51
|
Bai Y, Yang H, Zhang G, Hu L, Lei Y, Qin Y, Yang Y, Wang Q, Li R, Mao Q. Inhibitory effects of resveratrol on the adhesion, migration and invasion of human bladder cancer cells. Mol Med Rep 2016; 15:885-889. [PMID: 28000872 DOI: 10.3892/mmr.2016.6051] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 11/04/2016] [Indexed: 11/06/2022] Open
Abstract
Resveratrol is a polyphenolic compound, which has been revealed to induce apoptosis in numerous human cancer cells; however, the effects of resveratrol on the migration and invasion of human bladder cancer cells have not been reported. The present study aimed to evaluate the anti‑metastatic potential of resveratrol against bladder cancer and its mechanism of action. The results indicated that resveratrol inhibits the adhesion, migration and invasion of bladder cancer cells in a dose‑dependent manner. Resveratrol was shown to significantly inhibit the expression and secretion of matrix metalloproteinase (MMP)‑2 and MMP‑9 in bladder cancer cells. Furthermore, resveratrol suppressed the phosphorylation of c‑Jun N‑terminal kinase and extracellular signal‑regulated protein kinase. In conclusion, the present study is the first, to the best of our knowledge, to demonstrate that resveratrol may be considered a novel anticancer agent for the treatment of bladder cancer via the inhibition of migration and invasion.
Collapse
Affiliation(s)
- Yu Bai
- Department of Urology, The Third Affiliated Hospital of Kunming Medical University, Tumor Hospital of Yunnan Province, Kunming, Yunnan 650118, P.R. China
| | - Hong Yang
- Department of Urology, The Third Affiliated Hospital of Kunming Medical University, Tumor Hospital of Yunnan Province, Kunming, Yunnan 650118, P.R. China
| | - Guoying Zhang
- Department of Urology, The Third Affiliated Hospital of Kunming Medical University, Tumor Hospital of Yunnan Province, Kunming, Yunnan 650118, P.R. China
| | - Libing Hu
- Department of Urology, The Third Affiliated Hospital of Kunming Medical University, Tumor Hospital of Yunnan Province, Kunming, Yunnan 650118, P.R. China
| | - Yonghong Lei
- Department of Urology, The Third Affiliated Hospital of Kunming Medical University, Tumor Hospital of Yunnan Province, Kunming, Yunnan 650118, P.R. China
| | - Yang Qin
- Department of Urology, The Third Affiliated Hospital of Kunming Medical University, Tumor Hospital of Yunnan Province, Kunming, Yunnan 650118, P.R. China
| | - Yong Yang
- Department of Urology, The Third Affiliated Hospital of Kunming Medical University, Tumor Hospital of Yunnan Province, Kunming, Yunnan 650118, P.R. China
| | - Qilin Wang
- Department of Urology, The Third Affiliated Hospital of Kunming Medical University, Tumor Hospital of Yunnan Province, Kunming, Yunnan 650118, P.R. China
| | - Ruiqian Li
- Department of Urology, The Third Affiliated Hospital of Kunming Medical University, Tumor Hospital of Yunnan Province, Kunming, Yunnan 650118, P.R. China
| | - Qiqi Mao
- Department of Urology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| |
Collapse
|
52
|
Pavan AR, Silva GDBD, Jornada DH, Chiba DE, Fernandes GFDS, Man Chin C, Dos Santos JL. Unraveling the Anticancer Effect of Curcumin and Resveratrol. Nutrients 2016; 8:nu8110628. [PMID: 27834913 PMCID: PMC5133053 DOI: 10.3390/nu8110628] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2016] [Revised: 09/24/2016] [Accepted: 09/27/2016] [Indexed: 12/16/2022] Open
Abstract
Resveratrol and curcumin are natural products with important therapeutic properties useful to treat several human diseases, including cancer. In the last years, the number of studies describing the effect of both polyphenols against cancer has increased; however, the mechanism of action in all of those cases is not completely comprehended. The unspecific effect and the ability to interfere in assays by both polyphenols make this challenge even more difficult. Herein, we analyzed the anticancer activity of resveratrol and curcumin reported in the literature in the last 11 years, in order to unravel the molecular mechanism of action of both compounds. Molecular targets and cellular pathways will be described. Furthermore, we also discussed the ability of these natural products act as chemopreventive and its use in association with other anticancer drugs.
Collapse
Affiliation(s)
- Aline Renata Pavan
- School of Pharmaceutical Sciences, UNESP-Univ Estadual Paulista, Araraquara 14800903, Brazil.
| | | | | | - Diego Eidy Chiba
- School of Pharmaceutical Sciences, UNESP-Univ Estadual Paulista, Araraquara 14800903, Brazil.
| | | | - Chung Man Chin
- School of Pharmaceutical Sciences, UNESP-Univ Estadual Paulista, Araraquara 14800903, Brazil.
| | - Jean Leandro Dos Santos
- School of Pharmaceutical Sciences, UNESP-Univ Estadual Paulista, Araraquara 14800903, Brazil.
| |
Collapse
|
53
|
Cui X, Jing X, Wu X, Yan M. Protective effect of resveratrol on spermatozoa function in male infertility induced by excess weight and obesity. Mol Med Rep 2016; 14:4659-4665. [PMID: 27748829 PMCID: PMC5102034 DOI: 10.3892/mmr.2016.5840] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 09/01/2016] [Indexed: 11/29/2022] Open
Abstract
Male infertility is a complex, multifactorial and polygenic disease that contributes to ~50% cases of infertility. Previous studies have demonstrated that excess weight and obesity factors serve an important role in the development of male infertility. An increasing number of studies have reported that resveratrol may regulate the response of cells to specific stimuli that induce cell injury, as well as decrease germ cell apoptosis in mice or rats. In the present study, the semen quality and serum sex hormone levels were evaluated in 324 men, which included 73 underweight, 82 normal weight, 95 overweight and 74 obese men. All patients were referred to The Reproductive Medicine Center of Shanxi Women and Infants Hospital (Taiyuan, China) between January 2013 and January 2015. The aim of the present study was to investigate the effects of resveratrol treatment on the motility, plasma zinc concentration and acrosin activity of sperm from obese males. The sperm concentration, normal sperm morphology, semen volumes, DNA fragmentation rates and testosterone levels in men from the overweight and obese groups were markedly decreased when compared with men in the normal weight group. In addition, the progressive motility, seminal plasma zinc concentration and spermatozoa acrosin activity were notably decreased in the obese group compared with the normal weight group. However, estradiol levels were significantly increased in the overweight, obese and underweight groups compared with the normal weight group. Notably, semen samples from obese males with astenospermia treated with 0–100 µmol/l resveratrol for 30 min demonstrated varying degrees of improvement in sperm motility. When these semen samples were treated with 30 µmol/l resveratrol, sperm motility improved when compared to other doses of resveratrol. Therefore, 30 µmol/l resveratrol was selected for further experiments. Upon treatment of semen samples with resveratrol (30 µmol/l) for 30 min, the seminal plasma zinc concentration and spermatozoa acrosin activity increased significantly in the experimental group compared with the control group. These data suggest that male obesity negatively impacts on male reproductive potential, not only through altering hormone levels, but also by directly altering sperm function. In addition, resveratrol may have a therapeutic and protective effect against obesity-induced abnormalities in semen.
Collapse
Affiliation(s)
- Xiangrong Cui
- Reproductive Medicine Center, Children's Hospital of Shanxi and Women Health Center of Shanxi, Taiyuan, Shanxi 030000, P.R. China
| | - Xuan Jing
- Clinical Laboratory, Shanxi Province People's Hospital, Taiyuan, Shanxi 030000, P.R. China
| | - Xueqing Wu
- Reproductive Medicine Center, Children's Hospital of Shanxi and Women Health Center of Shanxi, Taiyuan, Shanxi 030000, P.R. China
| | - Meiqin Yan
- Reproductive Medicine Center, Children's Hospital of Shanxi and Women Health Center of Shanxi, Taiyuan, Shanxi 030000, P.R. China
| |
Collapse
|
54
|
Tang H, Zhao J, Zhang L, Zhao J, Zhuang Y, Liang P. SRPX2 Enhances the Epithelial-Mesenchymal Transition and Temozolomide Resistance in Glioblastoma Cells. Cell Mol Neurobiol 2016; 36:1067-76. [PMID: 26643178 DOI: 10.1007/s10571-015-0300-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 11/05/2015] [Indexed: 12/22/2022]
Abstract
Glioblastoma (GBM) is the most common and most aggressive central nervous system tumor in adults. Due to GBM cell invasiveness and resistance to chemotherapy, current medical interventions are not satisfactory, and the prognosis for GBM is poor. It is necessary to investigate the underlying mechanism of GBM metastasis and drug resistance so that more effective treatments can be developed for GBM patients. sushi repeat-containing protein, X-linked 2 (SRPX2) is a prognostic biomarker in many different cancer cell lines and is associated with poor prognosis in cancer patients. SRPX2 overexpression promotes interactions between tumor and endothelial cells, leading to tumor progression and metastasis. We hypothesize that SRPX2 also contributes to GBM chemotherapy resistance and metastasis. Our results revealed that GBM tumor samples from 42 patients expressed higher levels of SRPX2 than the control normal brain tissue samples. High-SRPX2 expression levels are correlated with poor prognosis in those patients, as well as resistance to temozolomide in cultured GBM cells. Up-regulating SRPX2 expression in cultured GBM cell lines facilitated invasiveness and migration of GBM cells, while down-regulating SRPX2 through RNA interference was inhibitory. These results suggest that SRPX2 plays an important role in GBM metastasis. Epithelial to mesenchymal transition (EMT) is one of the processes that facilitate GBM metastasis and resistance to chemotherapy. EMT marker expression was decreased in SRPX2 down-regulated GBM cells, and MAPK signaling pathway marker expression was also decreased when SRPX2 is knocked down in GBM-cultured cells. Blocking the MAPK signaling pathway inhibited GBM metastasis but did not inhibit cell invasion and migration in SRPX2 down-regulated cells. Our results indicate that SRPX2 facilitates GBM metastasis by enhancing the EMT process via the MAPK signaling pathway.
Collapse
Affiliation(s)
- Haitao Tang
- Department of Neurosurgery, The Third Affiliated Hospital of Harbin Medical University, 150 Haping Road, Nangang District, Harbin, 150081, Heilongjiang, China
- Department of Neurosurgery, The General Hospital of Daqing Oil Field, 9 Zhongkang Road, Saertu District, Daqing, 163001, Heilongjiang, China
| | - Jiaxin Zhao
- Department of Neurosurgery, The Fourth Affiliated Hospital of Harbin Medical University, 37 Yiyuan Road, Nangang District, Harbin, 150001, Heilongjiang, China
| | - Liangyu Zhang
- Department of Medical Oncology, The General Hospital of Daqing Oil Field, 9 Zhongkang Road, Saertu District, Daqing, 163001, Heilongjiang, China
| | - Jiang Zhao
- Department of Neurosurgery, The General Hospital of Daqing Oil Field, 9 Zhongkang Road, Saertu District, Daqing, 163001, Heilongjiang, China
| | - Yongzhi Zhuang
- Department of Medical Oncology, The General Hospital of Daqing Oil Field, 9 Zhongkang Road, Saertu District, Daqing, 163001, Heilongjiang, China
| | - Peng Liang
- Department of Neurosurgery, The Third Affiliated Hospital of Harbin Medical University, 150 Haping Road, Nangang District, Harbin, 150081, Heilongjiang, China.
| |
Collapse
|
55
|
Genetic and epigenetic cancer chemoprevention on molecular targets during multistage carcinogenesis. Arch Toxicol 2016; 90:2389-404. [PMID: 27538406 DOI: 10.1007/s00204-016-1813-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 08/04/2016] [Indexed: 12/16/2022]
|
56
|
Cancer Stem Cells: The Potential Targets of Chinese Medicines and Their Active Compounds. Int J Mol Sci 2016; 17:ijms17060893. [PMID: 27338343 PMCID: PMC4926427 DOI: 10.3390/ijms17060893] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2016] [Revised: 05/28/2016] [Accepted: 05/30/2016] [Indexed: 12/27/2022] Open
Abstract
The pivotal role of cancer stem cells (CSCs) in the initiation and progression of malignancies has been rigorously validated, and the specific methods for identifying and isolating the CSCs from the parental cancer population have also been rapidly developed in recent years. This review aims to provide an overview of recent research progress of Chinese medicines (CMs) and their active compounds in inhibiting tumor progression by targeting CSCs. A great deal of CMs and their active compounds, such as Antrodia camphorate, berberine, resveratrol, and curcumin have been shown to regress CSCs, in terms of reversing drug resistance, inducing cell death and inhibiting cell proliferation as well as metastasis. Furthermore, one of the active compounds in coptis, berbamine may inhibit tumor progression by modulating microRNAs to regulate CSCs. The underlying molecular mechanisms and related signaling pathways involved in these processes were also discussed and concluded in this paper. Overall, the use of CMs and their active compounds may be a promising therapeutic strategy to eradicate cancer by targeting CSCs. However, further studies are needed to clarify the potential of clinical application of CMs and their active compounds as complementary and alternative therapy in this field.
Collapse
|
57
|
YANG JINGHUI, YANG QIWEI, YU JING, LI XIMENG, YU SHAN, ZHANG XUEWEN. SPOCK1 promotes the proliferation, migration and invasion of glioma cells through PI3K/AKT and Wnt/β-catenin signaling pathways. Oncol Rep 2016; 35:3566-76. [DOI: 10.3892/or.2016.4757] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 01/30/2016] [Indexed: 11/05/2022] Open
|