostile environments. Microorganisms that are able to produce biofilms are currently recognized as a threat to human health. Areas covered: Many strategies have been employed to eradicate biofilms, but several drawbacks from these methods had subsequently raised concerns on the need for alternative approaches to effectively prevent biofilm formation. One of the main mechanisms that drives a microorganism to transit from a planktonic to a biofilm-sessile state, is oxidative stress. Chemical agents that could target oxidative stress regulators, for instance antioxidants, could therefore be used to treat biofilm-associated infections. Expert commentary: The focus of this review is to summarize the function and limitation of the current anti-biofilm strategies and will propose the use of antioxidants as an alternative method to treat, prevent and eradicate biofilms. Studies have shown that water-soluble and lipid-soluble antioxidants can reduce and prevent biofilm formation, by influencing the expression of genes associated with oxidative stress. Further in vivo work should be conducted to ensure the efficacy of these antioxidants in a biological environment. Nevertheless, antioxidants are promising anti-biofilm agents, and thus is a potential solution for biofilm-associated infections in the future.
Collapse
Affiliation(s)
- Kuan Shion Ong
- a School of Science , Monash University Malaysia , Bandar Sunway , Selangor , Malaysia.,b Tropical Medicine and Biology Multidisciplinary Platform , Monash University Malaysia , Bandar Sunway , Selangor , Malaysia
| | | | | | - Yau Yan Lim
- a School of Science , Monash University Malaysia , Bandar Sunway , Selangor , Malaysia
| | - Sui Mae Lee
- a School of Science , Monash University Malaysia , Bandar Sunway , Selangor , Malaysia.,b Tropical Medicine and Biology Multidisciplinary Platform , Monash University Malaysia , Bandar Sunway , Selangor , Malaysia
| |
Collapse
|
52
|
Wang Z, Duan Y, Duan Y. Application of polydopamine in tumor targeted drug delivery system and its drug release behavior. J Control Release 2018; 290:56-74. [PMID: 30312718 DOI: 10.1016/j.jconrel.2018.10.009] [Citation(s) in RCA: 133] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Revised: 10/08/2018] [Accepted: 10/08/2018] [Indexed: 12/13/2022]
Abstract
Inspired by the bionics of marine mussels, polydopamine (PDA), a new polymer with unique physicochemical properties was discovered. Due to its simple preparation, good biocompatibility, unique drug-loading methods, PDA has attracted tremendous attentions in field of drug delivery and imaging, and the combination of chemotherapy and other therapies or diagnostic methods, such as photothermotherapy (PTT), photoacoustic imaging (PAI), magnetic resonance imaging (MRI), etc. As an excellent drug carrier in tumor targeted drug delivery system, the drug release behavior of drug-loaded PDA-based nanoparticles is also an important factor to be considered in the establishment of drug delivery systems. Therefore, the purpose of this review is to provide a comprehensive overview of the various applications of PDA in tumor targeted drug delivery systems and to gain insight into the release behavior of the drug-loaded PDA-based nanocarriers. A sufficient understanding and discussion of these aspects is expected to provide a better way to design more rational and effective PDA-based tumor nano-targeted delivery systems. Apart from this, the prospects for the future application of PDA in this field and some unique insights are listed at the end of the article.
Collapse
Affiliation(s)
- Zhe Wang
- Xiangya International Academy of Translational Medicine at Central South University, Changsha, Hunan 410013, China.
| | - Yaou Duan
- Moores Cancer Center and Institute for Genomic Medicine, University of California, San Diego, CA 92093, USA
| | - Yanwen Duan
- Xiangya International Academy of Translational Medicine at Central South University, Changsha, Hunan 410013, China; Hunan Engineering Research Center of Combinatorial Biosynthesis and Natural Product Drug Discovery, Changsha, Hunan 410011, China; National Engineering Research Center of Combinatorial Biosynthesis for Drug Discovery, Changsha, Hunan 410011, China.
| |
Collapse
|
53
|
Kwon NK, Kim H, Han IK, Shin TJ, Lee HW, Park J, Kim SY. Enhanced Mechanical Properties of Polymer Nanocomposites Using Dopamine-Modified Polymers at Nanoparticle Surfaces in Very Low Molecular Weight Polymers. ACS Macro Lett 2018; 7:962-967. [PMID: 35650973 DOI: 10.1021/acsmacrolett.8b00475] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
While incorporation of nanoparticles in a polymer matrix generally enhances the physical properties, effective control of the nanoparticle/polymer interface is often challenging. Here, we report a dramatic enhancement of the mechanical properties of polymer nanocomposites (PNCs) using a simple physical grafting method. The PNC consists of low molecular weight poly(ethylene glycol) (PEG) and silica nanoparticles whose surfaces are modified with dopamine-modified PEG (DOPA-mPEG) brush polymers. With DOPA-mPEG grafting, the nanoparticle surface can be readily altered, and the shear modulus of the PNC is increased by a factor of 105 at an appropriate surface grafting density. The detailed microstructure and mechanical properties are examined with small-angle X-ray scattering (SAXS) and oscillatory rheometry experiments. The attractive interactions between particles induced by DOPA-mPEG grafting dramatically improve the mechanical properties of PNCs even in an unentangled polymer matrix, which shows a much higher shear modulus than that of a highly entangled polymer matrix.
Collapse
|
54
|
Moulay S. Recent Trends in Mussel-Inspired Catechol-Containing Polymers (A Review). ACTA ACUST UNITED AC 2018. [DOI: 10.13005/ojc/340301] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Syntheses and applications of mussel-inspired polymeric materials have gained a foothold in research in recent years. Mussel-inspired chemistry coupled to Michael addition and Schiff’s base reactions was the key success for this intensive research. Unequivocally, The basic building brick of these materials is catechol-containing moiety, namely, 3,4-dihydroxyphenyl-L-alanine (L-DOPA or DOPA) and dopamine (DA). These catechol-based units within the chemical structure of the material ensure chiefly its adhesive characteristic to adherends of different natures. The newly-made catechol-bearing polymeric materials exhibit unique features, implying their importance in several uses and applications. Technology advent is being advantaged with these holdfast mussel protein-like materials. This review sheds light into the recent advances of such mussel-inspired materials for their adhesion capacity to several substrata of different natures, and for their applications mainly in antifouling coatings and nanoparticles technology.
Collapse
Affiliation(s)
- Saad Moulay
- Molecular and Macromolecular Chemistry-Physics Laboratory, Department of Process Engineering, Faculty of Technology, Saâd Dahlab University of Blida, B.P. 270, Soumâa Road, 09000, Blida, Algeria
| |
Collapse
|
55
|
Peng X, Peng Y, Han B, Liu W, Zhang F, Linhardt RJ. IO4−-stimulated crosslinking of catechol-conjugated hydroxyethyl chitosan as a tissue adhesive. J Biomed Mater Res B Appl Biomater 2018; 107:582-593. [DOI: 10.1002/jbm.b.34150] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 02/26/2018] [Accepted: 04/17/2018] [Indexed: 12/21/2022]
Affiliation(s)
- Xiaoting Peng
- College of Marine Life Sciences, Ocean University of China; Qingdao China
| | - Yanfei Peng
- College of Marine Life Sciences, Ocean University of China; Qingdao China
| | - Baoqin Han
- College of Marine Life Sciences, Ocean University of China; Qingdao China
| | - Wanshun Liu
- College of Marine Life Sciences, Ocean University of China; Qingdao China
| | - Fuming Zhang
- Department of Chemistry and Chemical Biology; Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute; Troy New York 12180
- Department of Chemical and Biological Engineering; Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute; Troy New York 12180
- Department of Biology; Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute; Troy New York 12180
- Department of Biomedical Engineering; Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute; Troy New York 12180
| | - Robert J Linhardt
- Department of Chemistry and Chemical Biology; Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute; Troy New York 12180
- Department of Chemical and Biological Engineering; Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute; Troy New York 12180
- Department of Biology; Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute; Troy New York 12180
- Department of Biomedical Engineering; Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute; Troy New York 12180
| |
Collapse
|
56
|
Liu F, Long Y, Zhao Q, Liu X, Qiu G, Zhang L, Ling Q, Gu H. Gallol-containing homopolymers and block copolymers: ROMP synthesis and gelation properties by metal-coordination and oxidation. POLYMER 2018. [DOI: 10.1016/j.polymer.2018.04.016] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
57
|
Spaans S, Fransen PPKH, Ippel BD, de Bont DFA, Keizer HM, Bax NAM, Bouten CVC, Dankers PYW. Supramolecular surface functionalization via catechols for the improvement of cell-material interactions. Biomater Sci 2018. [PMID: 28636048 DOI: 10.1039/c7bm00407a] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Optimization of cell-material interactions is crucial for the success of synthetic biomaterials in guiding tissue regeneration. To do so, catechol chemistry is often used to introduce adhesiveness into biomaterials. Here, a supramolecular approach based on ureido-pyrimidinone (UPy) modified polymers is combined with catechol chemistry in order to achieve improved cellular adhesion onto supramolecular biomaterials. UPy-modified hydrophobic polymers with non-cell adhesive properties are developed that can be bioactivated via a modular approach using UPy-modified catechols. It is shown that successful formulation of the UPy-catechol additive with the UPy-polymer results in surfaces that induce cardiomyocyte progenitor cell adhesion, cell spreading, and preservation of cardiac specific extracellular matrix production. Hence, by functionalizing supramolecular surfaces with catechol functionalities, an adhesive supramolecular biomaterial is developed that allows for the possibility to contribute to biomaterial-based regeneration.
Collapse
Affiliation(s)
- S Spaans
- Institute for Complex Molecular Systems, Eindhoven University of Technology, De Zaale, 5612 AJ Eindhoven, The Netherlands. and Department of Biomedical Engineering, Soft Tissue Engineering and Mechanobiology, Eindhoven University of Technology, P.O box 513, 5600 MB Eindhoven, The Netherlands
| | - P P K H Fransen
- Institute for Complex Molecular Systems, Eindhoven University of Technology, De Zaale, 5612 AJ Eindhoven, The Netherlands. and Department of Biomedical Engineering, Laboratory of Chemical Biology, Eindhoven University of Technology, P.O. box 513, 5600 MB Eindhoven, The Netherlands
| | - B D Ippel
- Institute for Complex Molecular Systems, Eindhoven University of Technology, De Zaale, 5612 AJ Eindhoven, The Netherlands. and Department of Biomedical Engineering, Soft Tissue Engineering and Mechanobiology, Eindhoven University of Technology, P.O box 513, 5600 MB Eindhoven, The Netherlands
| | - D F A de Bont
- Institute for Complex Molecular Systems, Eindhoven University of Technology, De Zaale, 5612 AJ Eindhoven, The Netherlands. and Department of Biomedical Engineering, Soft Tissue Engineering and Mechanobiology, Eindhoven University of Technology, P.O box 513, 5600 MB Eindhoven, The Netherlands
| | - H M Keizer
- SyMO-Chem BV, Eindhoven University of Technology, De Zaale, 5612 AZ Eindhoven, The Netherlands
| | - N A M Bax
- Institute for Complex Molecular Systems, Eindhoven University of Technology, De Zaale, 5612 AJ Eindhoven, The Netherlands. and Department of Biomedical Engineering, Soft Tissue Engineering and Mechanobiology, Eindhoven University of Technology, P.O box 513, 5600 MB Eindhoven, The Netherlands
| | - C V C Bouten
- Institute for Complex Molecular Systems, Eindhoven University of Technology, De Zaale, 5612 AJ Eindhoven, The Netherlands. and Department of Biomedical Engineering, Soft Tissue Engineering and Mechanobiology, Eindhoven University of Technology, P.O box 513, 5600 MB Eindhoven, The Netherlands
| | - P Y W Dankers
- Institute for Complex Molecular Systems, Eindhoven University of Technology, De Zaale, 5612 AJ Eindhoven, The Netherlands. and Department of Biomedical Engineering, Soft Tissue Engineering and Mechanobiology, Eindhoven University of Technology, P.O box 513, 5600 MB Eindhoven, The Netherlands and Department of Biomedical Engineering, Laboratory of Chemical Biology, Eindhoven University of Technology, P.O. box 513, 5600 MB Eindhoven, The Netherlands
| |
Collapse
|
58
|
Cîrcu M, Filip C. Closer to the polydopamine structure: new insights from a combined 13C/1H/2H solid-state NMR study on deuterated samples. Polym Chem 2018. [DOI: 10.1039/c8py00633d] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
13C/1H/2H ss-NMR on deuterated samples provide strong experimental evidence for the most probable monomer connectivity, π–π stacking, and the water dynamics in polydopamine.
Collapse
Affiliation(s)
- Monica Cîrcu
- National Institute for Research and Development of Isotopic and Molecular Technologies
- 400293 Cluj-Napoca
- Romania
| | - Claudiu Filip
- National Institute for Research and Development of Isotopic and Molecular Technologies
- 400293 Cluj-Napoca
- Romania
| |
Collapse
|
59
|
Narkar AR, Kelley JD, Pinnaratip R, Lee BP. Effect of Ionic Functional Groups on the Oxidation State and Interfacial Binding Property of Catechol-Based Adhesive. Biomacromolecules 2017; 19:1416-1424. [PMID: 29125290 DOI: 10.1021/acs.biomac.7b01311] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Adhesive hydrogels were prepared by copolymerizing dopamine methacrylamide with either acrylic acid (AAc) or N-(3-aminopropyl)methacrylamide hydrochloride (APMH). The effect of incorporating the anionic and cationic side chains on the oxidation state of catechol was characterized using the FOX assay to track the production of hydrogen peroxide byproduct generated during the autoxidation of catechol, and the interfacial binding property of the adhesive was determined by performing Johnson-Kendall-Roberts contact mechanics tests tested over a wide range of pH values (pH 3.0-9.0). The ionic species contributed to interfacial binding to surfaces with the opposite charge with measured work of adhesion values that were comparable to or in some cases higher than those of catechol. Addition of AAc minimized the oxidation of catechol even at a pH of 8.5 and correspondingly preserved the elevated adhesive property of catechol to both quartz and amine-functionalized surfaces. However, AAc lost its buffering capacity at pH 9.0, and catechol was oxidized at this pH. On the other hand, catechol formed a cohesive covalent bond with the network-bound amine side chain of APMH at basic pH, which interfered with the interfacial binding capability of APMH and the catechol.
Collapse
Affiliation(s)
- Ameya R Narkar
- Department of Biomedical Engineering , Michigan Technological University , Houghton , Michigan 49931 , United States
| | - Jonathan D Kelley
- Department of Biomedical Engineering , Michigan Technological University , Houghton , Michigan 49931 , United States
| | - Rattapol Pinnaratip
- Department of Biomedical Engineering , Michigan Technological University , Houghton , Michigan 49931 , United States
| | - Bruce P Lee
- Department of Biomedical Engineering , Michigan Technological University , Houghton , Michigan 49931 , United States
| |
Collapse
|
60
|
Sousa MP, Mano JF, d’Ischia M, Ruiz-Molina D. Cell-Adhesive Bioinspired and Catechol-Based Multilayer Freestanding Membranes for Bone Tissue Engineering. Biomimetics (Basel) 2017; 2:19. [PMID: 30842970 PMCID: PMC6352653 DOI: 10.3390/biomimetics2040019] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 09/25/2017] [Indexed: 12/21/2022] Open
Abstract
Mussels are marine organisms that have been mimicked due to their exceptional adhesive properties to all kind of surfaces, including rocks, under wet conditions. The proteins present on the mussel's foot contain 3,4-dihydroxy-l-alanine (DOPA), an amino acid from the catechol family that has been reported by their adhesive character. Therefore, we synthesized a mussel-inspired conjugated polymer, modifying the backbone of hyaluronic acid with dopamine by carbodiimide chemistry. Ultraviolet-visible (UV-vis) spectroscopy and nuclear magnetic resonance (NMR) techniques confirmed the success of this modification. Different techniques have been reported to produce two-dimensional (2D) or three-dimensional (3D) systems capable to support cells and tissue regeneration; among others, multilayer systems allow the construction of hierarchical structures from nano- to macroscales. In this study, the layer-by-layer (LbL) technique was used to produce freestanding multilayer membranes made uniquely of chitosan and dopamine-modified hyaluronic acid (HA-DN). The electrostatic interactions were found to be the main forces involved in the film construction. The surface morphology, chemistry, and mechanical properties of the freestanding membranes were characterized, confirming the enhancement of the adhesive properties in the presence of HA-DN. The MC3T3-E1 cell line was cultured on the surface of the membranes, demonstrating the potential of these freestanding multilayer systems to be used for bone tissue engineering.
Collapse
Affiliation(s)
| | - João F. Mano
- CICECO—Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal;
| | | | | |
Collapse
|
61
|
Amato A, Migneco LM, Martinelli A, Pietrelli L, Piozzi A, Francolini I. Antimicrobial activity of catechol functionalized-chitosan versus Staphylococcus epidermidis. Carbohydr Polym 2017; 179:273-281. [PMID: 29111051 DOI: 10.1016/j.carbpol.2017.09.073] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 09/08/2017] [Accepted: 09/22/2017] [Indexed: 11/20/2022]
Abstract
Protein mussel-inspired adhesive polymers, characterized by the presence of catechol groups, possess superior muco-adhesive properties and have great potentiality in wound healing. Suitable materials for wound dressing should properly combine muco-adhesiveness and antimicrobial activity. In this work, catechol-functionalized chitosan was obtained by reaction with hydrocaffeic acid (HCAF), in order to investigate how catechol introduction at different content could affect the intrinsic antimicrobial activity of the polymer itself. Unexpectedly, an enhancement of chitosan antimicrobial activity was observed after catechol functionalization, with a fourfold reduction in the polymer minimum inhibitory concentration versus Staphylococcus epidermidis. Additionally, a commercial wound dressing coated with one of the synthesized CS-HCAF derivatives showed a significant reduction in the adhesion of S. epidermidis compared to the uncoated dressing (3-log reduction). The CS-HCAF derivatives also showed an interesting antioxidant property (EC50 ranging from 20 to 60μg/mL), which further confirms the potentiality of these materials as wound dressings.
Collapse
Affiliation(s)
- Andrea Amato
- Department of Chemistry, Sapienza University of Rome, P. le Aldo Moro 5, 00185 Rome, Italy.
| | - Luisa Maria Migneco
- Department of Chemistry, Sapienza University of Rome, P. le Aldo Moro 5, 00185 Rome, Italy.
| | - Andrea Martinelli
- Department of Chemistry, Sapienza University of Rome, P. le Aldo Moro 5, 00185 Rome, Italy.
| | - Loris Pietrelli
- ENEA, C.R. Casaccia, Via Anguillarese 301, 00100 Rome, Italy.
| | - Antonella Piozzi
- Department of Chemistry, Sapienza University of Rome, P. le Aldo Moro 5, 00185 Rome, Italy.
| | - Iolanda Francolini
- Department of Chemistry, Sapienza University of Rome, P. le Aldo Moro 5, 00185 Rome, Italy.
| |
Collapse
|
62
|
Liu M, Luo G, Wang Y, He W, Liu T, Zhou D, Hu X, Xing M, Wu J. Optimization and integration of nanosilver on polycaprolactone nanofibrous mesh for bacterial inhibition and wound healing in vitro and in vivo. Int J Nanomedicine 2017; 12:6827-6840. [PMID: 28979121 PMCID: PMC5602461 DOI: 10.2147/ijn.s140648] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Bacterial infection is a major hurdle to wound healing, and the overuse of antibiotics have led to global issue, such as emergence of multidrug-resistant bacteria, even "super bacteria". On the contrary, nanosilver (NS) can kill bacteria without causing resistant bacterial strains. In this study, NS was simply generated in situ on the polycaprolactone (PCL) nanofibrous mesh using an environmentally benign and mussel-inspired dopamine (DA). Scanning electron microscopy showed that NS uniformly formed on the nanofibers of PCL mesh. Fourier transform infrared spectroscopy revealed the step-by-step preparation of pristine PCL mesh, including DA coating and NS formation, which were further verified by water contact angle changing from hydrophobic to hydrophilic. To optimize the NS dose, the antibacterial activity of PCL/NS against Staphylococcus aureus, Escherichia coli and Acinetobacter baumannii was detected by bacterial suspension assay, and the cytotoxicity of NS was evaluated using cellular morphology observation and Cell Counting Kit-8 (CCK8) assay. Then, inductively coupled plasma atomic emission spectrometry exhibited that the optimized PCL/NS had a safe and sustained silver release. Moreover, PCL/NS could effectively inhibit bacterial infection in an infectious murine full-thickness skin wound model. As demonstrated by the enhanced level of proliferating cell nuclear antigen (PCNA) in keratinocytes and longer length of neo-formed epidermis, PCL/NS accelerated wound healing by promoting re-epithelialization via enhancing keratinocyte proliferation in infectious wounds.
Collapse
Affiliation(s)
- Menglong Liu
- State Key Laboratory of Trauma, Burn and Combined Injury, Institute of Burn Research, Southwest Hospital, the Third Military Medical University
- Department of Burns, Chongqing Key Laboratory for Disease Proteomics, Chongqing, People’s Republic of China
| | - Gaoxing Luo
- State Key Laboratory of Trauma, Burn and Combined Injury, Institute of Burn Research, Southwest Hospital, the Third Military Medical University
- Department of Burns, Chongqing Key Laboratory for Disease Proteomics, Chongqing, People’s Republic of China
| | - Ying Wang
- State Key Laboratory of Trauma, Burn and Combined Injury, Institute of Burn Research, Southwest Hospital, the Third Military Medical University
- Department of Burns, Chongqing Key Laboratory for Disease Proteomics, Chongqing, People’s Republic of China
| | - Weifeng He
- State Key Laboratory of Trauma, Burn and Combined Injury, Institute of Burn Research, Southwest Hospital, the Third Military Medical University
- Department of Burns, Chongqing Key Laboratory for Disease Proteomics, Chongqing, People’s Republic of China
| | - Tengfei Liu
- State Key Laboratory of Trauma, Burn and Combined Injury, Institute of Burn Research, Southwest Hospital, the Third Military Medical University
- Department of Burns, Chongqing Key Laboratory for Disease Proteomics, Chongqing, People’s Republic of China
| | - Daijun Zhou
- State Key Laboratory of Trauma, Burn and Combined Injury, Institute of Burn Research, Southwest Hospital, the Third Military Medical University
- Department of Burns, Chongqing Key Laboratory for Disease Proteomics, Chongqing, People’s Republic of China
| | - Xiaohong Hu
- State Key Laboratory of Trauma, Burn and Combined Injury, Institute of Burn Research, Southwest Hospital, the Third Military Medical University
- Department of Burns, Chongqing Key Laboratory for Disease Proteomics, Chongqing, People’s Republic of China
| | - Malcolm Xing
- State Key Laboratory of Trauma, Burn and Combined Injury, Institute of Burn Research, Southwest Hospital, the Third Military Medical University
- Department of Mechanical Engineering, University of Manitoba, Winnipeg, MB, Canada
| | - Jun Wu
- State Key Laboratory of Trauma, Burn and Combined Injury, Institute of Burn Research, Southwest Hospital, the Third Military Medical University
- Department of Burns, Chongqing Key Laboratory for Disease Proteomics, Chongqing, People’s Republic of China
- Department of Burns, the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, People’s Republic of China
| |
Collapse
|
63
|
Hauf M, Richter F, Schneider T, Faidt T, Martins BM, Baumann T, Durkin P, Dobbek H, Jacobs K, Möglich A, Budisa N. Photoactivatable Mussel-Based Underwater Adhesive Proteins by an Expanded Genetic Code. Chembiochem 2017. [DOI: 10.1002/cbic.201700327] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Matthias Hauf
- Institut für Chemie; Technische Universität Berlin; Müller-Breslau-Strasse 10 10623 Berlin Germany
| | - Florian Richter
- Institut für Biologie; Biophysikalische Chemie; Humboldt-Universität zu Berlin; Unter den Linden 6 10099 Berlin Germany
| | - Tobias Schneider
- Institut für Chemie; Technische Universität Berlin; Müller-Breslau-Strasse 10 10623 Berlin Germany
| | - Thomas Faidt
- Experimental Physics; Saarland University; Campus E2 9 66123 Saarbrücken Germany
| | - Berta M. Martins
- Institut für Biologie, Strukturbiologie/Biochemie; Humboldt-Universität zu Berlin; Unter den Linden 6 10099 Berlin Germany
| | - Tobias Baumann
- Institut für Chemie; Technische Universität Berlin; Müller-Breslau-Strasse 10 10623 Berlin Germany
| | - Patrick Durkin
- Institut für Chemie; Technische Universität Berlin; Müller-Breslau-Strasse 10 10623 Berlin Germany
| | - Holger Dobbek
- Institut für Biologie, Strukturbiologie/Biochemie; Humboldt-Universität zu Berlin; Unter den Linden 6 10099 Berlin Germany
| | - Karin Jacobs
- Experimental Physics; Saarland University; Campus E2 9 66123 Saarbrücken Germany
| | - Andreas Möglich
- Institut für Biologie; Biophysikalische Chemie; Humboldt-Universität zu Berlin; Unter den Linden 6 10099 Berlin Germany
- Lehrstuhl für Biochemie; Universität Bayreuth; Universitätsstrasse 30 95440 Bayreuth Germany
| | - Nediljko Budisa
- Institut für Chemie; Technische Universität Berlin; Müller-Breslau-Strasse 10 10623 Berlin Germany
| |
Collapse
|
64
|
Nano-silver-decorated microfibrous eggshell membrane: processing, cytotoxicity assessment and optimization, antibacterial activity and wound healing. Sci Rep 2017; 7:436. [PMID: 28348388 PMCID: PMC5428678 DOI: 10.1038/s41598-017-00594-x] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 03/07/2017] [Indexed: 02/07/2023] Open
Abstract
An ideal wound dressing can both promote wound healing and prevent bacterial infection. Here, we report a potential dressing prepared by incorporating an optimized concentration of silver nanoparticles (AgNPs) into the microfibers of a natural eggshell membrane (EM) using environmentally friendly and mussel-inspired dopamine. Briefly, acid-treated EM was used as a porous membrane for polydopamine-reduced AgNPs synthesis. To obtain the optimal cytocompatible silver concentration, cellular attachment and MTT assay were performed with different concentrations of AgNPs. The morphology of the EM and AgNPs was confirmed by scanning electronic microscopy, scanning transmission electronic microscopy and Fourier transform infrared spectroscopy. The synthesized EM/AgNPs exhibited steady and safe AgNPs release, which was further tested for antibacterial activity against Escherichia coli and Staphylococcus aureus by disc diffusion method and bacterial suspension assay. Finally, in a murine full-thickness skin wound model, we found that EM/AgNPs could promote re-epithelialization, granulation tissue formation and wound healing via enhancing cell proliferation, as demonstrated by the expression of proliferating cell nuclear antigen (PCNA), and controlling inflammation response, as demonstrated by the expression of interleukin-1β (IL-1β). These findings suggest that EM/AgNPs may have a promising application in wound management.
Collapse
|
65
|
Meng H, Liu Y, Lee BP. Model polymer system for investigating the generation of hydrogen peroxide and its biological responses during the crosslinking of mussel adhesive moiety. Acta Biomater 2017; 48:144-156. [PMID: 27744069 PMCID: PMC5235946 DOI: 10.1016/j.actbio.2016.10.016] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 09/25/2016] [Accepted: 10/11/2016] [Indexed: 12/21/2022]
Abstract
Mussel adhesive moiety, catechol, has been utilized to design a wide variety of biomaterials. However, the biocompatibility and biological responses associated with the byproducts generated during the curing process of catechol has never been characterized. An in situ curable polymer model system, 4-armed polyethylene glycol polymer end-capped with dopamine (PEG-D4), was used to characterize the production of hydrogen peroxide (H2O2) during the oxidative crosslinking of catechol. Although PEG-D4 cured rapidly (under 30s), catechol continues to polymerize over several hours to form a more densely crosslinked network over time. PEG-D4 hydrogels were examined at two different time points; 5min and 16h after initiation of crosslinking. Catechol in the 5min-cured PEG-D4 retained the ability to continue to crosslink and generated an order of magnitude higher H2O2 (40μM) over 6h when compared to 16h-cured samples that ceased to crosslink. H2O2 generated during catechol crosslinking exhibited localized cytotoxicity in culture and upregulated the expression of an antioxidant enzyme, peroxiredoxin 2, in primary dermal and tendon fibroblasts. Subcutaneous implantation study indicated that H2O2 released during oxidative crosslinking of PEG-D4 hydrogel promoted superoxide generation, macrophage recruitment, and M2 macrophage polarization in tissues surrounding the implant. Given the multitude of biological responses associated with H2O2, it is important to monitor and tailor the production of H2O2 generated from catechol-containing biomaterials for a given application. STATEMENT OF SIGNIFICANCE Remarkable underwater adhesion strategy employed by mussels has been utilized to design a wide variety of biomaterials ranging from tissue adhesives to drug carrier and tissue engineering scaffolds. Catechol is the main adhesive moiety that is widely incorporated to create an injectable biomaterials and bioadhesives. However, the biocompatibility and biological responses associated with the byproducts generated during the curing process of catechol has never been characterized. In this manuscript, we design a model system to systemically characterize the release of hydrogen peroxide (H2O2) during the crosslinking of catechol. Given the multitude of biological responses associated with H2O2 (i.e., wound healing, antimicrobial, chronic inflammation), its release from catechol-containing biomaterials need to be carefully monitored and controlled for a desired application.
Collapse
Affiliation(s)
- Hao Meng
- Department of Biomedical Engineering, Michigan Technological University, Houghton, MI 49931, USA
| | - Yuan Liu
- Department of Biomedical Engineering, Michigan Technological University, Houghton, MI 49931, USA
| | - Bruce P Lee
- Department of Biomedical Engineering, Michigan Technological University, Houghton, MI 49931, USA.
| |
Collapse
|
66
|
The Adhesion Mechanism of Marine Mussel Foot Protein: Adsorption of L-Dopa onα- and β-Cristobalite Silica Using Density Functional Theory. J CHEM-NY 2017. [DOI: 10.1155/2017/8756519] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Marine mussels strongly adhere to various surfaces and endure their attachment under a variety of conditions. In order to understand the basic mechanism involved, we study the adsorption of L-dopa molecule on hydrophilic geminal and terminal isolated silanols of silica (001) surface. High content of modified amino acid L-dopa is found in the glue-like material secreted by the mussels through which it sticks to various surfaces under water. To understand the adsorption behavior, we have made use of periodic Density Functional Theory (DFT) study. The L-dopa molecule adheres to silica surfaces terminated with geminal and terminal silanols via its catechol part. In both cases, the adhesion is achieved through the formation of 4 H-bonds. A binding energy of 29.48 and 31.67 kcal/mol has been estimated, after the inclusion of dispersion energy, for geminal and terminal silanols of silica, respectively. These results suggest a relatively stronger adhesion of dopa molecule for surface with terminal isolated silanols.
Collapse
|
67
|
Chou YC, Yeh WL, Chao CL, Hsu YH, Yu YH, Chen JK, Liu SJ. Enhancement of tendon-bone healing via the combination of biodegradable collagen-loaded nanofibrous membranes and a three-dimensional printed bone-anchoring bolt. Int J Nanomedicine 2016; 11:4173-86. [PMID: 27601901 PMCID: PMC5003596 DOI: 10.2147/ijn.s108939] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
A composite biodegradable polymeric model was developed to enhance tendon graft healing. This model included a biodegradable polylactide (PLA) bolt as the bone anchor and a poly(D,L-lactide-co-glycolide) (PLGA) nanofibrous membrane embedded with collagen as a biomimic patch to promote tendon–bone interface integration. Degradation rate and compressive strength of the PLA bolt were measured after immersion in a buffer solution for 3 months. In vitro biochemical characteristics and the nanofibrous matrix were assessed using a water contact angle analyzer, pH meter, and tetrazolium reduction assay. In vivo efficacies of PLGA/collagen nanofibers and PLA bolts for tendon–bone healing were investigated on a rabbit bone tunnel model with histological and tendon pullout tests. The PLGA/collagen-blended nanofibrous membrane was a hydrophilic, stable, and biocompatible scaffold. The PLA bolt was durable for tendon–bone anchoring. Histology showed adequate biocompatibility of the PLA bolt on a medial cortex with progressive bone ingrowth and without tissue overreaction. PLGA nanofibers within the bone tunnel also decreased the tunnel enlargement phenomenon and enhanced tendon–bone integration. Composite polymers of the PLA bolt and PLGA/collagen nanofibrous membrane can effectively promote outcomes of tendon reconstruction in a rabbit model. The composite biodegradable polymeric system may be useful in humans for tendon reconstruction.
Collapse
Affiliation(s)
- Ying-Chao Chou
- Department of Mechanical Engineering, Chang Gung University; Department of Orthopedic Surgery, Chang Gung Memorial Hospital
| | - Wen-Lin Yeh
- Department of Orthopedic Surgery, Chang Gung Memorial Hospital
| | - Chien-Lin Chao
- Department of Mechanical Engineering, Chang Gung University
| | - Yung-Heng Hsu
- Department of Mechanical Engineering, Chang Gung University; Department of Orthopedic Surgery, Chang Gung Memorial Hospital
| | - Yi-Hsun Yu
- Department of Mechanical Engineering, Chang Gung University; Department of Orthopedic Surgery, Chang Gung Memorial Hospital
| | - Jan-Kan Chen
- Department of Physiology and Pharmacology, Chang Gung University, Taoyuan, Taiwan
| | - Shih-Jung Liu
- Department of Mechanical Engineering, Chang Gung University; Department of Orthopedic Surgery, Chang Gung Memorial Hospital
| |
Collapse
|