51
|
Xie Q, Xiong F, Wu X, Chen J, Gu X, Su C, Xiao L, Zheng Z, Wei Y, Ullah H, Zha L. Soyasaponins A 1 and A 2 exert anti-atherosclerotic functionalities by decreasing hypercholesterolemia and inflammation in high fat diet (HFD)-fed ApoE -/- mice. Food Funct 2020; 11:253-269. [PMID: 31956875 DOI: 10.1039/c9fo02654a] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2023]
Abstract
Atherosclerosis is a chronic inflammatory disease causing coronary heart attacks and strokes. Soyasaponins (SS), the phytochemicals naturally existing in soybeans and their products, have been shown to reduce hypercholesterolemia and inflammation, which are intimately related to the genesis and development of atherosclerosis. However, the anti-atherosclerotic functionality of soyasaponins remains unknown. The aim of this study was to investigate the effects of the supplementation of two types of soyasaponin monomers (A1 and A2) on atherosclerotic plaque formation, serum lipid profiles, and inflammation in ApoE gene knockout (ApoE-/-) mice. Sixty 5-week-old ApoE-/- male mice were fed with a high-fat diet (HFD) and intervened by SSA1 and SSA2 (10 and 20 μmol per kg BW, respectively) or simvastatin (10 μmol per kg BW) for 24 weeks. The atherosclerotic lesions in the aorta, aortic root, and innominate artery, lipid profile and inflammatory markers in serum, and TLR4/MyD88/NF-κB signaling in arterial tissues were determined. SSA1 and SSA2 decreased the plaque ratio in the aortic root and innominate artery but not in the entire aorta. In serum, SSA1 reduced TG, TC, and LDL-C but increased HDL-C; SSA2 decreased TC, TG, and LDL-C but did not affect HDL-C. Meanwhile, SSA1 increased TG, SSA2 increased TC, and both of them increased bile acids in the feces. SSA1 and SSA2 lowered TNF-α, MCP-1, and hs-crp in serum. Furthermore, SSA1 and SSA2 reduced the TLR4 and MyD88 expressions in the aorta and innominate artery and inhibited NF-κB p65 and IκBα phosphorylation in the aorta. These results suggest that SSA1 and SSA2 exert anti-atherosclerotic functionalities by decreasing hypercholesterolemia and inflammation in HFD-fed ApoE-/- mice.
Collapse
Affiliation(s)
- Qunying Xie
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, Guangdong, P. R. China.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
52
|
Lu S, Zhang Y, Li H, Zhang J, Ci Y, Han M. Ginsenoside Rb1 can ameliorate the key inflammatory cytokines TNF-α and IL-6 in a cancer cachexia mouse model. BMC Complement Med Ther 2020; 20:11. [PMID: 32020864 PMCID: PMC7076885 DOI: 10.1186/s12906-019-2797-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Accepted: 12/15/2019] [Indexed: 12/17/2022] Open
Abstract
Background Cancer cachexia is a severe condition that leads to the death of advanced cancer patients, and approximately 50~80% of cancer patients have cancer cachexia. Ginseng extract has been reported to have substantial anticancer and immune-enhancing effects; however, no study has reported the use of ginseng alone to treat cancer cachexia. Our study’s purpose was to investigate the therapeutic effects of ginseng-related monomers or mixtures on a cancer cachexia mouse model. Methods We selected BALB/c mice and injected the mice subcutaneously with C26 colon cancer cells to construct a cancer cachexia experimental animal model. The water extract of ginseng (WEG), two types of ginseng extracts (ginsenosides at doses of 5 mg/kg (GE5) and 50 mg/kg (GE50)) and ginsenoside Rb1 (Rb1) were used to treat cancer cachexia mice. Enzyme-linked immunosorbent assays (ELISAs) were used to analyze the inhibitory effects on two key inflammatory cytokines, tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6). Results Our experimental results show that GE5, GE50 and Rb1 significantly reduced the levels of TNF-α (P < 0.01) and IL-6 (P < 0.01), which are closely related to cancer cachexia; however, WEG, GE5, GE50 and Rb1 did not significantly improve the gastrocnemius muscle weight or the epididymal fat weight of mice with cancer cachexia. Conclusions These results indicate that GE5, GE50 and Rb1 may be useful for reducing symptoms due to inflammation by reducing the TNF-α and IL-6 cytokine levels in cancer cachexia mice, thereby ameliorating the symptoms of cancer cachexia. Our results may be beneficial for future studies on the use of Chinese herbal medicines to treat cancer cachexia.
Collapse
Affiliation(s)
- Shuai Lu
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, 19 Xinjiekouwai Street, Haidian district, Beijing, China
| | - Yubo Zhang
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, 19 Xinjiekouwai Street, Haidian district, Beijing, China
| | - Huajun Li
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, 19 Xinjiekouwai Street, Haidian district, Beijing, China
| | - Jing Zhang
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, 19 Xinjiekouwai Street, Haidian district, Beijing, China
| | - Yingqian Ci
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, 19 Xinjiekouwai Street, Haidian district, Beijing, China
| | - Mei Han
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, 19 Xinjiekouwai Street, Haidian district, Beijing, China.
| |
Collapse
|
53
|
Therapeutic potential of ginsenosides on diabetes: From hypoglycemic mechanism to clinical trials. J Funct Foods 2020. [DOI: 10.1016/j.jff.2019.103630] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
54
|
20( S)-Protopanaxadiol Saponins Mainly Contribute to the Anti-Atherogenic Effects of Panax notoginseng in ApoE Deficient Mice. Molecules 2019; 24:molecules24203723. [PMID: 31623159 PMCID: PMC6832312 DOI: 10.3390/molecules24203723] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 10/14/2019] [Accepted: 10/14/2019] [Indexed: 11/17/2022] Open
Abstract
Atherosclerosis mainly contributes to cardiovascular disease, a leading cause of global morbidity and mortality. Panax notoginseng saponins (PNS) are proved to therapeutically attenuate the formation of atherosclerotic lesions. According to different sapogenin, PNS are generally classified into 20(S)-protopanaxadiol saponins (PDS) and 20(S)-protopanaxatriol saponins (PTS). It was reported that PDS and PTS might exert diverse or even antagonistic bioactivities. In this study, the probable effects of PTS and PDS on atherosclerotic development were investigated and compared in ApoE-deficient mice (ApoE-/-). Male mice were gavaged daily by PNS (200 mg/kg/d), PTS (100 mg/kg/d), or PDS (100 mg/kg/d), respectively for eight weeks. The treatments of PNS and PDS, but not PTS, showed decreased atherosclerotic lesions in the entire aorta by 45.6% and 41.3%, respectively, as evaluated by an en-face method. Both PNS and PDS can improve the plaque vulnerability, as evidenced by the increased collagen fiber, increased expression of α- smooth muscle actin (α-SMA), and decreased Cluster of differentiation 14 (CD14). Additionally, PDS also inhibit the nuclear factor kappa B (NF-κB)-mediated vascular inflammation in the aorta. In conclusion, PDS, but not PTS, might mainly contribute to the anti-atherosclerosis of P. notoginseng.
Collapse
|
55
|
Xie W, Meng X, Zhai Y, Ye T, Zhou P, Nan F, Sun G, Sun X. Antidepressant-like effects of the Guanxin Danshen formula via mediation of the CaMK II-CREB-BDNF signalling pathway in chronic unpredictable mild stress-induced depressive rats. ANNALS OF TRANSLATIONAL MEDICINE 2019; 7:564. [PMID: 31807545 DOI: 10.21037/atm.2019.09.39] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Background Depression is a chronic and recurrent syndrome of mood disorder causing immense social and economic burden; thus, treatment should be improved. Guanxin Danshen formula (GXDSF), a natural botanical drug composition prescription, has significant cardiovascular protective effects and is widely used in the clinical treatment of myocardial ischaemic diseases. However, it is still unclear and seldom studied whether GXDSF has neuroprotective effects against depressive disorders. This study explored whether GXDSF has antidepressant-like effects in rats exposed to chronic unpredictable mild stress (CUMS) and analysed the possible underlying neurotrophic expression and psychotropic mechanisms. Methods The present study was designed to investigate the antidepressant effects of GXDSF treatment in a CUMS-induced rat model. Based on the clinical doses, the drug-treated group was intragastrically administered GXDSF for 30 days, and rats were simultaneously exposed to CUMS stimulation for 30 days. After induction and drug administration, the depression-like behaviours were determined via the sucrose preference test (SPT), the open field test (OFT), the tail suspension test (TST), and the forced swim test (FST). ELISA kits were used to examine the monoaminergic neurotransmitters, monoamine oxidase (MAO) and Ca2+ levels in the hippocampus. Moreover, we measured and analysed the brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF) levels and the upstream regulation and signal pathways of BDNF and NGF to explore their related mechanisms in this animal model of depression, including calcium-calmodulin dependent protein kinase-II (CaMKII) and cAMP response element-binding (CREB). Results The results revealed that GXDSF may possess significant antidepressant-like effects via improving body weight, raising the sucrose preference in the SPT, increasing the total distance, the number of upright stands, and the residence time of the central zone in the open field test (OPF) and reducing the immobility time in the TST and FST. In addition, GXDSF significantly upregulated the relative levels of neurotransmitters, including dopamine (DA), norepinephrine (NE), and serotonin (5-HT), in a dose-dependent manner and inhibited MAO activities in the hippocampus. Moreover, GXDSF reversed the decline in intracellular CREB and p-CREB expression induced by CUMS, downregulated the phosphorylation levels of intracellular CaMKII and its two subunits CaMKIIα and CaMKIIβ in the hippocampus, and thus, clearly upregulated the downstream effector protein expression levels of BDNF, NGF, and synitaxine-1 in the hippocampus. These data suggest that the antidepressant effects of GXDSF have a potential relationship with regulating changes in the CaMKII-CREB-BDNF pathway. Conclusions Despite several limitations of this study, the results have suggested that GXDSF administration possesses antidepressant-like effects in CUMS-treated rats and provide the first in vivo demonstration of a possible mechanism of GXDSF via regulating changes in the CaMKII-CREB-BDNF signalling pathway. These findings provide a novel potential substrate by which herbal antidepressants may exert therapeutic effects in the treatment of depression.
Collapse
Affiliation(s)
- Weijie Xie
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, China.,Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing 100193, China.,Key Laboratory of Efficacy Evaluation of Chinese Medicine against Glycolipid Metabolic Disorders, State Administration of Traditional Chinese Medicine, Beijing 100193, China.,Zhongguancun Open Laboratory of the Research and Development of Natural Medicine and Health Products, Beijing 100193, China
| | - Xiangbao Meng
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, China.,Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing 100193, China.,Key Laboratory of Efficacy Evaluation of Chinese Medicine against Glycolipid Metabolic Disorders, State Administration of Traditional Chinese Medicine, Beijing 100193, China.,Zhongguancun Open Laboratory of the Research and Development of Natural Medicine and Health Products, Beijing 100193, China
| | - Yadong Zhai
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, China.,Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing 100193, China.,Key Laboratory of Efficacy Evaluation of Chinese Medicine against Glycolipid Metabolic Disorders, State Administration of Traditional Chinese Medicine, Beijing 100193, China.,Zhongguancun Open Laboratory of the Research and Development of Natural Medicine and Health Products, Beijing 100193, China
| | - Tianyuan Ye
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, China.,Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing 100193, China.,Key Laboratory of Efficacy Evaluation of Chinese Medicine against Glycolipid Metabolic Disorders, State Administration of Traditional Chinese Medicine, Beijing 100193, China.,Zhongguancun Open Laboratory of the Research and Development of Natural Medicine and Health Products, Beijing 100193, China
| | - Ping Zhou
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, China.,Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing 100193, China.,Key Laboratory of Efficacy Evaluation of Chinese Medicine against Glycolipid Metabolic Disorders, State Administration of Traditional Chinese Medicine, Beijing 100193, China.,Zhongguancun Open Laboratory of the Research and Development of Natural Medicine and Health Products, Beijing 100193, China
| | - Fengwei Nan
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, China.,Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing 100193, China.,Key Laboratory of Efficacy Evaluation of Chinese Medicine against Glycolipid Metabolic Disorders, State Administration of Traditional Chinese Medicine, Beijing 100193, China.,Zhongguancun Open Laboratory of the Research and Development of Natural Medicine and Health Products, Beijing 100193, China
| | - Guibo Sun
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, China.,Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing 100193, China.,Key Laboratory of Efficacy Evaluation of Chinese Medicine against Glycolipid Metabolic Disorders, State Administration of Traditional Chinese Medicine, Beijing 100193, China.,Zhongguancun Open Laboratory of the Research and Development of Natural Medicine and Health Products, Beijing 100193, China
| | - Xiaobo Sun
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, China.,Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing 100193, China.,Key Laboratory of Efficacy Evaluation of Chinese Medicine against Glycolipid Metabolic Disorders, State Administration of Traditional Chinese Medicine, Beijing 100193, China.,Zhongguancun Open Laboratory of the Research and Development of Natural Medicine and Health Products, Beijing 100193, China
| |
Collapse
|
56
|
HMGB1-triggered inflammation inhibition of notoginseng leaf triterpenes against cerebral ischemia and reperfusion injury via MAPK and NF-κB signaling pathways. Biomolecules 2019; 9:biom9100512. [PMID: 31547018 PMCID: PMC6843331 DOI: 10.3390/biom9100512] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 09/18/2019] [Accepted: 09/18/2019] [Indexed: 01/01/2023] Open
Abstract
Ischemic stroke is a clinically common cerebrovascular disease whose main risks include necrosis, apoptosis and cerebral infarction, all caused by cerebral ischemia and reperfusion (I/R) injury. This process has particular significance for the treatment of stroke patients. Notoginseng leaf triterpenes (PNGL), as a valuable medicine, have been discovered to have neuroprotective effects. However, it was not confirmed that whether PNGL may possess neuroprotective effects against cerebral I/R injury. To explore the neuroprotective effects of PNGL and their underlying mechanisms, a middle cerebral artery occlusion/reperfusion (MCAO/R) model was established. In vivo results suggested that in MCAO/R model rats, PNGL pretreatment (73.0, 146, 292 mg/kg) remarkably decreased infarct volume, reduced brain water content, and improved neurological functions; moreover, PNGL (73.0, 146, 292 mg/kg) significantly alleviated blood-brain barrier (BBB) disruption and inhibited neuronal apoptosis and neuronal loss caused by cerebral I/R injury, while PNGL with a different concertation (146, 292 mg/kg) significantly reduced the concentrations of IL-6, TNF-α, IL-1 β, and HMGB1 in serums in a dose-dependent way, which indicated that inflammation inhibition could be involved in the neuroprotective effects of PNGL. The immunofluorescence and western blot analysis showed PNGL decreased HMGB1 expression, suppressed the HMGB1-triggered inflammation, and inhibited microglia activation (IBA1) in hippocampus and cortex, thus dose-dependently downregulating inflammatory cytokines including VCAM-1, MMP-9, MMP-2, and ICAM-1 concentrations in ischemic brains. Interestingly, PNGL administration (146 mg/kg) significantly downregulated the levels of p-P44/42, p-JNK1/2 and p-P38 MAPK, and also inhibited expressions of the total NF-κB and phosphorylated NF-κB in ischemic brains, which was the downstream pathway triggered by HMGB1. All of these results indicated that the protective effects of PNGL against cerebral I/R injury could be associated with inhibiting HMGB1-triggered inflammation, suppressing the activation of MAPKs and NF-κB, and thus improved cerebral I/R-induced neuropathological changes. This study may offer insight into discovering new active compounds for the treatment of ischemic stroke.
Collapse
|
57
|
Effects of ginsenoside Rb1 on spinal cord ischemia-reperfusion injury in rats. J Orthop Surg Res 2019; 14:259. [PMID: 31412899 PMCID: PMC6694654 DOI: 10.1186/s13018-019-1299-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 07/30/2019] [Indexed: 12/17/2022] Open
Abstract
Background The aim of this study was to evaluate the effects of different doses of ginsenoside Rb1 (GRb1) pretreatment on spinal cord ischemia-reperfusion (SCII) in rats and explore the potential mechanisms about the expression of survivin protein after the intervention. Methods A total of 90 healthy adult Sprague-Dawley (SD) rats were randomly divided into six groups: sham-operated (n = 15), SCII model (n = 15), and GRb1-treated groups (n = 60). The GRb1-treated group was divided into four subgroups: 10 mg/kg, 20 mg/kg, 40 mg/kg, and 80 mg/kg (n = 15). The corresponding dose of GRb1 was injected intraperitoneally 30 min before operation and every day after operation. Forty-eight hours after model establishment, the neurological function of hind limbs was measured with Basso, Beattie, and Bresnahan (BBB) scale. The superoxide dismutase (SOD) and malondialdehyde (MDA) levels in serum and spinal cord tissue were detected respectively. The expression of survivin protein was observed by immunofluorescence staining. HE and TUNEL staining were used to observe neural cell injury and apoptosis, respectively, in the spinal cord of rats with SCII. Results The intervention of different doses of GRb1 could increase SOD activity and decrease MDA content in serum and spinal cord tissue, increase survivin protein expression, and decrease neuronal apoptosis. It was dose-dependent, but there was no significant change between 40 mg/kg and 80 mg/kg. Conclusions GRb1 could reduce the cell apoptosis induced by SCII through inhibiting oxidative stress. It can also inhibit apoptosis by promoting the expression of Survivin protein. Ginsenoside Rb1 had a dose-dependent protective effect on SCII in the dose range of 10 mg/kg–40 mg/kg.
Collapse
|
58
|
Thelenota ananas saponin extracts attenuate the atherosclerosis in apoE−/− mice by modulating lipid metabolism. J Funct Foods 2019. [DOI: 10.1016/j.jff.2019.04.065] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
|
59
|
Li R, Wang X, Wu S, Wu Y, Chen H, Xin J, Li H, Lan J, Xue K, Li X, Zhuo C, He J, Tang CS, Jiang W. Irisin ameliorates angiotensin II-induced cardiomyocyte apoptosis through autophagy. J Cell Physiol 2019; 234:17578-17588. [PMID: 30793300 DOI: 10.1002/jcp.28382] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 01/22/2019] [Accepted: 01/24/2019] [Indexed: 02/05/2023]
Abstract
Cardiac hypertrophy is the main cause of heart failure and sudden death in patients. But the pathogenesis is unclear. Angiotensin II may contribute to cardiac hypertrophy in response to pressure overload. In angiotensin II-treated cardiomyocytes, there is a larger cross-sectional area, more apoptosis cells, and a reduction of irisin expression. An increase in P62, an autophagy flux index, as well as LC3II, were observed in cardiomyocytes after angiotensin II-induced injury. Surprisely, irisin supplementation increased LC3II expression and decreased P62 expression, consisted of results of RFP-GFP-LC3B adenovirus transfection, and reduced cardiomyocyte apoptosis, meanwhile, the protection of irisin was reversed by the autophagy inhibitor 3-methyladenine. In animal experiments, overexpression of irisin reduced cardiomyocyte apoptosis and alleviated myocardial hypertrophy caused by pressure overload. The above results indicate that irisin-induced protective autophagy and alleviated the apoptosis signaling pathway in cardiomyocytes, consequently reducing cardiomyocyte apoptosis after angiotensin II-induced injury. Hence, increasing irisin expression may be a new way to improve cardiac function and quality of life in patients with cardiac hypertrophy.
Collapse
Affiliation(s)
- Ruli Li
- Department of Pharmacy, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, People's Republic of China.,Department of State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China.,Deparment of Molecular Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Xiaoxiao Wang
- Department of Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing Cancer Institute, Chongqing Cancer Hospital, Chongqing, China
| | - Sisi Wu
- Deparment of Molecular Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Yao Wu
- Deparment of Molecular Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Hongying Chen
- Deparment of Molecular Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Juanjuan Xin
- Deparment of Molecular Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - He Li
- Deparment of Molecular Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Jie Lan
- Deparment of Molecular Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Kunyue Xue
- Deparment of Molecular Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Xue Li
- Deparment of Molecular Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Caili Zhuo
- Deparment of Molecular Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Jinhan He
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Chao-Shu Tang
- Department of Pathology and Physiology, Peking University Health Science Center, Beijing, People's Republic of China
| | - Wei Jiang
- Deparment of Molecular Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China
| |
Collapse
|
60
|
Jang YJ, Kim JH, Byun S. Modulation of Autophagy for Controlling Immunity. Cells 2019; 8:cells8020138. [PMID: 30744138 PMCID: PMC6406335 DOI: 10.3390/cells8020138] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 02/01/2019] [Accepted: 02/07/2019] [Indexed: 02/07/2023] Open
Abstract
Autophagy is an essential process that maintains physiological homeostasis by promoting the transfer of cytoplasmic constituents to autophagolysosomes for degradation. In immune cells, the autophagy pathway plays an additional role in facilitating proper immunological functions. Specifically, the autophagy pathway can participate in controlling key steps in innate and adaptive immunity. Accordingly, alterations in autophagy have been linked to inflammatory diseases and defective immune responses against pathogens. In this review, we discuss the various roles of autophagy signaling in coordinating immune responses and how these activities are connected to pathological conditions. We highlight the therapeutic potential of autophagy modulators that can impact immune responses and the mechanisms of action responsible.
Collapse
Affiliation(s)
- Young Jin Jang
- Research Group of Natural Materials and Metabolism, Korea Food Research Institute, Wanjugun55365, Korea.
| | - Jae Hwan Kim
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Korea.
| | - Sanguine Byun
- Division of Bioengineering, Incheon National University, Incheon 22012, Korea.
| |
Collapse
|