51
|
Al-Megrin WA, Alomar S, Alkhuriji AF, Metwally DM, Mohamed SK, Kassab RB, Abdel Moneim AE, El-Khadragy MF. Luteolin protects against testicular injury induced by lead acetate by activating the Nrf2/HO-1 pathway. IUBMB Life 2020; 72:1787-1798. [PMID: 32478470 DOI: 10.1002/iub.2311] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 05/08/2020] [Accepted: 05/10/2020] [Indexed: 12/11/2022]
Abstract
Lead (Pb) is a toxic heavy metal that is harmful to humans, especially male reproductive organs. Luteolin (LUT) is a naturally occurring flavonoid with numerous biological activities. Our aim was to investigate the possible reproprotective effect of LUT against testicular deficits induced by Pb intoxication. In the present study, 28 rats were distributed into 4 groups: control, LUT (50 mg/kg), lead acetate (PbAc, 20 mg/kg), and LUT + PbAc groups, in which rats were pre-treated with LUT 3 hr before PbAc injection. All animals were treated for 7 days. Oxidative stress, inflammatory and apoptotic markers along with histopathological changes have been examined using spectrophotometric, ELISA, real-time PCR, and histopathological methods. PbAc injection elevated Pb concentration in testicular tissue and decreased levels of sex hormones. PbAc intoxication exacerbated lipoperoxidation and nitric oxide formation, depleted superoxide dismutase, and catalase activities along with glutathione and its originated enzymes (glutathione peroxidase and glutathione reductase). At the molecular level, PbAc deactivated nuclear factor erythroid 2-related factor 2 and heme oxygenase-1 in the testicular tissue. In addition, PbAc toxicity induced inflammatory and apoptotic cascades in testicular tissue as evidenced by the increased tumor necrosis factor-alpha, interleukin-1 beta, inducible nitric oxide synthase, Bax, and caspase 3, while Bcl-2 was declined. Histopathological examination of testicular tissue also revealed that PbAc caused degeneration alterations in spermatogenic cells, the spermatogenic epithelial cells were disconnected from the basement membrane, and the seminiferous tubules were vacuolated. Remarkably, pre-treatment with LUT minimized significantly the testicular damage induced by PbAc. Therefore, we conclude that LUT may have a beneficial effect against PbAc-induced testicular injury through preventing oxidative challenge, inflammation, and finally apoptosis.
Collapse
Affiliation(s)
- Wafa A Al-Megrin
- Biology Department, Faculty of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Suliman Alomar
- Doping Research Chair, Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Afrah F Alkhuriji
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Dina M Metwally
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia.,Department of Parasitology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Shimaa K Mohamed
- Pharmacology and Toxicology, Faculty of Pharmacy, Helwan University, Cairo, Egypt
| | - Rami B Kassab
- Department of Zoology and Entomology, Faculty of Science, Helwan University, Cairo, Egypt
| | - Ahmed E Abdel Moneim
- Department of Zoology and Entomology, Faculty of Science, Helwan University, Cairo, Egypt
| | - Manal F El-Khadragy
- Biology Department, Faculty of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia.,Department of Zoology and Entomology, Faculty of Science, Helwan University, Cairo, Egypt
| |
Collapse
|
52
|
Che DN, Cho BO, Kim JS, Shin JY, Kang HJ, Jang SI. Luteolin and Apigenin Attenuate LPS-Induced Astrocyte Activation and Cytokine Production by Targeting MAPK, STAT3, and NF-κB Signaling Pathways. Inflammation 2020; 43:1716-1728. [DOI: 10.1007/s10753-020-01245-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
53
|
Yang Y, Tan X, Xu J, Wang T, Liang T, Xu X, Ma C, Xu Z, Wang W, Li H, Shen H, Li X, Dong W, Chen G. Luteolin alleviates neuroinflammation via downregulating the TLR4/TRAF6/NF-κB pathway after intracerebral hemorrhage. Biomed Pharmacother 2020; 126:110044. [PMID: 32114357 DOI: 10.1016/j.biopha.2020.110044] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 02/19/2020] [Accepted: 02/23/2020] [Indexed: 12/14/2022] Open
Abstract
The activation of microglia and inflammatory responses is essential for the process of intracerebral hemorrhage (ICH)-induced secondary brain injury (SBI). In this study, we investigated the effects of luteolin on ICH-induced SBI and the potential mechanisms. Autologous blood was injected to establish the ICH model in vivo, and oxyhemoglobin (OxyHb) was used to mimic the ICH model in vitro. We found that the administration of luteolin significantly improved motor and sensory impairments and inhibited neuronal cell degeneration in vivo. In the in vitro study, the decrease of the neuronal cell viability induced by activated microglia was alleviated by luteolin treatment. Furthermore, by antagonizing the activation of the Toll-like receptor 4 (TLR4)/TNF receptor-associated factor 6 (TRAF6)/nuclear transcription factor-κB (NF-κB) signaling pathway, the ICH-induced elevation of cytokine release was decreased after treatment with luteolin, which was confirmed both in vivo and in vitro. Additionally, we found that luteolin engaged with TRAF6 and inhibited the ubiquitination of TRAF6. Taken together, our findings demonstrate the neuroprotective effects of luteolin after ICH and the potential mechanisms, which suggest that luteolin is a potential therapeutic candidate for ICH treatment.
Collapse
Affiliation(s)
- Yi Yang
- Department of Neurology, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, Jiangsu Province, China
| | - Xin Tan
- Department of Neurology, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, Jiangsu Province, China
| | - Jianguo Xu
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, China
| | - Tianyi Wang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, China
| | - Tianyu Liang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, China
| | - Xiang Xu
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, China
| | - Cheng Ma
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, China
| | - Zhongmou Xu
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, China
| | - Wenjie Wang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, China
| | - Haiying Li
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, China
| | - Haitao Shen
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, China
| | - Xiang Li
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, China.
| | - Wanli Dong
- Department of Neurology, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, Jiangsu Province, China.
| | - Gang Chen
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, China
| |
Collapse
|
54
|
Tan X, Yang Y, Xu J, Zhang P, Deng R, Mao Y, He J, Chen Y, Zhang Y, Ding J, Li H, Shen H, Li X, Dong W, Chen G. Luteolin Exerts Neuroprotection via Modulation of the p62/Keap1/Nrf2 Pathway in Intracerebral Hemorrhage. Front Pharmacol 2020; 10:1551. [PMID: 32038239 PMCID: PMC6985769 DOI: 10.3389/fphar.2019.01551] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Accepted: 12/02/2019] [Indexed: 12/14/2022] Open
Abstract
Upregulation of neuronal oxidative stress is involved in the progression of secondary brain injury (SBI) following intracerebral hemorrhage (ICH). In this study, we investigated the potential effects and underlying mechanisms of luteolin on ICH-induced SBI. Autologous blood and oxyhemoglobin (OxyHb) were used to establish in vivo and in vitro models of ICH, respectively. Luteolin treatment effectively alleviated brain edema and ameliorated neurobehavioral dysfunction and memory loss in vivo. Also, in vivo, we found that luteolin promoted the activation of the sequestosome 1 (p62)/kelch‐like enoyl-coenzyme A hydratase (ECH)‐associated protein 1 (Keap1)/nuclear factor erythroid 2-related factor 2 (Nrf2) pathway by enhancing autophagy and increasing the translocation of Nrf2 to the nucleus. Meanwhile, luteolin inhibited the ubiquitination of Nrf2 and increased the expression levels of downstream antioxidant proteins, such as heme oxygenase-1 (HO-1) and reduced nicotinamide adenine dinucleotide phosphate (NADPH): quinine oxidoreductase 1 (NQO1). This effect of luteolin was also confirmed in vitro, which was reversed by the autophagy inhibitor, chloroquine (CQ). Additionally, we found that luteolin inhibited the production of neuronal mitochondrial superoxides (MitoSOX) and alleviated neuronal mitochondrial injury in vitro, as indicated via tetrachloro-tetraethylbenzimidazol carbocyanine-iodide (JC-1) staining and MitoSOX staining. Taken together, our findings demonstrate that luteolin enhances autophagy and anti-oxidative processes in both in vivo and in vitro models of ICH, and that activation of the p62-Keap1-Nrf2 pathway, is involved in such luteolin-induced neuroprotection. Hence, luteolin may represent a promising candidate for the treatment of ICH-induced SBI.
Collapse
Affiliation(s)
- Xin Tan
- Department of Neurology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yi Yang
- Department of Neurology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jianguo Xu
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Peng Zhang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Ruming Deng
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yiguang Mao
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jia He
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yibin Chen
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yan Zhang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jiasheng Ding
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Haiying Li
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Haitao Shen
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Xiang Li
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Wanli Dong
- Department of Neurology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Gang Chen
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
55
|
Kim TH, Custodio RJ, Cheong JH, Kim HJ, Jung YS. Sleep Promoting Effect of Luteolin in Mice via Adenosine A1 and A2A Receptors. Biomol Ther (Seoul) 2019; 27:584-590. [PMID: 31646844 PMCID: PMC6824624 DOI: 10.4062/biomolther.2019.149] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 10/02/2019] [Accepted: 10/04/2019] [Indexed: 11/16/2022] Open
Abstract
Luteolin, a widespread flavonoid, has been known to have neuroprotective activity against various neurologic diseases such as epilepsy, and Alzheimer’s disease. However, little information is available regarding the hypnotic effect of luteolin. In this study, we evaluated the hypnotic effect of luteolin and its underlying mechanism. In pentobarbital-induced sleeping mice model, luteolin (1, and 3 mg/kg, p.o.) decreased sleep latency and increased the total sleep time. Through electroencephalogram (EEG) and electromyogram (EMG) recording, we demonstrated that luteolin increased non-rapid eye movement (NREM) sleep time and decreased wake time. To evaluate the underlying mechanism, we examined the effects of various pharmacological antagonists on the hypnotic effect of luteolin. The hypnotic effect of 3 mg/kg of luteolin was not affected by flumazenil, a GABAA receptor-benzodiazepine (GABAAR-BDZ) binding site antagonist, and bicuculine, a GABAAR-GABA binding site antagonist. On the other hand, the hypnotic effect of 3 mg/kg of luteolin was almost completely blocked by caffeine, an antagonist for both adenosine A1 and A2A receptor (A1R and A2AR), 8-Cyclopentyl-1,3-dipropylxanthine (DPCPX), an A1R antagonist, and SCH-58261, an A2AR antagonist. From the binding affinity assay, we have found that luteolin significantly binds to not only A1R but also A2AR with IC50 of 1.19, 0.84 μg/kg, respectively. However, luteolin did not bind to either BDZ-receptor or GABAAR. From these results, it has been suggested that luteolin has hypnotic efficacy through A1R and A2AR binding.
Collapse
Affiliation(s)
- Tae-Ho Kim
- College of Pharmacy, Ajou University, Suwon 16499, Republic of Korea
| | - Raly James Custodio
- Uimyoung Research Institute in Neuroscience, Sahmyook University, Seoul 01795, Republic of Korea
| | - Jae Hoon Cheong
- Uimyoung Research Institute in Neuroscience, Sahmyook University, Seoul 01795, Republic of Korea
| | - Hee Jin Kim
- Uimyoung Research Institute in Neuroscience, Sahmyook University, Seoul 01795, Republic of Korea
| | - Yi-Sook Jung
- College of Pharmacy, Ajou University, Suwon 16499, Republic of Korea.,College of Pharmacy, Research Institute of Pharmaceutical Sciences and Technology, Ajou University, Suwon 16499, Republic of Korea
| |
Collapse
|
56
|
Howe MD, Furr JW, Munshi Y, Roy-O’Reilly MA, Maniskas ME, Koellhoffer EC, d’Aigle J, Sansing LH, McCullough LD, Urayama A. Transforming growth factor-β promotes basement membrane fibrosis, alters perivascular cerebrospinal fluid distribution, and worsens neurological recovery in the aged brain after stroke. GeroScience 2019; 41:543-559. [PMID: 31721012 PMCID: PMC6885082 DOI: 10.1007/s11357-019-00118-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 10/04/2019] [Indexed: 12/14/2022] Open
Abstract
Aging and stroke alter the composition of the basement membrane and reduce the perivascular distribution of cerebrospinal fluid and solutes, which may contribute to poor functional recovery in elderly patients. Following stroke, TGF-β induces astrocyte activation and subsequent glial scar development. This is dysregulated with aging and could lead to chronic, detrimental changes within the basement membrane. We hypothesized that TGF-β induces basement membrane fibrosis after stroke, leading to impaired perivascular CSF distribution and poor functional recovery in aged animals. We found that CSF entered the aged brain along perivascular tracts; this process was reduced by experimental stroke and was rescued by TGF-β receptor inhibition. Brain fibronectin levels increased with experimental stroke, which was reversed with inhibitor treatment. Exogenous TGF-β stimulation increased fibronectin expression, both in vivo and in primary cultured astrocytes. Oxygen-glucose deprivation of cultured astrocytes induced multiple changes in genes related to astrocyte activation and extracellular matrix production. Finally, in stroke patients, we found that serum TGF-β levels correlated with poorer functional outcomes, suggesting that serum levels may act as a biomarker for functional recovery. These results support a potential new treatment strategy to enhance recovery in elderly stroke patients.
Collapse
Affiliation(s)
- Matthew D. Howe
- Department of Neurology, McGovern Medical School, University of Texas Health Science Center, 6431 Fannin St., Houston, TX 77030 USA
| | - J. Weldon Furr
- Department of Neurology, McGovern Medical School, University of Texas Health Science Center, 6431 Fannin St., Houston, TX 77030 USA
| | - Yashasvee Munshi
- Department of Neurology, McGovern Medical School, University of Texas Health Science Center, 6431 Fannin St., Houston, TX 77030 USA
| | - Meaghan A. Roy-O’Reilly
- Department of Neurology, McGovern Medical School, University of Texas Health Science Center, 6431 Fannin St., Houston, TX 77030 USA
| | - Michael E. Maniskas
- Department of Neurology, McGovern Medical School, University of Texas Health Science Center, 6431 Fannin St., Houston, TX 77030 USA
| | - Edward C. Koellhoffer
- Department of Neurology, McGovern Medical School, University of Texas Health Science Center, 6431 Fannin St., Houston, TX 77030 USA
| | - John d’Aigle
- Department of Neurology, McGovern Medical School, University of Texas Health Science Center, 6431 Fannin St., Houston, TX 77030 USA
| | - Lauren H. Sansing
- Department of Neurology, Yale University School of Medicine, 1450 Chapel Street, New Haven, CT 06511 USA
| | - Louise D. McCullough
- Department of Neurology, McGovern Medical School, University of Texas Health Science Center, 6431 Fannin St., Houston, TX 77030 USA
| | - Akihiko Urayama
- Department of Neurology, McGovern Medical School, University of Texas Health Science Center, 6431 Fannin St., Houston, TX 77030 USA
| |
Collapse
|
57
|
Cuevas E, Rosas-Hernandez H, Burks SM, Ramirez-Lee MA, Guzman A, Imam SZ, Ali SF, Sarkar S. Amyloid Beta 25-35 induces blood-brain barrier disruption in vitro. Metab Brain Dis 2019; 34:1365-1374. [PMID: 31267346 DOI: 10.1007/s11011-019-00447-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 06/05/2019] [Indexed: 11/27/2022]
Abstract
The amyloid β-peptide (Aβ) is transported across the blood-brain barrier (BBB) by binding with the receptor for advanced glycation end products (RAGE). Previously, we demonstrated that the Aβ fraction 25-35 (Aβ25-35) increases RAGE expression in the rat hippocampus, likely contributing to its neurotoxic effects. However, it is still debated if the interaction of Aβ with RAGE compromises the BBB function in Alzheimer' disease (AD). Here, we evaluated the effects of Aβ25-35 in an established in vitro model of the BBB. Rat brain microvascular endothelial cells (rBMVECs) were treated with 20 μM active Aβ25-35 or the inactive Aβ35-25 (control), for 24 h. Exposure to Aβ25-35 significantly decreased cell viability, increased cellular necrosis, and increased the production of reactive oxygen species (ROS), which triggered a decrease in the enzyme glutathione peroxidase when compared to the control condition. Aβ25-35 also increased BBB permeability by altering the expression of tight junction proteins (decreasing zonula occludens-1 and increasing occludin). Aβ25-35 induced monolayer disruption and cellular disarrangement of the BBB, with RAGE being highly expressed in the zones of disarrangement. Together, these data suggest that Aβ25-35-induces toxicity by compromising the functionality and integrity of the BBB in vitro. Graphical abstract Aβ25-35 induces BBB dysfunction in vitro, wich is likely mediated by OS and ultimately leads to disruption of BBB integrity and cell death.
Collapse
Affiliation(s)
- Elvis Cuevas
- Division of Neurotoxicology, National Center for Toxicological Research/U.S. Food and Drug Administration, Jefferson, AR, 72079, USA.
| | - Hector Rosas-Hernandez
- Division of Neurotoxicology, National Center for Toxicological Research/U.S. Food and Drug Administration, Jefferson, AR, 72079, USA
| | - Susan M Burks
- Division of Neurotoxicology, National Center for Toxicological Research/U.S. Food and Drug Administration, Jefferson, AR, 72079, USA
| | - Manuel A Ramirez-Lee
- Division of Neurotoxicology, National Center for Toxicological Research/U.S. Food and Drug Administration, Jefferson, AR, 72079, USA
| | - Aida Guzman
- Escuela Nacional Preparatoria-UNAM, Mexico, Mexico
| | - Syed Z Imam
- Division of Neurotoxicology, National Center for Toxicological Research/U.S. Food and Drug Administration, Jefferson, AR, 72079, USA
| | - Syed F Ali
- Division of Neurotoxicology, National Center for Toxicological Research/U.S. Food and Drug Administration, Jefferson, AR, 72079, USA
| | - Sumit Sarkar
- Division of Neurotoxicology, National Center for Toxicological Research/U.S. Food and Drug Administration, Jefferson, AR, 72079, USA
| |
Collapse
|
58
|
Wang Y, Kong X, Wang M, Li J, Chen W, Jiang D. Luteolin Partially Inhibits LFA-1 Expression in Neutrophils Through the ERK Pathway. Inflammation 2019; 42:365-374. [PMID: 30255285 DOI: 10.1007/s10753-018-0900-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Luteolin inhibits the adhesion of neutrophils to microvascular endothelial cells and plays an important anti-inflammatory role, owing to its mechanism of suppressing the expression of lymphocyte function-associated antigen-1 (LFA-1) in the neutrophils. Our study deals with the different signaling pathways participating in LFA-1 expression in neutrophils along with the regulation of luteolin in order to elucidate new anti-inflammatory targets of luteolin, thus providing a basis for clinical applications. In our study, neutrophils were separated using density gradient centrifugation and the cAMP levels were determined using ELISA. Additionally, phosphorylation levels of p38 mitogen-activated protein kinase (MAPK), extracellular regulated protein kinase (ERK), phosphatidylinositol-3-kinase (PI3K), and Janus kinase (JAK) were also detected by Western blotting. LFA-1 expression was estimated using flow cytometry. The results showed that inhibiting agents used against p38 MAPK, ERK, PI3K, and JAK could significantly inhibit LFA-1 expression on neutrophils (p < 0.05, p < 0.01). Luteolin also induced a noteworthy elevation of cAMP in neutrophil supernatants (p < 0.01). It could also significantly inhibit ERK phosphorylation (p < 0.05, p < 0.01), and had no obvious effect on p38 MAPK phosphorylation in neutrophils (p > 0.05). However, phosphorylation of PI3K and JAK was not detected in neutrophils. To conclude, the p38 MAPK, ERK, PI3K, and JAK pathways are involved in the regulation of LFA-1 expression in neutrophils, and luteolin partially inhibits LFA-1 expression by increasing cAMP levels and suppressing ERK phosphorylation.
Collapse
Affiliation(s)
- Yanan Wang
- Beijing Key Laboratory of Traditional Chinese Veterinary Medicine, Beijing University of Agriculture, No.7 of Beinong road, Huilongguan town, Changping district, Beijing, 102206, People's Republic of China
| | - Xueli Kong
- Beijing Key Laboratory of Traditional Chinese Veterinary Medicine, Beijing University of Agriculture, No.7 of Beinong road, Huilongguan town, Changping district, Beijing, 102206, People's Republic of China
| | - Mengjie Wang
- Beijing Key Laboratory of Traditional Chinese Veterinary Medicine, Beijing University of Agriculture, No.7 of Beinong road, Huilongguan town, Changping district, Beijing, 102206, People's Republic of China
| | - Jia Li
- Beijing Key Laboratory of Traditional Chinese Veterinary Medicine, Beijing University of Agriculture, No.7 of Beinong road, Huilongguan town, Changping district, Beijing, 102206, People's Republic of China
| | - Wu Chen
- Beijing Key Laboratory of Traditional Chinese Veterinary Medicine, Beijing University of Agriculture, No.7 of Beinong road, Huilongguan town, Changping district, Beijing, 102206, People's Republic of China
| | - Daixun Jiang
- Beijing Key Laboratory of Traditional Chinese Veterinary Medicine, Beijing University of Agriculture, No.7 of Beinong road, Huilongguan town, Changping district, Beijing, 102206, People's Republic of China.
| |
Collapse
|
59
|
Andrade S, Ramalho MJ, Loureiro JA, Pereira MDC. Natural Compounds for Alzheimer's Disease Therapy: A Systematic Review of Preclinical and Clinical Studies. Int J Mol Sci 2019; 20:E2313. [PMID: 31083327 PMCID: PMC6539304 DOI: 10.3390/ijms20092313] [Citation(s) in RCA: 127] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 05/04/2019] [Accepted: 05/07/2019] [Indexed: 12/31/2022] Open
Abstract
Alzheimer's Disease (AD) is a neurodegenerative disorder related with the increase of age and it is the main cause of dementia in the world. AD affects cognitive functions, such as memory, with an intensity that leads to several functional losses. The continuous increase of AD incidence demands for an urgent development of effective therapeutic strategies. Despite the extensive research on this disease, only a few drugs able to delay the progression of the disease are currently available. In the last years, several compounds with pharmacological activities isolated from plants, animals and microorganisms, revealed to have beneficial effects for the treatment of AD, targeting different pathological mechanisms. Thus, a wide range of natural compounds may play a relevant role in the prevention of AD and have proven to be efficient in different preclinical and clinical studies. This work aims to review the natural compounds that until this date were described as having significant benefits for this neurological disease, focusing on studies that present clinical trials.
Collapse
Affiliation(s)
- Stephanie Andrade
- LEPABE, Department of Chemical Engineering, Faculty of Engineering of the University of Porto, 4200-465 Porto, Portugal.
| | - Maria João Ramalho
- LEPABE, Department of Chemical Engineering, Faculty of Engineering of the University of Porto, 4200-465 Porto, Portugal.
| | - Joana Angélica Loureiro
- LEPABE, Department of Chemical Engineering, Faculty of Engineering of the University of Porto, 4200-465 Porto, Portugal.
| | - Maria do Carmo Pereira
- LEPABE, Department of Chemical Engineering, Faculty of Engineering of the University of Porto, 4200-465 Porto, Portugal.
| |
Collapse
|
60
|
Zhang X, Wu JZ, Lin ZX, Yuan QJ, Li YC, Liang JL, Zhan JYX, Xie YL, Su ZR, Liu YH. Ameliorative effect of supercritical fluid extract of Chrysanthemum indicum Linnén against D-galactose induced brain and liver injury in senescent mice via suppression of oxidative stress, inflammation and apoptosis. JOURNAL OF ETHNOPHARMACOLOGY 2019; 234:44-56. [PMID: 30610932 DOI: 10.1016/j.jep.2018.12.050] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 12/28/2018] [Accepted: 12/30/2018] [Indexed: 06/09/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Chrysanthemum indicum Linne (C. indicum), a healthy food and folk medicine in China for thousands of years, has been reported to exert heat-clearing and detoxifying effects and extensively applied to treat various symptoms such as inflammation diseases, hepatitis and headache. AIM OF THIS STUDY The purpose of the present study was to investigate the protective effect of the supercritical carbon dioxide fluid extract from flowers and buds of C. indicum (CISCFE) on D-galactose-induced brain and liver damage during aging process and to illuminate the underlying mechanisms. MATERIALS AND METHODS Mice were orally administrated with CISCFE (100, 150 and 300 mg/kg) after injection with D-galactose. 24 h after the last administration, the blood samples, whole brain and liver tissues were collected for biochemical analysis, histological examination and western blot analysis. The body weight, spleen and thymus indexes, alanine transaminase (ALT), aspartate transaminase (AST), total antioxidant capacity (T-AOC), superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GSH-Px), malondialdehyde (MDA) in brain and liver, interleukin-1β (IL-1β), interleukin-6 (IL-6), and necrosis factor-α (TNF-α) were detected. Besides, the expressions of Bax, Bcl-2 and cleaved caspase-3 were determined by western blot assay. RESULTS The results indicated that CISCFE effectively increased the suppressed body weight, attenuated the decline of thymus and spleen indexes, and reduced the elevated levels of ALT and AST induced by D-gal. Furthermore, CISCFE might notably alleviate D-gal-induced abnormal alterations in structure and function of brain and liver dose-dependently via renewing normal antioxidant enzymes activities (SOD, CAT, GSH-Px), reducing MDA accumulation, decreasing inflammatory cytokines productions (IL-1β, IL-6, TNF-α), as well as attenuating the increase of Bax/Bcl-2 ratio and cleaved caspase-3 activation in the liver and brain. CONCLUSIONS Taken together, our present results suggested that CISCFE treatment could effectively mitigate the D-gal-induced hepatic and cerebral injury, and the underlying mechanism might be tightly related to the decreased oxidative stress, inflammation and apoptosis, indicating CISCFE might be an alternative and promising agent for the treatment of aging and age-associated brain and liver diseases.
Collapse
Affiliation(s)
- Xie Zhang
- Guangdong Provincial Key Laboratory of New Drug Development and Research of Chinese Medicine, Mathematical Engineering Academy of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, China; School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China.
| | - Jia-Zhen Wu
- The First Affiliated Hospital of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510405, China.
| | - Zhi-Xiu Lin
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China.
| | - Qiu-Ju Yuan
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China.
| | - Yu-Cui Li
- Guangdong Provincial Key Laboratory of New Drug Development and Research of Chinese Medicine, Mathematical Engineering Academy of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, China.
| | - Jia-Li Liang
- Guangdong Provincial Key Laboratory of New Drug Development and Research of Chinese Medicine, Mathematical Engineering Academy of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, China.
| | - Janis Ya-Xian Zhan
- Guangdong Provincial Key Laboratory of New Drug Development and Research of Chinese Medicine, Mathematical Engineering Academy of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, China.
| | - You-Liang Xie
- Guangdong Provincial Key Laboratory of New Drug Development and Research of Chinese Medicine, Mathematical Engineering Academy of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, China; Dongguan Mathematical Engineering Academy of Chinese Medicine, Guangzhou University of Chinese Medicine, Dongguan 523808, China.
| | - Zi-Ren Su
- Guangdong Provincial Key Laboratory of New Drug Development and Research of Chinese Medicine, Mathematical Engineering Academy of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, China; Dongguan Mathematical Engineering Academy of Chinese Medicine, Guangzhou University of Chinese Medicine, Dongguan 523808, China.
| | - Yu-Hong Liu
- Guangdong Provincial Key Laboratory of New Drug Development and Research of Chinese Medicine, Mathematical Engineering Academy of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, China.
| |
Collapse
|
61
|
Du L, Li J, Zhang X, Wang L, Zhang W, Yang M, Hou C. Pomegranate peel polyphenols inhibits inflammation in LPS-induced RAW264.7 macrophages via the suppression of TLR4/NF-κB pathway activation. Food Nutr Res 2019; 63:3392. [PMID: 31073284 PMCID: PMC6495109 DOI: 10.29219/fnr.v63.3392] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 03/25/2019] [Accepted: 03/28/2019] [Indexed: 12/11/2022] Open
Abstract
BACKGROUNDS Inflammatory response mediated by activated immune cells is a vital process in host defense system while responding to various stresses. Our previous studies have indicated that pomegranate peel polyphenols (PPPs) and their main components punicalagin (PC) and ellagic acid (EA) decreased pro-inflammatory cytokines and inflammatory mediators by regulating the mitogen-activated protein kinases (MAPKs) pathway, but whether these tested polyphenols play an important role in NF-κB signaling pathway, another crucial pathway of inflammation, remains unclear. OBJECTIVE In this study, we analyzed the anti-inflammatory effect of these polyphenols via TLR4-NF-κB pathway in lipopolysaccharide (LPS)-induced RAW264.7 macrophages. METHODS Different concentrations of PPPs, PC, and EA were pre-incubated with RAW264.7 macrophages and then stimulated with LPS (1 μg/mL), and the effects of reactive oxygen species and TLR4 were investigated. Moreover, NF-κB p65 nuclear translocation and phosphorylation, and degradation of IκB were measured by Western blot. Furthermore, the influence of pro-inflammatory cytokines was detected by enzyme-linked immunosorbent assay (ELISA). RESULTS Our data showed that PPPs, PC, and EA inhibited LPS-induced intracellular ROS production and suppressed the mRNA and protein expression levels of TLR4 in a dose-dependent manner. Moreover, the anti-inflammatory mechanism was involved in blocking LPS-induced phosphorylation, degradation of IκB, and nuclear translocation of p65. Additionally, PPPs and PC exhibited a stronger anti-inflammatory effect than that of EA. CONCLUSION The results indicated that PPPs possess potent anti-inflammatory effect, and PC was the main effective component in PPPs, which provided new insights into the utilization of PPPs to prevent inflammation-associated disorders.
Collapse
Affiliation(s)
- Lin Du
- Department of Food Quality and Safety, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi’an, China
- Department of Food Quality and Safety, College of Food & Bioengineering, Henan University of Science and Technology, Luoyang, China
| | - Jianke Li
- Department of Food Quality and Safety, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi’an, China
- University Key Laboratory of Food Processing Byproducts for Advanced Development and High Value Utilization, Shaanxi Normal University, Xi’an, China
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Shaanxi Normal University, Xi’an, China
| | - Xitong Zhang
- Department of Food Quality and Safety, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi’an, China
| | - Lifang Wang
- Department of Food Quality and Safety, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi’an, China
| | - Weimin Zhang
- Department of Food Quality and Safety, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi’an, China
| | - Mi Yang
- Department of Food Quality and Safety, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi’an, China
| | - Chen Hou
- Department of Food Quality and Safety, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi’an, China
- University Key Laboratory of Food Processing Byproducts for Advanced Development and High Value Utilization, Shaanxi Normal University, Xi’an, China
| |
Collapse
|
62
|
Wang L, Zhong C, Zu Y, Zhao X, Deng Y, Wu W, Sun X, Wang L, Wu M. Preparation and characterization of luteolin nanoparticles for enhance bioavailability and inhibit liver microsomal peroxidation in rats. J Funct Foods 2019. [DOI: 10.1016/j.jff.2019.01.054] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
|
63
|
Aziz N, Kim MY, Cho JY. Anti-inflammatory effects of luteolin: A review of in vitro, in vivo, and in silico studies. JOURNAL OF ETHNOPHARMACOLOGY 2018; 225:342-358. [PMID: 29801717 DOI: 10.1016/j.jep.2018.05.019] [Citation(s) in RCA: 356] [Impact Index Per Article: 50.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 05/16/2018] [Accepted: 05/16/2018] [Indexed: 06/08/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Luteolin (3', 4', 5,7-tetrahydroxyflavone) has been identified as commonly present in plants. Plants with a high luteolin content have been used ethnopharmacologically to treat inflammation-related symptoms. Both isolated luteolin and extracts from luteolin-rich plants have been studied using various models and exhibited anti-inflammatory activity. AIM OF THE REVIEW This paper uses recent research findings with a broad range of study models to describe the anti-inflammatory activity of luteolin, particularly its mechanisms at the molecular level; provide guidance for future research; and evaluate the feasibility of developing luteolin into an anti-inflammatory drug. MATERIALS AND METHODS We summarize reports about the anti-inflammatory activity of luteolin published since 2009, which we found in MEDLINE/PubMed, Scopus, Web of Knowledge, and Google Scholar. To acquire broad information, we extended our search to online FDA documents. RESULTS Luteolin is a flavonoid commonly found in medicinal plants and has strong anti-inflammatory activity in vitro and in vivo. Some of its derivatives, such as luteolin-7-O-glucoside, have also shown anti-inflammatory activity. The action mechanism of luteolin varies, but Src in the nuclear factor (NF)-κB pathway, MAPK in the activator protein (AP)- 1 pathway, and SOCS3 in the signal transducer and activator of transcription 3 (STAT3) pathway are its major target transcription factors. A clinical trial with a formulation containing luteolin showed excellent therapeutic effect against inflammation-associated diseases. CONCLUSION In silico, in vitro, in vivo, and clinical studies strongly suggest that the major pharmacological mechanism of luteolin is its anti-inflammatory activity, which derives from its regulation of transcription factors such as STAT3, NF-κB, and AP-1. Much work remains to ensure the safety, quality, and efficacy of luteolin before it can be used to treat inflammation-related diseases in humans.
Collapse
Affiliation(s)
- Nur Aziz
- Department of Genetic Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Mi-Yeon Kim
- School of Systems Biomedical Science, Soongsil University, Seoul 06978, Republic of Korea.
| | - Jae Youl Cho
- Department of Genetic Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| |
Collapse
|
64
|
Elmazoglu Z, Yar Saglam AS, Sonmez C, Karasu C. Luteolin protects microglia against rotenone-induced toxicity in a hormetic manner through targeting oxidative stress response, genes associated with Parkinson’s disease and inflammatory pathways. Drug Chem Toxicol 2018; 43:96-103. [PMID: 30207190 DOI: 10.1080/01480545.2018.1504961] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Zubeyir Elmazoglu
- Cellular Stress Response and Signal Transduction Research Laboratory, Department of Medical Pharmacology, Gazi University, Ankara, Turkey
| | | | - Can Sonmez
- Faculty of Medicine, Gazi University, Ankara, Turkey
| | - Cimen Karasu
- Cellular Stress Response and Signal Transduction Research Laboratory, Department of Medical Pharmacology, Gazi University, Ankara, Turkey
| |
Collapse
|
65
|
Du K, Liu M, Zhong X, Yao W, Xiao Q, Wen Q, Yang B, Wei M. Epigallocatechin Gallate Reduces Amyloid β-Induced Neurotoxicity via Inhibiting Endoplasmic Reticulum Stress-Mediated Apoptosis. Mol Nutr Food Res 2018; 62:e1700890. [PMID: 29446867 DOI: 10.1002/mnfr.201700890] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 01/08/2018] [Indexed: 01/01/2023]
Abstract
SCOPE We investigated the role of endoplasmic reticulum (ER) stress in the protective effects of EGCG against the neuronal apoptosis in Aβ1-42 -induced SH-SY5Y cells and APP/PS1 transgenic mice. METHODS AND RESULTS Cell viability (CCK8 assay), flow cytometry, Hoechst 33258 staining, immunohistochemistry, transmission electron microscopy (TEM), and western blotting were used. EGCG prevented Aβ1-42-induced toxicity in SH-SY5Y cells, increased cell viability, and decreased apoptosis in a dose-dependent manner. In a subsequent mechanism study, it was found that this effect contributed to the down-regulation of GRP78, CHOP, cleaved-caspase-12 and -3. Moreover, EGCG also reduced the cytotoxicity induced by tunicamycin (TM) and thapsigargin (TG), two ER stress activators. Consistent with the in vitro study, EGCG inhibited neuronal apoptosis in the cortex of APP/PS1 transgenic mice, with the mitigation of ER abnormal ultrastructural swelling and the downregulation of ER-stress-associated proteins. CONCLUSION These results indicate that EGCG attenuates the neurotoxicity in Alzheimer's disease (AD) via a novel mechanism that involves inhibition of ER-stress-associated neuronal apoptosis in vitro and in vivo, suggesting the tremendous potential of EGCG for use in a nutritional preventive strategy against AD.
Collapse
Affiliation(s)
- Ke Du
- School of Pharmacy, Department of Pharmacology, China Medical University, Shenyang, Liaoning, China.,Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, Shenyang, Liaoning, China
| | - Mingyan Liu
- School of Pharmacy, Department of Pharmacology, China Medical University, Shenyang, Liaoning, China.,Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, Shenyang, Liaoning, China
| | - Xin Zhong
- School of Pharmacy, Department of Pharmacology, China Medical University, Shenyang, Liaoning, China.,Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, Shenyang, Liaoning, China
| | - Weifan Yao
- School of Pharmacy, Department of Pharmacology, China Medical University, Shenyang, Liaoning, China.,Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, Shenyang, Liaoning, China
| | - Qinghuan Xiao
- School of Pharmacy, Department of Ion Channel Pharmacology, China Medical University, Shenyang, Liaoning, China
| | - Quan Wen
- Shanghai Newsummit Biopharma Group, Zhangjiang Hi-Tech Park, Pudong District, Shanghai, China
| | - Bo Yang
- Shanghai Newsummit Biopharma Group, Zhangjiang Hi-Tech Park, Pudong District, Shanghai, China
| | - Minjie Wei
- School of Pharmacy, Department of Pharmacology, China Medical University, Shenyang, Liaoning, China.,Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, Shenyang, Liaoning, China
| |
Collapse
|
66
|
Gupta G, Tiwari J, Dahiya R, Kumar Sharma R, Mishra A, Dua K. Recent updates on neuropharmacological effects of luteolin. EXCLI JOURNAL 2018; 17:211-214. [PMID: 29743859 PMCID: PMC5938528 DOI: 10.17179/excli2018-1041] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 02/19/2018] [Indexed: 02/04/2023]
Affiliation(s)
- Gaurav Gupta
- School of Pharmaceutical Sciences, Jaipur National University, Jagatpura 302017, Jaipur, India
| | - Juhi Tiwari
- School of Pharmaceutical Sciences, Jaipur National University, Jagatpura 302017, Jaipur, India
| | - Rajiv Dahiya
- Laboratory of Peptide Research and Development, School of Pharmacy, Faculty of Medical Sciences, The University of the West Indies, St. Augustine, Trinidad & Tobago, West Indies
| | - Rakesh Kumar Sharma
- School of Pharmacy, Suresh Gyan Vihar University, Jagatpura 302017, Jaipur, India
| | - Anurag Mishra
- School of Pharmacy, Suresh Gyan Vihar University, Jagatpura 302017, Jaipur, India
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, NSW 2007, Australia.,School of Pharmaceutical Sciences, Shoolini University, Solan, Himachal Pradesh, 173229, India
| |
Collapse
|
67
|
Chitosan oligosaccharide ameliorates acute lung injury induced by blast injury through the DDAH1/ADMA pathway. PLoS One 2018; 13:e0192135. [PMID: 29415054 PMCID: PMC5802901 DOI: 10.1371/journal.pone.0192135] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 01/17/2018] [Indexed: 01/26/2023] Open
Abstract
Objective To investigate the protective effect of chitosan oligosaccharide (COS) on acute lung injury (ALI) caused by blast injury, and explore possible molecular mechanisms. Methods A mouse model of blast injury-induced ALI was established using a self-made explosive device. Thirty mice were randomly assigned to control, ALI and ALI + COS groups. An eight-channel physiological monitor was used to determine the mouse physiological index. Enzyme linked immunosorbent assay was used to measure serum inflammatory factors. Hematoxylin-eosin staining, terminal deoxynucleotidyl transferase dUTP nick end labeling assay, immunofluorescence staining, real time-polymerase chain reaction and western blot assay were used to detect inflammatory reactions, oxidative stress and apoptosis. Results Mice were sacrificed 24 hours after successful model induction. Compared with the ALI group, the heart rate, respiration and PCO2 were significantly lower, but the PO2, TCO2 and HCO3- were significantly higher in the ALI + COS group. Compared to ALI alone, COS treatment of ALI caused a significant decrease in the wet/dry lung weight ratio, indicating a reduction in lung edema, inflammatory cell infiltration, levels of tumor necrosis factor-α, interleukin (IL)-1β, IL-4, IL-6 and nuclear factor kappa B mRNA and protein expression were reduced and IL-10 mRNA and protein expression was increased (P < 0.05). COS significantly inhibited reactive oxygen species, MDA5 and IREα mRNA and protein expressions, cell apoptosis and Bax and Caspase-3 mRNA and protein expressions, and significantly increased superoxide dismutase-1 mRNA expression, and Bcl-2 and Caspase-8 mRNA and protein expression (all P<0.05). COS significantly increased dimethylarginine dimethylaminohydrolase 1 (DDAH1) protein expression, and reduced ADMA and p38 protein expression (P< 0.05). Conclusion Blast injury causes inflammation, oxidative stress and apoptosis in the lung tissues of mice. COS has protective effects on blast injury-induced ALI, possibly by promoting DDAH1 expression and inhibiting ADMA and mitogen-activated protein kinase pathways.
Collapse
|
68
|
Yao ZH, Yao XL, Zhang Y, Zhang SF, Hu JC. Luteolin Could Improve Cognitive Dysfunction by Inhibiting Neuroinflammation. Neurochem Res 2018; 43:806-820. [DOI: 10.1007/s11064-018-2482-2] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 01/15/2018] [Accepted: 01/20/2018] [Indexed: 12/14/2022]
|
69
|
Song D, Jiang X, Liu Y, Sun Y, Cao S, Zhang Z. Asiaticoside Attenuates Cell Growth Inhibition and Apoptosis Induced by Aβ 1-42 via Inhibiting the TLR4/NF-κB Signaling Pathway in Human Brain Microvascular Endothelial Cells. Front Pharmacol 2018; 9:28. [PMID: 29441018 PMCID: PMC5797575 DOI: 10.3389/fphar.2018.00028] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 01/10/2018] [Indexed: 12/13/2022] Open
Abstract
Alzheimer's disease (AD) is a very common progressive neurodegenerative disorder with the highest incidence in the world. Dysfunction of the blood-brain barrier (BBB) may be responsible for the pathogenesis and pathology of AD for abnormally transporting amyloid-β (Aβ, the main component of the senile plaques) from the sera into the central nervous system. Aβ peptides induce apoptosis in human brain microvascular endothelial cells (hBMECs), the main component of BBB. Apoptosis in neuronal cells plays a critical role in the pathogenesis of AD. Asiaticoside, a natural glycoside extracted from Centella asiatica (L.) Urban, has an anti-apoptotic effect on hBMECs but the molecule mechanism remains unclear. Therefore, we investigate the protective effect of asiaticoside on Aβ1-42-induced cytotoxicity and apoptosis as well as associated mechanism in hBMECs with commonly used in vitro methods for clinical development of asiaticoside as a novel anti-AD agent. In the present study, we investigated the effects of asiaticoside on cytotoxicity by Cell Counting Kit-8 assay, mitochondrial membrane potential by JC-1 fluorescence analysis, anti-apoptosis by Hoechst 33258 staining and Annexin V-FITC (fluorescein isothiocyanate) and propidium iodide (PI) analyses, the expressions of TNF-α and IL-6 by enzyme-linked immunosorbent assay (ELISA) and TLR4, MyD88, TRAF6, p-NF-κB p65, and total NF-κB p65 by Western blotting, and nuclear translocation of NF-κB p65 by immunofluorescence analysis in hBMECs. The results showed that pretreatment of asiaticoside (25, 50, and 100 μM) for 12 h significantly attenuated cell growth inhibition and apoptosis, and restored declined mitochondrial membrane potential induced by Aβ1-42 (50 μM) in hBMECs. Asiaticoside also significantly downregulated the elevated expressions of TNF-α, IL-6, TLR4, MyD88, TRAF6, and p-NF-κB p65, as well as inhibited NF-κB p65 translocation from cytoplasm to nucleus induced by Aβ1-42 in hBMECs in a concentration-dependent manner. The possible underlying molecular mechanism of asiaticoside may be through inhibiting the TLR4/NF-κB signaling pathway. Therefore, asiaticoside may be developed as a novel agent for the prevention and/or treatment of AD clinically.
Collapse
Affiliation(s)
- Daqiang Song
- Department of Pharmacology, Southwest Medical University, Luzhou, China
| | - Xian Jiang
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Yiliu Liu
- Department of Pharmacology, Southwest Medical University, Luzhou, China
| | - Yuhong Sun
- Department of Pharmacology, Southwest Medical University, Luzhou, China
| | - Shousong Cao
- Department of Pharmacology, Southwest Medical University, Luzhou, China
| | - Zhuo Zhang
- Department of Pharmacology, Southwest Medical University, Luzhou, China
| |
Collapse
|
70
|
Fan S, Habib A, Liu J, Tan J. LED enhances anti-inflammatory effect of luteolin (3',4',5,7-tetrahydroxyflavone) in vitro. Am J Transl Res 2018; 10:283-291. [PMID: 29423013 PMCID: PMC5801366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 12/24/2017] [Indexed: 06/08/2023]
Abstract
Neuroinflammation is a complex pathological process usually results from abnormal microglial activation, thus, intervention in a microglial stimulation pathway could be a promising approach for the treatment of neurodegenerative diseases. Luteolin is an important bioflavonoid possesses anti-inflammatory properties, which is widely studied over these years. Light emitting diode (LED) therapy is reported to be a potential therapeutic strategy for many diseases including neurodegenerative diseases. However, little is known about the anti-inflammatory effect of LED therapy on activated microglial cells, even less is known whether there is a synergistic anti-inflammatory effect exist in LED and luteolin therapy. In this study, we aimed to confirm the anti-inflammatory effect of luteolin and LED combination therapy in lipopolysaccharide (LPS)-stimulated BV2 microglial cells. We showed that luteolin inhibited LPS-induced cytotoxicity, tumor necrosis factor alpha (TNFα) and interleukin-6 (IL-6) production through modulation of p38 and extracellular signal-regulated kinase (ERK) signaling in BV2 cells. In addition, LED therapy enhanced the anti-inflammatory effect of luteolin. These results suggest that a synergistic effect between luteolin and LED could be a new effective therapy in relieving neuroinflammation.
Collapse
Affiliation(s)
- Shengnuo Fan
- Rashid Laboratory for Developmental Neurobiology, Silver Child Development Center, Department of Psychiatry and Behavioral Neurosciences, Morsani College of Medicine, University of South FloridaTampa, FL33613, USA
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen UniversityGuangzhou 510120, PR China
- Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen UniversityGuangzhou 510120, PR China
- Laboratory of RNA and Major Diseases of Brain and Heart, Sun Yat-sen Memorial Hospital, Sun Yat-sen UniversityGuangzhou 510120, PR China
| | - Ahsan Habib
- Rashid Laboratory for Developmental Neurobiology, Silver Child Development Center, Department of Psychiatry and Behavioral Neurosciences, Morsani College of Medicine, University of South FloridaTampa, FL33613, USA
| | - Jun Liu
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen UniversityGuangzhou 510120, PR China
- Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen UniversityGuangzhou 510120, PR China
- Laboratory of RNA and Major Diseases of Brain and Heart, Sun Yat-sen Memorial Hospital, Sun Yat-sen UniversityGuangzhou 510120, PR China
| | - Jun Tan
- Rashid Laboratory for Developmental Neurobiology, Silver Child Development Center, Department of Psychiatry and Behavioral Neurosciences, Morsani College of Medicine, University of South FloridaTampa, FL33613, USA
| |
Collapse
|
71
|
Li Y, Kong F, Shao Q, Wang R, Hu E, Liu J, Jin C, He D, Xiao X. YAP Expression and Activity Are Suppressed by S100A7 via p65/NFκB-mediated Repression of ΔNp63. Mol Cancer Res 2017; 15:1752-1763. [DOI: 10.1158/1541-7786.mcr-17-0349] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 08/14/2017] [Accepted: 09/08/2017] [Indexed: 11/16/2022]
|
72
|
Kwon Y. Luteolin as a potential preventive and therapeutic candidate for Alzheimer's disease. Exp Gerontol 2017; 95:39-43. [PMID: 28528007 DOI: 10.1016/j.exger.2017.05.014] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 05/15/2017] [Accepted: 05/16/2017] [Indexed: 01/08/2023]
|