51
|
Javidan A, Jiang W, Yang L, Frony AC, Subramanian V. Celastrol Supplementation Ablates Sexual Dimorphism of Abdominal Aortic Aneurysm Formation in Mice. Biomolecules 2023; 13:603. [PMID: 37189351 PMCID: PMC10136124 DOI: 10.3390/biom13040603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/22/2023] [Accepted: 03/24/2023] [Indexed: 03/29/2023] Open
Abstract
BACKGROUND Abdominal aortic aneurysms (AAAs) are permanent dilations of the abdominal aorta with 4-5 times greater prevalence in males than in females. The aim of this study is to define whether Celastrol, a pentacyclic triterpene from the root extracts of Tripterygium wilfordii, supplementation influences angiotensin II (AngII)-induced AAAs in hypercholesterolemic mice. METHODS Age-matched (8-12 weeks old) male and female low-density lipoprotein (Ldl) receptor-deficient mice were fed a fat-enriched diet supplemented with or without Celastrol (10 mg/kg/day) for five weeks. After one week of diet feeding, mice were infused with either saline (n = 5 per group) or AngII (500 or 1000 ng/kg/min, n = 12-15 per group) for 28 days. RESULTS Dietary supplementation of Celastrol profoundly increased AngII-induced abdominal aortic luminal dilation and external aortic width in male mice as measured by ultrasonography and ex vivo measurement, with a significant increase in incidence compared to the control group. Celastrol supplementation in female mice resulted in significantly increased AngII-induced AAA formation and incidence. In addition, Celastrol supplementation significantly increased AngII-induced aortic medial elastin degradation accompanied by significant aortic MMP9 activation in both male and female mice compared to saline and AngII controls. CONCLUSIONS Celastrol supplementation to Ldl receptor-deficient mice ablates sexual dimorphism and promotes AngII-induced AAA formation, which is associated with increased MMP9 activation and aortic medial destruction.
Collapse
Affiliation(s)
- Aida Javidan
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY 40536, USA
| | - Weihua Jiang
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY 40536, USA
| | - Lihua Yang
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY 40536, USA
| | - Ana Clara Frony
- Department of Medicine, Division of Cardiovascular Medicine, University of Missouri, Columbia, MO 65212, USA
| | - Venkateswaran Subramanian
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY 40536, USA
- Department of Medicine, Division of Cardiovascular Medicine, University of Missouri, Columbia, MO 65212, USA
- Department of Physiology, University of Kentucky, Lexington, KY 40536, USA
| |
Collapse
|
52
|
Gong Z, Huang J, Wang D, Yang S, Ma Z, Fu Y, Ma Q, Kong W. ADAMTS-7 deficiency attenuates thoracic aortic aneurysm and dissection in mice. J Mol Med (Berl) 2023; 101:237-248. [PMID: 36662289 DOI: 10.1007/s00109-023-02284-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/18/2022] [Accepted: 01/10/2023] [Indexed: 01/21/2023]
Abstract
Thoracic aortic aneurysm and dissection (TAAD) is a life-threatening cardiovascular disease with severe extracellular matrix (ECM) remodeling that lacks efficient early stage diagnosis and nonsurgical therapy. A disintegrin and metalloproteinase with thrombospondin motif 7 (ADAMTS-7) is recognized as a novel locus for human coronary artery atherosclerosis. Previous work by us and others showed that ADAMTS-7 promoted atherosclerosis, postinjury neointima formation, and vascular calcification. However, whether ADAMTS-7 is involved in TAAD pathogenesis is unknown. We aimed to explore the alterations in ADAMTS-7 expression in human and mouse TAAD, and investigate the role of ADAMTS-7 in TAAD formation. A case-control study of TAAD patients (N = 86) and healthy participants (N = 88) was performed. The plasma ADAMTS-7 levels were markedly increased in TAAD patients within 24 h and peaked in 7 days. A TAAD mouse model was induced with 0.5% β-aminopropionitrile (BAPN) in drinking water. ELISA analysis of mouse plasma, Western blotting, and immunohistochemical staining of aorta showed an increase in ADAMTS-7 in the early stage of TAAD. Moreover, ADAMTS-7-deficient mice exhibited significantly attenuated TAAD formation and TAAD rupture-related mortality in both male and female mice, which was accompanied by reduced artery dilation and inhibited elastin degradation. ADAMTS-7 deficiency caused repressed inflammatory response and complement system activation during TAAD formation. An increase in plasma ADAMTS-7 is a novel biomarker for human TAAD. ADAMTS-7 deficiency attenuates BAPN-induced murine TAAD. ADAMTS-7 is a potential novel target for TAAD diagnosis and therapy. KEY MESSAGES: A case-control study revealed increased plasma ADAMTS-7 is a risk factor for TAAD. ADAMTS-7 was elevated in plasma and aorta at early stage of mouse TAAD. ADAMTS-7 knockout attenuated mouse TAAD formation and mortality in both sexes.
Collapse
Affiliation(s)
- Ze Gong
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, 100191, People's Republic of China
| | - Jiaqi Huang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, 100191, People's Republic of China
| | - Daidai Wang
- Department of Emergency Medicine, Peking University Third Hospital, Beijing, 100191, People's Republic of China
| | - Shiyu Yang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, 100191, People's Republic of China
| | - Zihan Ma
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, 100191, People's Republic of China
| | - Yi Fu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, 100191, People's Republic of China
| | - Qingbian Ma
- Department of Emergency Medicine, Peking University Third Hospital, Beijing, 100191, People's Republic of China.
| | - Wei Kong
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, 100191, People's Republic of China.
| |
Collapse
|
53
|
Arnhold J. Host-Derived Cytotoxic Agents in Chronic Inflammation and Disease Progression. Int J Mol Sci 2023; 24:ijms24033016. [PMID: 36769331 PMCID: PMC9918110 DOI: 10.3390/ijms24033016] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/20/2023] [Accepted: 02/01/2023] [Indexed: 02/05/2023] Open
Abstract
At inflammatory sites, cytotoxic agents are released and generated from invading immune cells and damaged tissue cells. The further fate of the inflammation highly depends on the presence of antagonizing principles that are able to inactivate these host-derived cytotoxic agents. As long as the affected tissues are well equipped with ready-to-use protective mechanisms, no damage by cytotoxic agents occurs and resolution of inflammation is initiated. However, long-lasting and severe immune responses can be associated with the decline, exhaustion, or inactivation of selected antagonizing principles. Hence, cytotoxic agents are only partially inactivated and contribute to damage of yet-unperturbed cells. Consequently, a chronic inflammatory process results. In this vicious circle of permanent cell destruction, not only novel cytotoxic elements but also novel alarmins and antigens are liberated from affected cells. In severe cases, very low protection leads to organ failure, sepsis, and septic shock. In this review, the major classes of host-derived cytotoxic agents (reactive species, oxidized heme proteins and free heme, transition metal ions, serine proteases, matrix metalloproteases, and pro-inflammatory peptides), their corresponding protective principles, and resulting implications on the pathogenesis of diseases are highlighted.
Collapse
Affiliation(s)
- Jürgen Arnhold
- Medical Faculty, Institute of Medical Physics and Biophysics, Leipzig University, Härtelstr. 16-18, 04107 Leipzig, Germany
| |
Collapse
|
54
|
Wang J, Tian X, Yan C, Wu H, Bu Y, Li J, Liu D, Han Y. TCF7L1 Accelerates Smooth Muscle Cell Phenotypic Switching and Aggravates Abdominal Aortic Aneurysms. JACC Basic Transl Sci 2023; 8:155-170. [PMID: 36908661 PMCID: PMC9998605 DOI: 10.1016/j.jacbts.2022.07.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 07/21/2022] [Accepted: 07/21/2022] [Indexed: 12/02/2022]
Abstract
Phenotypic switching of vascular smooth muscle cells is a central process in abdominal aortic aneurysm (AAA) pathology. We found that knockdown TCF7L1 (transcription factor 7-like 1), a member of the TCF/LEF (T cell factor/lymphoid enhancer factor) family of transcription factors, inhibits vascular smooth muscle cell differentiation. This study hints at potential interventions to maintain a normal, differentiated smooth muscle cell state, thereby eliminating the pathogenesis of AAA. In addition, our study provides insights into the potential use of TCF7L1 as a biomarker for AAA.
Collapse
Key Words
- AAA, abdominal aortic aneurysm
- AAV, adeno-associated virus
- Ang II, angiotensin II
- CVF, collagen volume fraction
- MMP, matrix metalloproteinase
- PBS, phosphate-buffered saline
- PCR, polymerase chain reaction
- SM22α, smooth muscle protein 22-α
- SMA, smooth muscle actin
- SRF, serum response factor
- TCF7L1
- TCF7L1, transcription factor 7-like 1
- VSMC, vascular smooth muscle cell
- abdominal aortic aneurysms
- cDNA, complementary DNA
- mRNA, messenger RNA
- phenotypic switching
- siRNA, small interfering RNA
- smooth muscle cell
Collapse
Affiliation(s)
- Jing Wang
- Cardiovascular Research Institute and Department of Cardiology, General Hospital of Northern Theater Command, Shenyang, China
| | - Xiaoxiang Tian
- Cardiovascular Research Institute and Department of Cardiology, General Hospital of Northern Theater Command, Shenyang, China
| | - Chenghui Yan
- Cardiovascular Research Institute and Department of Cardiology, General Hospital of Northern Theater Command, Shenyang, China
| | - Hanlin Wu
- Cardiovascular Research Institute and Department of Cardiology, General Hospital of Northern Theater Command, Shenyang, China
| | - Yuxin Bu
- Cardiovascular Research Institute and Department of Cardiology, General Hospital of Northern Theater Command, Shenyang, China
| | - Jia Li
- Cardiovascular Research Institute and Department of Cardiology, General Hospital of Northern Theater Command, Shenyang, China
| | - Dan Liu
- Cardiovascular Research Institute and Department of Cardiology, General Hospital of Northern Theater Command, Shenyang, China
| | - Yaling Han
- Cardiovascular Research Institute and Department of Cardiology, General Hospital of Northern Theater Command, Shenyang, China
| |
Collapse
|
55
|
Deng YY, Chen YW, Wang MX, Zhu PF, Pan SY, Jiang DY, Chen ZL, Yang L. Acute aortic dissection caused by fruquintinib for metastatic colorectal cancer-a case report and literature review. Transl Cancer Res 2023; 12:177-185. [PMID: 36760383 PMCID: PMC9906055 DOI: 10.21037/tcr-22-1872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 11/27/2022] [Indexed: 01/16/2023]
Abstract
Background Fruquintinib is a highly selective tyrosine kinase inhibitor targeting vascular endothelial growth factor receptor (VEGFR). At present, it has been approved for third-line therapy for advanced metastatic colorectal cancer in China. Like other small-molecule tyrosine kinase inhibitors, adverse reactions such as hand-foot syndrome, hypertension and cardiotoxicity may be seen. However, acute aortic dissection caused by fruquintinib has not been reported so far. Case Description Here, we report a case of aortic dissection. The patient, a 61-year-old man with advanced metastatic colorectal cancer, without history of hypertension or other risk factors for aortic dissection, received fruquintinib as the third line of treatment. Six weeks after oral fruquintinib treatment, the patient developed acute aortic dissection, and the occurrence of the adverse effect was determined to be probably related to the use of fruquintinib. This article focuses on the potential pathogenesis of fruquintinib-induced active dissection. Conclusions We reported the first case of fruquintinib-associated aortic dissection, and discussed the possible mechanism of vascular endothelial growth factor (VEGF)-VEGFR signal pathway (VSP) inhibitors leading to aortic dissection. As a new drug, fruquintinib brings not only clinical benefits, but also brings some adverse reactions. Clinicians must be vigilant to the cardiovascular toxicity caused by small molecular tyrosine kinase inhibitors, especially the severe cardiovascular toxicity, and strengthen monitoring and management.
Collapse
Affiliation(s)
- Ya-Ya Deng
- The Qingdao University Medical College, Qingdao, China;,Cancer Center, Department of Medical Oncology, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
| | - Yun-Wang Chen
- The Qingdao University Medical College, Qingdao, China;,Cancer Center, Department of Medical Oncology, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
| | - Ming-Xing Wang
- Cancer Center, Department of Medical Oncology, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China;,Graduate School of Clinical Medicine, Bengbu Medical College, Bengbu, China
| | - Peng-Fei Zhu
- Cancer Center, Department of Medical Oncology, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China;,Graduate School of Clinical Medicine, Bengbu Medical College, Bengbu, China
| | - Shuan-Yue Pan
- Cancer Center, Department of Medical Oncology, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China;,Graduate School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Ding-Yi Jiang
- The Qingdao University Medical College, Qingdao, China;,Cancer Center, Department of Medical Oncology, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
| | - Zhe-Ling Chen
- Cancer Center, Department of Medical Oncology, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
| | - Liu Yang
- The Qingdao University Medical College, Qingdao, China;,Cancer Center, Department of Medical Oncology, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
| |
Collapse
|
56
|
Liang Q, Zhou Z, Li H, Tao Q, Wang Y, Lin A, Xu J, Zhang B, Wu Y, Min H, Wang L, Song S, Wang D, Gao Q. Identification of pathological-related and diagnostic potential circular RNAs in Stanford type A aortic dissection. Front Cardiovasc Med 2023; 9:1074835. [PMID: 36712253 PMCID: PMC9880160 DOI: 10.3389/fcvm.2022.1074835] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 12/21/2022] [Indexed: 01/15/2023] Open
Abstract
Introduction Stanford type A aortic dissection (TAAD) is one of the lethal macrovascular diseases caused by the invasion of blood into the media layer of ascending aortic wall. Inflammation, smooth muscle dysfunction, and extracellular matrix (ECM) degradation were regarded as the major pathology in affected tissue. However, the expression pattern and its regulation especially through circular RNAs (circRNAs) as an overall characteristic of TAAD molecular pathology remain unclear. Methods We employed CIRCexplorer2 to identify circRNAs based on the RNA sequencing (RNA-seq) data of human ascending aortic tissues to systematically assess the role of circRNA in the massive alterations of gene expression in TAAD aortas. The key circRNAs were determined by LASSO model and functionally annotated by competing endogenous RNAs (ceRNA) network and co-analysis with mRNA profile. The expression level and diagnostic capability of the 4 key circRNAs in peripheral serum were confirmed by real-time polymerase chain reaction (RT-PCR). Results The 4 key circRNAs, namely circPTGR1 (chr9:114341075-114348445[-]), circNOX4 (chr11:89069012-89106660[-]), circAMN1 (chr12:31854796-31862359[-]) and circUSP3 (chr15:63845913-63855207[+]), demonstrated a high power to discriminate between TAAD and control tissues, suggesting that these molecules stand for a major difference between the tissues at gene regulation level. Functionally, the ceRNA network of circRNA-miRNA-mRNA predicted by the online databases, combining gene set enrichment analysis (GSEA) and cell component prediction, revealed that the identified circRNAs covered all the aspects of primary TAAD pathology, centralized with increasing inflammatory factors and cells, and ECM destruction and loss of vascular inherent cells along with the circRNAs. Importantly, we validated the high concentration and diagnostic capability of the 4 key circRNAs in the peripheral serum in TAAD patients. Discussion This study reinforces the vital status of circRNAs in TAAD and the possibility of serving as promising diagnostic biomarkers.
Collapse
Affiliation(s)
- Qiao Liang
- Center for Translational Medicine and Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Zeyi Zhou
- Department of Thoracic and Cardiovascular Surgery, Institute of Cardiothoracic Vascular Disease, Nanjing University, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Hui Li
- Center for Translational Medicine and Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Qing Tao
- Center for Translational Medicine and Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Yali Wang
- Department of Thoracic and Cardiovascular Surgery, Institute of Cardiothoracic Vascular Disease, Nanjing University, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Anqi Lin
- Center for Translational Medicine and Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Jing Xu
- Center for Translational Medicine and Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Bin Zhang
- Center for Translational Medicine and Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, Jiangsu, China,Central Laboratory, Nanjing Chest Hospital, Nanjing Medical University, Nanjing, China
| | - Yongzheng Wu
- Center for Translational Medicine and Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Haiyan Min
- Central Laboratory, The Second Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Lei Wang
- Department of Clinical Laboratory, Jiangsu Provincial Hospital of Integrated Chinese and Western Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, China
| | - Shiyu Song
- Center for Translational Medicine and Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Dongjin Wang
- Department of Thoracic and Cardiovascular Surgery, Institute of Cardiothoracic Vascular Disease, Nanjing University, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China,*Correspondence: Qian Gao ✉
| | - Qian Gao
- Center for Translational Medicine and Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, Jiangsu, China,Dongjin Wang ✉
| |
Collapse
|
57
|
Wang C, Wei Z, Yu T, Zhang L. Dysregulation of metalloproteinases in spinal ligament degeneration. Connect Tissue Res 2023:1-13. [PMID: 36600486 DOI: 10.1080/03008207.2022.2160327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
PURPOSE Degenerative changes in the spinal ligaments, such as hypertrophy or ossification, are important pathophysiological mechanisms of secondary spinal stenosis and neurological compression. Extracellular matrix (ECM) remodeling is one of the major pathological changes in ligament degeneration, and in this remodeling, ECM proteinase-mediated degradation of elastin and collagen plays a vital role. Zinc-dependent endopeptidases, including matrix metalloproteinases (MMPs), a disintegrin and metalloproteinases (ADAMs), and ADAMs with thrombospondin-1 motifs (ADAMTSs) are key factors in ECM remodeling. This review aims to elucidate the underlying mechanisms of these metalloproteinases in the initiation and progression of spinal ligament degeneration. METHODS We clarify current literature on the dysregulation of MMPs/ADAMs/ADAMTS and their endogenous inhibitors in degenerative spinal ligament diseases. In addition, some instructive information was excavated from the raw data of the relevant high-throughput analysis. RESULTS AND CONCLUSIONS The dysregulation of metalloproteinases and their endogenous inhibitors may affect ligament degeneration by involving several interrelated processes, represented by ECM degradation, fibroblast proliferation, and osteogenic differentiation. Antagonists of the key targets of the processes may in turn ease ligament degeneration.
Collapse
Affiliation(s)
- Chao Wang
- Department of Spine Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Ziran Wei
- Department of Sports Medicine, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Tengbo Yu
- Department of Sports Medicine, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Lu Zhang
- Medical Research Centre, Institute of Orthopaedics and Traumatology, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
58
|
Millar J, Nasser E, Ailawadi G, Salmon M. IL-1 in Abdominal Aortic Aneurysms. JOURNAL OF CELLULAR IMMUNOLOGY 2023; 5:22-31. [PMID: 37476160 PMCID: PMC10357974 DOI: 10.33696/immunology.5.163] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/22/2023]
Abstract
Abdominal Aortic Aneurysms (AAA) remain a clinically devastating disease with no effective medical treatment therapy. AAAs are characterized by immune cell infiltration, smooth muscle cell apoptosis, and extracellular matrix degradation. Interleukin-1 (IL-1) has been shown to play role in AAA associated inflammation through immune cell recruitment and activation, endothelial dysfunction, production of reactive oxygen species (ROS), and regulation of transcription factors of additional inflammatory mediators. In this review, we will discuss the principles of IL-1 signaling, its role in AAA specific inflammation, and regulators of IL-1 signaling. Additionally, we will discuss the influence of genetic and pharmacological inhibitors of IL-1 on experimental AAAs. Evidence suggests that IL-1 may prove to be a potential therapeutic target in the management of AAA disease.
Collapse
Affiliation(s)
- Jessica Millar
- Department of Surgery, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Elias Nasser
- Department of Cardiac Surgery, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Gorav Ailawadi
- Department of Cardiac Surgery, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, USA
- Frankel Cardiovascular Center, University of Michigan School of Medicine, Ann Arbor, Michigan, USA
| | - Morgan Salmon
- Department of Cardiac Surgery, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, USA
- Frankel Cardiovascular Center, University of Michigan School of Medicine, Ann Arbor, Michigan, USA
| |
Collapse
|
59
|
Bai L, Ge L, Zhang B, Zhang Y, Gu J, Liu L, Song Y. CtBP proteins transactivate matrix metalloproteinases and proinflammatory cytokines to mediate the pathogenesis of abdominal aortic aneurysm. Exp Cell Res 2022; 421:113386. [PMID: 36244410 DOI: 10.1016/j.yexcr.2022.113386] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 09/28/2022] [Accepted: 10/06/2022] [Indexed: 12/29/2022]
Abstract
Abdominal aortic aneurysm (AAA) is a life-threatening disorder that occurs in the aorta. The inflammatory thickness of the aneurysm wall and perianeurysmal fibrosis are two main causes of AAA pathogenesis; however, the molecular mechanisms involved in these two processes are still unclear. We discovered that C-terminal binding protein 1 (CtBP1) and CtBP2 were overexpressed in the aortas of AAA-model mice created by treatment with CaCl2 and elastase. Molecular analyses revealed that the CtBP heterodimer couples with histone acetyltransferase p300 and transcription factor AP1 (activator protein 1) to transactivate a set of matrix metalloproteinases (MMPs, including MMP1a, 3, 7, 9, and 12) and proinflammatory cytokines, including interleukin-1 β (IL-1β), IL-6, and tumor necrosis factor-alpha (TNF-α). Knockdown of CtBPs or AP1 subunits or blockage of CtBPs with specific small molecule inhibitors significantly suppressed the in vitro expression of MMPs and proinflammatory cytokines. The administration of CtBP inhibitors in AAA-model mice also inhibited MMPs and proinflammatory cytokines, thereby improving the AAA outcome. Taken together, our results revealed a new regulatory mechanism involving MMPs and proinflammatory cytokines in the pathogenesis of AAA. This discovery suggests that targeting CtBPs may be a therapeutic strategy for AAA by attenuating the inflammatory response and matrix destruction.
Collapse
Affiliation(s)
- Lei Bai
- Department of Cardiovascular Surgery, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, 750004, China.
| | - Lijuan Ge
- Department of Pediatrics, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, 750004, China
| | - Bin Zhang
- Department of Cardiovascular Surgery, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, 750004, China
| | - Yujing Zhang
- Department of Cardiovascular Surgery, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, 750004, China
| | - Jiwei Gu
- Department of Cardiovascular Surgery, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, 750004, China
| | - Li Liu
- Department of Cardiovascular Surgery, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, 750004, China
| | - Yanyan Song
- Department of Cardiovascular Surgery, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, 750004, China.
| |
Collapse
|
60
|
Cao G, Xuan X, Hu J, Zhang R, Jin H, Dong H. How vascular smooth muscle cell phenotype switching contributes to vascular disease. Cell Commun Signal 2022; 20:180. [PMID: 36411459 PMCID: PMC9677683 DOI: 10.1186/s12964-022-00993-2] [Citation(s) in RCA: 129] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 10/22/2022] [Indexed: 11/22/2022] Open
Abstract
Vascular smooth muscle cells (VSMCs) are the most abundant cell in vessels. Earlier experiments have found that VSMCs possess high plasticity. Vascular injury stimulates VSMCs to switch into a dedifferentiated type, also known as synthetic VSMCs, with a high migration and proliferation capacity for repairing vascular injury. In recent years, largely owing to rapid technological advances in single-cell sequencing and cell-lineage tracing techniques, multiple VSMCs phenotypes have been uncovered in vascular aging, atherosclerosis (AS), aortic aneurysm (AA), etc. These VSMCs all down-regulate contractile proteins such as α-SMA and calponin1, and obtain specific markers and similar cellular functions of osteoblast, fibroblast, macrophage, and mesenchymal cells. This highly plastic phenotype transformation is regulated by a complex network consisting of circulating plasma substances, transcription factors, growth factors, inflammatory factors, non-coding RNAs, integrin family, and Notch pathway. This review focuses on phenotypic characteristics, molecular profile and the functional role of VSMCs phenotype landscape; the molecular mechanism regulating VSMCs phenotype switching; and the contribution of VSMCs phenotype switching to vascular aging, AS, and AA. Video Abstract.
Collapse
Affiliation(s)
- Genmao Cao
- grid.452845.a0000 0004 1799 2077Department of Vascular Surgery, The Second Hospital of Shanxi Medical University, No. 382, Wuyi Road, Taiyuan, China
| | - Xuezhen Xuan
- grid.452845.a0000 0004 1799 2077Department of Vascular Surgery, The Second Hospital of Shanxi Medical University, No. 382, Wuyi Road, Taiyuan, China
| | - Jie Hu
- grid.452845.a0000 0004 1799 2077Department of Vascular Surgery, The Second Hospital of Shanxi Medical University, No. 382, Wuyi Road, Taiyuan, China
| | - Ruijing Zhang
- grid.452845.a0000 0004 1799 2077Department of Nephrology, The Second Hospital of Shanxi Medical University, No. 382, Wuyi Road, Taiyuan, China
| | - Haijiang Jin
- grid.452845.a0000 0004 1799 2077Department of Vascular Surgery, The Second Hospital of Shanxi Medical University, No. 382, Wuyi Road, Taiyuan, China
| | - Honglin Dong
- grid.452845.a0000 0004 1799 2077Department of Vascular Surgery, The Second Hospital of Shanxi Medical University, No. 382, Wuyi Road, Taiyuan, China
| |
Collapse
|
61
|
He B, Zhan Y, Cai C, Yu D, Wei Q, Quan L, Huang D, Liu Y, Li Z, Liu L, Pan X. Common molecular mechanism and immune infiltration patterns of thoracic and abdominal aortic aneurysms. Front Immunol 2022; 13:1030976. [PMID: 36341412 PMCID: PMC9633949 DOI: 10.3389/fimmu.2022.1030976] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 10/10/2022] [Indexed: 01/02/2024] Open
Abstract
BACKGROUND Aortic disease (aortic aneurysm (AA), dissection (AD)) is a serious threat to patient lives. Little is currently known about the molecular mechanisms and immune infiltration patterns underlying the development and progression of thoracic and abdominal aortic aneurysms (TAA and AAA), warranting further research. METHODS We downloaded AA (includes TAA and AAA) datasets from the GEO database. The potential biomarkers in TAA and AAA were identified using differential expression analysis and two machine-learning algorithms. The discrimination power of the potential biomarkers and their diagnostic accuracy was assessed in validation datasets using ROC curve analysis. Then, GSEA, KEGG, GO and DO analyses were conducted. Furthermore, two immuno-infiltration analysis algorithms were utilized to analyze the common immune infiltration patterns in TAA and AAA. Finally, a retrospective clinical study was performed on 78 patients with AD, and the serum from 6 patients was used for whole exome sequencing (WES). RESULTS The intersection of TAA and AAA datasets yielded 82 differentially expressed genes (DEGs). Subsequently, the biomarkers (CX3CR1 and HBB) were acquired by screening using two machine-learning algorithms and ROC curve analysis. The functional analysis of DEGs showed significant enrichment in inflammation and regulation of angiogenic pathways. Immune cell infiltration analysis revealed that adaptive and innate immune responses were closely linked to AA progression. However, neither CX3CR1 nor HBB was associated with B cell-mediated humoral immunity. CX3CR1 expression was correlated with macrophages and HBB with eosinophils. Finally, our retrospective clinical study revealed a hyperinflammatory environment in aortic disease. The WES study identified disease biomarkers and gene variants, some of which may be druggable. CONCLUSION The genes CX3CR1 and HBB can be used as common biomarkers in TAA and AAA. Large numbers of innate and adaptive immune cells are infiltrated in AA and are closely linked to the development and progression of AA. Moreover, CX3CR1 and HBB are highly correlated with the infiltration of immune cells and may be potential targets of immunotherapeutic drugs. Gene mutation research is a promising direction for the treatment of aortic disease.
Collapse
Affiliation(s)
- Bin He
- Graduate School of Youjiang Medical University for Nationalities, Baise, China
| | - Ya Zhan
- The Third Hospital of MianYang, Sichuan Mental Health Center, MianYang, China
| | - Chunyu Cai
- Graduate School of Youjiang Medical University for Nationalities, Baise, China
| | - Dianyou Yu
- Graduate School of Youjiang Medical University for Nationalities, Baise, China
| | - Qinjiang Wei
- Department of Cardiology, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Liping Quan
- Graduate School of Youjiang Medical University for Nationalities, Baise, China
| | - Da Huang
- Department of Cardiology, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Yan Liu
- Department of Cardiology, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Zhile Li
- Department of Cardiology, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Li Liu
- Department of Cardiology, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
- College of Clinical Medicine, Youjiang Medical University for Nationalities, Baise, China
| | - Xingshou Pan
- Department of Cardiology, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| |
Collapse
|
62
|
Targeted Inhibition of Matrix Metalloproteinase-8 Prevents Aortic Dissection in a Murine Model. Cells 2022; 11:cells11203218. [PMID: 36291087 PMCID: PMC9600539 DOI: 10.3390/cells11203218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/30/2022] [Accepted: 10/11/2022] [Indexed: 11/16/2022] Open
Abstract
Aortic dissection (AD) is a lethal aortic pathology without effective medical treatments since the underlying pathological mechanisms responsible for AD remain elusive. Matrix metalloproteinase-8 (MMP8) has been previously identified as a key player in atherosclerosis and arterial remodeling. However, the functional role of MMP8 in AD remains largely unknown. Here, we report that an increased level of MMP8 was observed in 3-aminopropionitrile fumarate (BAPN)-induced murine AD. AD incidence and aortic elastin fragmentation were markedly reduced in MMP8-knockout mice. Importantly, pharmacologic inhibition of MMP8 significantly reduced the AD incidence and aortic elastin fragmentation. We observed less inflammatory cell accumulation, a lower level of aortic inflammation, and decreased smooth muscle cell (SMC) apoptosis in MMP8-knockout mice. In line with our previous observation that MMP8 cleaves Ang I to generate Ang II, BAPN-treated MMP8-knockout mice had increased levels of Ang I, but decreased levels of Ang II and lower blood pressure. Additionally, we observed a decreased expression level of vascular cell adhesion molecule-1 (VCAM1) and a reduced level of reactive oxygen species (ROS) in MMP8-knockout aortas. Mechanistically, our data show that the Ang II/VCAM1 signal axis is responsible for MMP8-mediated inflammatory cell invasion and transendothelial migration, while MMP8-mediated SMC inflammation and apoptosis are attributed to Ang II/ROS signaling. Finally, we observed higher levels of aortic and serum MMP8 in patients with AD. We therefore provide new insights into the molecular mechanisms underlying AD and identify MMP8 as a potential therapeutic target for this life-threatening aortic disease.
Collapse
|
63
|
Márquez-Sánchez AC, Koltsova EK. Immune and inflammatory mechanisms of abdominal aortic aneurysm. Front Immunol 2022; 13:989933. [PMID: 36275758 PMCID: PMC9583679 DOI: 10.3389/fimmu.2022.989933] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 08/23/2022] [Indexed: 11/13/2022] Open
Abstract
Abdominal aortic aneurysm (AAA) is a life-threatening cardiovascular disease. Immune-mediated infiltration and a destruction of the aortic wall during AAA development plays significant role in the pathogenesis of this disease. While various immune cells had been found in AAA, the mechanisms of their activation and function are still far from being understood. A better understanding of mechanisms regulating the development of aberrant immune cell activation in AAA is essential for the development of novel preventive and therapeutic approaches. In this review we summarize current knowledge about the role of immune cells in AAA and discuss how pathogenic immune cell activation is regulated in this disease.
Collapse
|
64
|
Stepien KL, Bajdak-Rusinek K, Fus-Kujawa A, Kuczmik W, Gawron K. Role of Extracellular Matrix and Inflammation in Abdominal Aortic Aneurysm. Int J Mol Sci 2022; 23:ijms231911078. [PMID: 36232377 PMCID: PMC9569530 DOI: 10.3390/ijms231911078] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/13/2022] [Accepted: 09/17/2022] [Indexed: 11/22/2022] Open
Abstract
Abdominal aortic aneurysm (AAA) is one of the most dangerous cardiovascular diseases, occurring mainly in men over the age of 55 years. As it is asymptomatic, patients are diagnosed very late, usually when they suffer pain in the abdominal cavity. The late detection of AAA contributes to the high mortality rate. Many environmental, genetic, and molecular factors contribute to the development and subsequent rupture of AAA. Inflammation, apoptosis of smooth muscle cells, and degradation of the extracellular matrix in the AAA wall are believed to be the major molecular processes underlying AAA formation. Until now, no pharmacological treatment has been implemented to prevent the formation of AAA or to cure the disease. Therefore, it is important that patients are diagnosed at a very early stage of the disease. Biomarkers contribute to the assessment of the concentration level, which will help to determine the level and rate of AAA development. The potential biomarkers today include homocysteine, cathepsins, osteopontin, and osteoprotegerin. In this review, we describe the major aspects of molecular processes that take place in the aortic wall during AAA formation. In addition, biomarkers, the monitoring of which will contribute to the prompt diagnosis of AAA patients over the age of 55 years, are described.
Collapse
Affiliation(s)
- Karolina L. Stepien
- Department of Molecular Biology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Medykow 18 Street, 40-752 Katowice, Poland
- Correspondence: ; Tel.: +48-32-208-8388
| | - Karolina Bajdak-Rusinek
- Department of Medical Genetics, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Medykow 18 Street, 40-752 Katowice, Poland
| | - Agnieszka Fus-Kujawa
- Department of Medical Genetics, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Medykow 18 Street, 40-752 Katowice, Poland
| | - Wacław Kuczmik
- Department of General, Vascular Surgery, Angiology and Phlebology, Medical University of Silesia, Katowice, Ziolowa 45/47 Street, 40-635 Katowice, Poland
| | - Katarzyna Gawron
- Department of Molecular Biology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Medykow 18 Street, 40-752 Katowice, Poland
| |
Collapse
|
65
|
Inada K, Koga M, Yamada A, Dohgu S, Yamauchi A. Moxifloxacin induces aortic aneurysm and dissection by increasing osteopontin in mice. Biochem Biophys Res Commun 2022; 629:1-5. [DOI: 10.1016/j.bbrc.2022.08.080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 08/17/2022] [Accepted: 08/26/2022] [Indexed: 11/16/2022]
|
66
|
Jusko M, Kasprzak P, Majos A, Kuczmik W. The Ratio of the Size of the Abdominal Aortic Aneurysm to That of the Unchanged Aorta as a Risk Factor for Its Rupture. Biomedicines 2022; 10:biomedicines10081997. [PMID: 36009543 PMCID: PMC9405575 DOI: 10.3390/biomedicines10081997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 08/13/2022] [Accepted: 08/15/2022] [Indexed: 11/20/2022] Open
Abstract
Background: A ruptured abdominal aortic aneurysm is a severe condition associated with high mortality. Currently, the most important criterion used to estimate the risk of its rupture is the size of the aneurysm, but due to patients’ anatomical variability, many aneurysms have a high risk of rupture with a small aneurysm size. We asked ourselves whether individual differences in anatomy could be taken into account when assessing the risk of rupture. Methods: Based on the CT scan image, aneurysm and normal aorta diameters were collected from 186 individuals and compared in patients with ruptured and unruptured aneurysms. To take into account anatomical differences between patients, diameter ratios were calculated by dividing the aneurysm diameter by the diameter of the normal aorta at various heights, and then further comparisons were made. Results: It was found that the calculated ratios differ between patients with ruptured and unruptured aneurysms. This observation is also present in patients with small aneurysms, with its maximal size below the level that indicates the need for surgical treatment. For small aneurysms, the ratios help us to estimate the risk of rupture better than the maximum sac size (AUC: 0.783 vs. 0.650). Conclusions: The calculated ratios appear to be a valuable feature to indicate which of the small aneurysms have a high risk of rupture. The obtained results suggest the need for further confirmation of their usefulness in subsequent groups of patients.
Collapse
Affiliation(s)
- Maciej Jusko
- Department of General Surgery, Vascular Surgery, Angiology and Phlebology, Medical University of Silesia, 40-055 Katowice, Poland
- Correspondence: ; Tel.: +48-793-777-193
| | - Piotr Kasprzak
- Department of Vascular Surgery, University Hospital Regensburg, 93053 Regensburg, Germany
| | - Alicja Majos
- General and Transplant Surgery Department, Medical University of Lodz, 93-338 Lodz, Poland
| | - Waclaw Kuczmik
- Department of General Surgery, Vascular Surgery, Angiology and Phlebology, Medical University of Silesia, 40-055 Katowice, Poland
| |
Collapse
|
67
|
Morgan S, Lee LH, Halu A, Nicolau JS, Higashi H, Ha AH, Wen JR, Daugherty A, Libby P, Cameron SJ, Mix D, Aikawa E, Owens AP, Singh SA, Aikawa M. Identifying novel mechanisms of abdominal aortic aneurysm via unbiased proteomics and systems biology. Front Cardiovasc Med 2022; 9:889994. [PMID: 35990960 PMCID: PMC9382335 DOI: 10.3389/fcvm.2022.889994] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 06/28/2022] [Indexed: 11/16/2022] Open
Abstract
Background Abdominal aortic aneurysm (AAA), characterized by a continued expansion of the aorta, leads to rupture if not surgically repaired. Mice aid the study of disease progression and its underlying mechanisms since sequential studies of aneurysm development are not feasible in humans. The present study used unbiased proteomics and systems biology to understand the molecular relationship between the mouse models of AAA and the human disease. Methods and results Aortic tissues of developing and established aneurysms produced by either angiotensin II (AngII) infusion in Apoe -/- and Ldlr -/- mice or intraluminal elastase incubation in wildtype C57BL/6J mice were examined. Aortas were dissected free and separated into eight anatomical segments for proteomics in comparison to their appropriate controls. High-dimensional proteome cluster analyses identified site-specific protein signatures in the suprarenal segment for AngII-infused mice (159 for Apoe -/- and 158 for Ldlr -/-) and the infrarenal segment for elastase-incubated mice (173). Network analysis revealed a predominance of inflammatory and coagulation factors in developing aneurysms, and a predominance of fibrosis-related pathways in established aneurysms for both models. To further substantiate our discovery platform, proteomics was performed on human infrarenal aortic aneurysm tissues as well as aortic tissue collected from age-matched controls. Protein processing and inflammatory pathways, particularly neutrophil-associated inflammation, dominated the proteome of the human aneurysm abdominal tissue. Aneurysmal tissue from both mouse and human had inflammation, coagulation, and protein processing signatures, but differed in the prevalence of neutrophil-associated pathways, and erythrocyte and oxidative stress-dominated networks in the human aneurysms. Conclusions Identifying changes unique to each mouse model will help to contextualize model-specific findings. Focusing on shared proteins between mouse experimental models or between mouse and human tissues may help to better understand the mechanisms for AAA and establish molecular bases for novel therapies.
Collapse
Affiliation(s)
- Stephanie Morgan
- Cardiovascular Division, Center for Interdisciplinary Cardiovascular Sciences, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States
| | - Lang Ho Lee
- Cardiovascular Division, Center for Interdisciplinary Cardiovascular Sciences, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States
| | - Arda Halu
- Cardiovascular Division, Center for Interdisciplinary Cardiovascular Sciences, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States
| | - Jessica S. Nicolau
- Cardiovascular Division, Center for Interdisciplinary Cardiovascular Sciences, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States
| | - Hideyuki Higashi
- Cardiovascular Division, Center for Interdisciplinary Cardiovascular Sciences, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States
| | - Anna H. Ha
- Cardiovascular Division, Center for Interdisciplinary Cardiovascular Sciences, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States
| | - Jennifer R. Wen
- Cardiovascular Division, Center for Interdisciplinary Cardiovascular Sciences, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States
| | - Alan Daugherty
- Department of Physiology, Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY, United States
| | - Peter Libby
- Center for Excellence in Vascular Biology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States
| | - Scott J. Cameron
- Department of Cardiovascular Medicine, Section of Vascular Medicine, Heart Vascular and Thoracic Institute, Cleveland Clinic Foundation, Cleveland, OH, United States
| | - Doran Mix
- Division of Vascular Surgery, Department of Surgery, University of Rochester School of Medicine, Rochester, NY, United States
| | - Elena Aikawa
- Cardiovascular Division, Center for Interdisciplinary Cardiovascular Sciences, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States
- Center for Excellence in Vascular Biology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States
| | - A. Phillip Owens
- Division of Cardiovascular Health and Disease, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Sasha A. Singh
- Cardiovascular Division, Center for Interdisciplinary Cardiovascular Sciences, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States
| | - Masanori Aikawa
- Cardiovascular Division, Center for Interdisciplinary Cardiovascular Sciences, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States
- Center for Excellence in Vascular Biology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States
| |
Collapse
|
68
|
Li Q, Jiang B, Zhang Z, Huang Y, Xu Z, Chen X, Hou X, Cai J, Huang Y, Jian J. Serotonin system is partially involved in immunomodulation of Nile tilapia ( Oreochromis niloticus) immune cells. Front Immunol 2022; 13:944388. [PMID: 35967362 PMCID: PMC9366525 DOI: 10.3389/fimmu.2022.944388] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 07/07/2022] [Indexed: 11/23/2022] Open
Abstract
Serotonin (5-hydroxytryptamine) is a well-known neurotransmitter affecting emotion, behavior, and cognition. Additionally, numerous immunomodulatory functions of serotonin have been discovered in mammals. However, the regulatory role of the serotonin system in fish immunity remains unclear. In this study, various serotonergic markers in Nile tilapia (Oreochromis niloticus) were identified and characterized. The involvement of the serotonin system during bacterial infection was investigated. Moreover, the expression characteristics and specific functions of serotonergic markers within Nile tilapia immune cells were also assessed. Overall, 22 evolutionarily conserved serotonergic marker genes in Nile tilapia were cloned and characterized. Transcriptional levels of these molecules were most abundant in the brain, and their transcripts were induced during Streptococcus agalactiae infection. Nevertheless, few serotonergic markers exist on Nile tilapia immune cells, and no distinct immunomodulation effect was observed during an immune response. The present study lays a theoretical foundation for further investigation of the immunological mechanisms in fish as well as the evolution of the serotonin system in animals.
Collapse
Affiliation(s)
- Qi Li
- College of Fishery, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Zhanjiang, China
| | - Baijian Jiang
- College of Fishery, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Zhanjiang, China
| | - Zhiqiang Zhang
- College of Fishery, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Zhanjiang, China
| | - Yongxiong Huang
- College of Fishery, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Zhanjiang, China
| | - Zhou Xu
- College of Fishery, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Zhanjiang, China
| | - Xinjin Chen
- College of Fishery, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Zhanjiang, China
| | - Xitan Hou
- Institute of Forensic Medicine and Laboratory Medicine, Jining Medical University, Jining, China
| | - Jia Cai
- College of Fishery, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Zhanjiang, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen, China
| | - Yu Huang
- College of Fishery, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Zhanjiang, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen, China
| | - Jichang Jian
- College of Fishery, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Zhanjiang, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen, China
| |
Collapse
|
69
|
Trentini A, Manfrinato MC, Castellazzi M, Bellini T. Sex-Related Differences of Matrix Metalloproteinases (MMPs): New Perspectives for These Biomarkers in Cardiovascular and Neurological Diseases. J Pers Med 2022; 12:jpm12081196. [PMID: 35893290 PMCID: PMC9331234 DOI: 10.3390/jpm12081196] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/19/2022] [Accepted: 07/20/2022] [Indexed: 11/16/2022] Open
Abstract
It is now established that sex differences occur in clinical manifestation, disease progression, and prognosis for both cardiovascular (CVDs) and central nervous system (CNS) disorders. As such, a great deal of effort is now being put into understanding these differences and turning them into “advantages”: (a) for the discovery of new sex-specific biomarkers and (b) through a review of old biomarkers from the perspective of the “newly” discovered sex/gender medicine. This is also true for matrix metalloproteinases (MMPs), enzymes involved in extracellular matrix (ECM) remodelling, which play a role in both CVDs and CNS disorders. However, most of the studies conducted up to now relegated sex to a mere confounding variable used for statistical model correction rather than a determining factor that can influence MMP levels and, in turn, disease prognosis. Consistently, this approach causes a loss of information that might help clinicians in identifying novel patterns and improve the applicability of MMPs in clinical practice by providing sex-specific threshold values. In this scenario, the current review aims to gather the available knowledge on sex-related differences in MMPs levels in CVDs and CNS conditions, hoping to shed light on their use as sex-specific biomarkers of disease prognosis or progression.
Collapse
Affiliation(s)
- Alessandro Trentini
- Department of Environmental and Prevention Sciences, University of Ferrara, Via Luigi Borsari 46, 44121 Ferrara, Italy;
- University Center for Studies on Gender Medicine, University of Ferrara, 44121 Ferrara, Italy
| | - Maria Cristina Manfrinato
- University Center for Studies on Gender Medicine, University of Ferrara, 44121 Ferrara, Italy
- Department of Neuroscience and Rehabilitation, University of Ferrara, Via Luigi Borsari 46, 44121 Ferrara, Italy; (M.C.M.); (T.B.)
| | - Massimiliano Castellazzi
- University Center for Studies on Gender Medicine, University of Ferrara, 44121 Ferrara, Italy
- Department of Neuroscience and Rehabilitation, University of Ferrara, Via Luigi Borsari 46, 44121 Ferrara, Italy; (M.C.M.); (T.B.)
- Interdepartmental Research Center for the Study of Multiple Sclerosis and Inflammatory and Degenerative Diseases of the Nervous System, University of Ferrara, 44121 Ferrara, Italy
- Correspondence:
| | - Tiziana Bellini
- University Center for Studies on Gender Medicine, University of Ferrara, 44121 Ferrara, Italy
- Department of Neuroscience and Rehabilitation, University of Ferrara, Via Luigi Borsari 46, 44121 Ferrara, Italy; (M.C.M.); (T.B.)
| |
Collapse
|
70
|
Li D, Xiao CS, Chen L, Wu Y, Jiang W, Jiang SL. SERPINE1 Gene Is a Reliable Molecular Marker for the Early Diagnosis of Aortic Dissection. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2022; 2022:5433868. [PMID: 35836829 PMCID: PMC9276487 DOI: 10.1155/2022/5433868] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 05/26/2022] [Accepted: 06/10/2022] [Indexed: 11/29/2022]
Abstract
With the acceleration of population aging, the detection rate of aortic dissection has increased. The incidence rate of aortic dissection has increased year by year and has become a serious threat to human health. However, the current clinical treatment of aortic dissection is mainly limited to surgery (including intracavity), but the complexity of the disease and the high risk of surgery seriously affect the overall treatment effect of the disease. Therefore, an in-depth study of the pathogenesis of aortic dissection and the development of early diagnosis methods is not only expected to control the development of aortic dissection but also to improve the existing clinical treatment effect. Based on the bioinformatics analysis of the related mRNA sequence data of aortic dissection in GEO database, the gene expression regulatory network of aortic dissection was constructed. Through the screening of key node genes, the key factors (molecular markers) that may affect the occurrence of aortic dissection were obtained, and their functions were tested in human aortic smooth muscle cells (HAoSMC). Finally, it was concluded that SERPINE1 gene is a reliable molecular marker for the early diagnosis of aortic dissection.
Collapse
Affiliation(s)
- Dong Li
- Department of Cardiovascular Surgery, The First Medical Center of Chinese PLA General Hospital, Beijing 100853, China
| | - Cang-Song Xiao
- Department of Cardiovascular Surgery, The First Medical Center of Chinese PLA General Hospital, Beijing 100853, China
| | - Lei Chen
- Department of Cardiovascular Surgery, The First Medical Center of Chinese PLA General Hospital, Beijing 100853, China
| | - Yang Wu
- Department of Cardiovascular Surgery, The First Medical Center of Chinese PLA General Hospital, Beijing 100853, China
| | - Wei Jiang
- Department of Cardiovascular Surgery, The First Medical Center of Chinese PLA General Hospital, Beijing 100853, China
| | - Sheng-Li Jiang
- Department of Cardiovascular Surgery, The First Medical Center of Chinese PLA General Hospital, Beijing 100853, China
| |
Collapse
|
71
|
The Role of Obesity, Inflammation and Sphingolipids in the Development of an Abdominal Aortic Aneurysm. Nutrients 2022; 14:nu14122438. [PMID: 35745168 PMCID: PMC9229568 DOI: 10.3390/nu14122438] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/03/2022] [Accepted: 06/11/2022] [Indexed: 02/06/2023] Open
Abstract
Abdominal aortic aneurysm (AAA) is a local dilatation of the vessel equal to or exceeding 3 cm. It is a disease with a long preclinical period commonly without any symptoms in its initial stage. Undiagnosed for years, aneurysm often leads to death due to vessel rupture. The basis of AAA pathogenesis is inflammation, which is often associated with the excess of adipose tissue, especially perivascular adipose tissue, which synthesizes adipocytokines that exert a significant influence on the formation of aneurysms. Pro-inflammatory cytokines such as resistin, leptin, and TNFα have been shown to induce changes leading to the formation of aneurysms, while adiponectin is the only known compound that is secreted by adipose tissue and limits the development of aneurysms. However, in obesity, adiponectin levels decline. Moreover, inflammation is associated with an increase in the amount of macrophages infiltrating adipose tissue, which are the source of matrix metalloproteinases (MMP) involved in the degradation of the extracellular matrix, which are an important factor in the formation of aneurysms. In addition, an excess of body fat is associated with altered sphingolipid metabolism. It has been shown that among sphingolipids, there are compounds that play an opposite role in the cell: ceramide is a pro-apoptotic compound that mediates the development of inflammation, while sphingosine-1-phosphate exerts pro-proliferative and anti-inflammatory effects. It has been shown that the increase in the level of ceramide is associated with a decrease in the concentration of adiponectin, an increase in the concentration of TNFα, MMP-9 and reactive oxygen species (which contribute to the apoptosis of vascular smooth muscle cell). The available data indicate a potential relationship between obesity, inflammation and disturbed sphingolipid metabolism with the formation of aneurysms; therefore, the aim of this study was to systematize the current knowledge on the role of these factors in the pathogenesis of abdominal aortic aneurysm.
Collapse
|
72
|
Chen X, Kang J, Sun Q, Liu C, Wang H, Wang C, Gopinath SCB. Current-Volt Biosensing "Cystatin C" on Carbon Nanowired Interdigitated Electrode Surface: A Clinical Marker Analysis for Bulged Aorta. JOURNAL OF ANALYTICAL METHODS IN CHEMISTRY 2022; 2022:8160502. [PMID: 35655788 PMCID: PMC9152415 DOI: 10.1155/2022/8160502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 03/19/2022] [Accepted: 05/03/2022] [Indexed: 06/15/2023]
Abstract
A carbon nanowire-modified surface with interdigitated electrode (IDE) sensing system was introduced to identify abdominal aortic aneurysm biomarker "papain," also known as cysteine protease, used as the capture probe to identify Cystatin C. Papain was immobilized through the covalent integration of amine group on papain and the carboxyl group with carbon nanowire. This papain-modified electrode surface was utilized to detect the different concentrations of Cystatin C (100 pg/mL to 3.2 ng/mL). The interaction between papain and Cystatin C was monitored using a picoammeter, and the response curves were compared. With increasing Cystatin C concentrations, the total current levels were gradually increased with a linear range from 200 pg/mL to 3.2 ng/mL, and the current differences were plotted and the detection limit of Cystatin C was calculated as 200 pg/mL. The averaging of three independent experiments (n = 3) was made with 3δ estimation, and the determination coefficient was y = 1.8477 × 0.7303 and R 2 = 0.9878. Furthermore, control experiments with creatinine and gliadin failed to bind the immobilized papain, indicating the specific detection of Cystatin C.
Collapse
Affiliation(s)
- Xi Chen
- Department of Vascular Surgery, Wuhan No.1 Hospital, WuHan, HuBei 430022, China
| | - Jie Kang
- Department of Vascular Surgery, Liaocheng People's Hospital, Liaocheng, Shandong Province 252000, China
| | - Qiu Sun
- Department of Intervention, Wuhan No. 1 Hospital, Wuhan, Hubei 430022, China
| | - Cheng Liu
- Department of Vascular Surgery, Nanjing Drum Tower Hospital, The Affiliated of Nanjing University Medical School, Nanjing City, Jiangsu Province 730050, China
| | - Hongling Wang
- Department of Cardiothoracic Surgery, Hospital of Lianqin Security Force 940th, Lanzhou, Gansu 730000, China
| | - Chen Wang
- Department of Peripheral Vascular Intervention, Gansu Provincial Hospital of TCM, No. 418 Guazhou Road, Qilihe District, Lanzhou City, Gansu Province 730050, China
| | - Subash C. B. Gopinath
- Institute of Nano Electronic Engineering, Universiti Malaysia Perlis (UniMAP), Kangar 01000, Perlis, Malaysia
- Faculty of Chemical Engineering Technology, Universiti Malaysia Perlis (UniMAP), Arau 02600, Perlis, Malaysia
- Centre of Excellence for Nanobiotechnology and Nanomedicine (CoExNano), Faculty of Applied Sciences, AIMST University, Semeling 08100, Kedah, Malaysia
| |
Collapse
|
73
|
Miyamoto K, Hasuike S, Kugo H, Sukketsiri W, Moriyama T, Zaima N. Administration of Isoflavone Attenuates Ovariectomy-induced Degeneration of Aortic Wall. J Oleo Sci 2022; 71:889-896. [PMID: 35584959 DOI: 10.5650/jos.ess22043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Women are more resistant to vascular diseases; however, the resistance is reduced after menopause. It has been reported that the risk of vascular diseases such as atherosclerosis and abdominal aortic aneurysm is increased in postmenopausal women. Currently, methods to prevent vascular disease in postmenopausal women have not been established. Isoflavones are promising functional food factors that have a chemical structure similar to estrogen. In this study, we investigated the effects of isoflavones on ovariectomized (OVX)-induced degeneration of the aortic wall in mice. Increased destruction of elastic fibers in the thoracic and abdominal aorta was observed in the OVX group, and isoflavones attenuated the destruction of elastic fibers. The positive areas of matrix metalloproteinase (MMP)-2 and MMP-9 in the OVX group were higher than those in the control group. Isoflavones decreased the positive areas of MMP-2 and MMP-9 compared to those in the OVX group. These data suggest that isoflavones have a suppressive effect on OVX-induced degeneration of the aortic wall by inhibiting the increase in MMP-2 and MMP-9.
Collapse
Affiliation(s)
| | | | - Hirona Kugo
- Graduate School of Agriculture, Kindai University
| | - Wanida Sukketsiri
- Pharmacology Program, Division of Health and Applied Sciences, Faculty of Science, Prince of Songkla University
| | - Tatsuya Moriyama
- Graduate School of Agriculture, Kindai University.,Agricultural Technology and Innovation Research Institute, Kindai University
| | - Nobuhiro Zaima
- Graduate School of Agriculture, Kindai University.,Agricultural Technology and Innovation Research Institute, Kindai University
| |
Collapse
|
74
|
Wang Q, Li N, Guo X, Huo B, Li R, Feng X, Fang Z, Zhu XH, Wang Y, Yi X, Wei X, Jiang DS. Comprehensive analysis identified a reduction in ATP1A2 mediated by ARID3A in abdominal aortic aneurysm. J Cell Mol Med 2022; 26:2866-2880. [PMID: 35441443 PMCID: PMC9097831 DOI: 10.1111/jcmm.17301] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 03/02/2022] [Accepted: 03/18/2022] [Indexed: 12/17/2022] Open
Abstract
Abdominal aortic aneurysm (AAA) is characterized by abdominal aorta dilatation and progressive structural impairment and is usually an asymptomatic and potentially lethal disease with a risk of rupture. To investigate the underlying mechanisms of AAA initiation and progression, seven AAA datasets related to human and mice were downloaded from the GEO database and reanalysed in the present study. After comprehensive bioinformatics analysis, we identified the enriched pathways associated with inflammation responses, vascular smooth muscle cell (VSMC) phenotype switching and cytokine secretion in AAA. Most importantly, we identified ATPase Na+/K+ transporting subunit alpha 2 (ATP1A2) as a key gene that was significantly decreased in AAA samples of both human and mice; meanwhile, its reduction mainly occurred in VSMCs of the aorta; this finding was validated by immunostaining and Western blot in human and mouse AAA samples. Furthermore, we explored the potential upstream transcription factors (TFs) that regulate ATP1A2 expression. We found that the TF AT‐rich interaction domain 3A (ARID3A) bound the promoter of ATP1A2 to suppress its expression. Our present study identified the ARID3A‐ATP1A2 axis as a novel pathway in the pathological processes of AAA, further elucidating the molecular mechanism of AAA and providing potential therapeutic targets for AAA.
Collapse
Affiliation(s)
- Qunhui Wang
- Division of Cardiothoracic and Vascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Na Li
- Division of Cardiothoracic and Vascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xian Guo
- Division of Cardiothoracic and Vascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Bo Huo
- Division of Cardiothoracic and Vascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Rui Li
- Division of Cardiothoracic and Vascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xin Feng
- Division of Cardiothoracic and Vascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zemin Fang
- Division of Cardiothoracic and Vascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xue-Hai Zhu
- Division of Cardiothoracic and Vascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.,Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, Hubei, China
| | - Yixiang Wang
- Clinical medical College, Wuhan University of Science and Technology, Wuhan, Hubei, China
| | - Xin Yi
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Xiang Wei
- Division of Cardiothoracic and Vascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.,Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, Hubei, China
| | - Ding-Sheng Jiang
- Division of Cardiothoracic and Vascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.,Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, Hubei, China
| |
Collapse
|
75
|
Wortmann M, Klotz R, Kalkum E, Dihlmann S, Böckler D, Peters AS. Inflammasome Targeted Therapy as Novel Treatment Option for Aortic Aneurysms and Dissections: A Systematic Review of the Preclinical Evidence. Front Cardiovasc Med 2022; 8:805150. [PMID: 35127865 PMCID: PMC8811141 DOI: 10.3389/fcvm.2021.805150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 12/28/2021] [Indexed: 12/09/2022] Open
Abstract
Both aortic aneurysm and dissection are life threatening pathologies. In the lack of a conservative medical treatment, the only therapy consists of modifying cardiovascular risk factors and either surgical or endovascular treatment. Like many other cardiovascular diseases, in particular atherosclerosis, aortic aneurysm and dissection have a strong inflammatory phenotype. Inflammasomes are part of the innate immune system. Upon stimulation they form multi protein complexes resulting mainly in activation of interleukin-1β and other cytokines. Considering the gathering evidence, that inflammasomes are decisively involved in the emergence and progression of aortic diseases, inflammasome targeted therapy provides a promising new treatment approach. A systematic review following the PRISMA guidelines on the current preclinical data regarding the potential role of inflammasome targeted drug therapy as novel treatment option for aortic aneurysms and dissections was performed. Included were all rodent models of aortic disease (aortic aneurysm and dissection) evaluating a drug therapy with direct or indirect inhibition of inflammasomes and a suitable control group with the use of the same aortic model without the inflammasome targeted therapy. Primary and secondary outcomes were incidence of aortic disease, aortic rupture, aortic related death, and the maximum aortic diameter. The literature search of MEDLINE (via PubMed), the Web of Science, EMBASE and the Cochrane Central Registry of Registered Trials (CENTRAL) resulted in 8,137 hits. Of these, four studies met the inclusion criteria and were therefore eligible for data analysis. In all of them, targeting of the NOD-, LRR- and pyrin domain-containing protein 3 (NLRP3) inflammasome effectively reduced the incidence of aortic disease and aortic rupture, and additionally reduced destruction of the aortic wall. Treatment strategies aiming at other inflammasomes could not be identified. In conclusion, inflammasome targeted therapies, more precisely targeting the NLRP3 inflammasome, have shown promising results in rodent models and deserve further investigation in preclinical research to potentially translate them into clinical research for the treatment of human patients with aortic disease. Regarding other inflammasomes, more preclinical research is needed to investigate their role in the pathophysiology of aortic disease. Protocol Registration: PROSPERO 2021 CRD42021279893, https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42021279893
Collapse
Affiliation(s)
- Markus Wortmann
- Department of Vascular and Endovascular Surgery, University Hospital Heidelberg, Heidelberg, Germany
- *Correspondence: Markus Wortmann
| | - Rosa Klotz
- Study Center of the German Surgical Society (SDGC), University of Heidelberg, Heidelberg, Germany
- Department of General, Visceral and Transplantation Surgery, University Hospital Heidelberg, Heidelberg, Germany
| | - Eva Kalkum
- Study Center of the German Surgical Society (SDGC), University of Heidelberg, Heidelberg, Germany
| | - Susanne Dihlmann
- Department of Vascular and Endovascular Surgery, University Hospital Heidelberg, Heidelberg, Germany
| | - Dittmar Böckler
- Department of Vascular and Endovascular Surgery, University Hospital Heidelberg, Heidelberg, Germany
| | - Andreas S. Peters
- Department of Vascular and Endovascular Surgery, University Hospital Heidelberg, Heidelberg, Germany
| |
Collapse
|
76
|
Grossmannova K, Barathova M, Belvoncikova P, Lauko V, Csaderova L, Tomka J, Dulka T, Pastorek J, Madaric J. Hypoxia Marker Carbonic Anhydrase IX Is Present in Abdominal Aortic Aneurysm Tissue and Plasma. Int J Mol Sci 2022; 23:ijms23020879. [PMID: 35055064 PMCID: PMC8778372 DOI: 10.3390/ijms23020879] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/10/2022] [Accepted: 01/11/2022] [Indexed: 02/05/2023] Open
Abstract
Abdominal aortic aneurysms (AAA) are a significant cause of premature deaths worldwide. Since there is no specific treatment for reducing AAA progression, it is crucial to understand the pathogenesis leading to aneurysm wall weakening/remodeling and identify new proteins involved in this process which could subsequently serve as novel therapeutic targets. In this study, we analyzed the presence of the hypoxia-related proteins carbonic anhydrase IX (CA IX), hypoxia-inducible factor 1α (HIF-1α), and AKT as the key molecule in the phosphoinositide-3-kinase pathway in the AAA wall. Additionally, we used a blood-based assay to examine soluble CA IX (s-CA IX) levels in the plasma of AAA patients. Using western blotting, we detected CA IX protein in 12 out of 15 AAA tissue samples. Immunohistochemistry staining proved CA IX expression in the media of the aneurysmal wall. Evaluation of phosphorylated (p-AKT) and total AKT showed elevated levels of both forms in AAA compared to normal aorta. Using ELISA, we determined the concentration of s-CA IX >20 pg/mL in 13 out of 15 AAA patients. Results obtained from in silico analysis of CA9 and aneurysm-associated genes suggest a role for CA IX in aneurysmal wall remodeling. Our results prove the presence of hypoxia-related CA IX in AAA tissues and indicate a possible role of CA IX in hypoxia-associated cardiovascular diseases.
Collapse
Affiliation(s)
- Katarina Grossmannova
- Department of Cancer Biology, Institute of Virology, Biomedical Research Center, Slovak Academy of Sciences, Dúbravská Cesta 9, 84505 Bratislava, Slovakia; (K.G.); (P.B.); (L.C.)
| | - Monika Barathova
- Department of Cancer Biology, Institute of Virology, Biomedical Research Center, Slovak Academy of Sciences, Dúbravská Cesta 9, 84505 Bratislava, Slovakia; (K.G.); (P.B.); (L.C.)
- Correspondence: ; Tel.: +421-2-59302439
| | - Petra Belvoncikova
- Department of Cancer Biology, Institute of Virology, Biomedical Research Center, Slovak Academy of Sciences, Dúbravská Cesta 9, 84505 Bratislava, Slovakia; (K.G.); (P.B.); (L.C.)
| | - Viliam Lauko
- Department of Laboratory Medicine, National Institute of Cardiovascular Disease, Pod Krásnou Hôrkou 1, 83101 Bratislava, Slovakia;
| | - Lucia Csaderova
- Department of Cancer Biology, Institute of Virology, Biomedical Research Center, Slovak Academy of Sciences, Dúbravská Cesta 9, 84505 Bratislava, Slovakia; (K.G.); (P.B.); (L.C.)
| | - Jan Tomka
- Department of Vascular Surgery, National Institute of Cardiovascular Disease, Pod Krásnou Hôrkou 1, 83101 Bratislava, Slovakia; (J.T.); (T.D.)
| | - Tomas Dulka
- Department of Vascular Surgery, National Institute of Cardiovascular Disease, Pod Krásnou Hôrkou 1, 83101 Bratislava, Slovakia; (J.T.); (T.D.)
| | | | - Juraj Madaric
- Department of Angiology, National Institute of Cardiovascular Disease, Pod Krásnou Hôrkou 1, 83101 Bratislava, Slovakia;
| |
Collapse
|
77
|
Sunderland K, Jiang J, Zhao F. Disturbed flow's impact on cellular changes indicative of vascular aneurysm initiation, expansion, and rupture: A pathological and methodological review. J Cell Physiol 2022; 237:278-300. [PMID: 34486114 PMCID: PMC8810685 DOI: 10.1002/jcp.30569] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 08/06/2021] [Accepted: 08/16/2021] [Indexed: 01/03/2023]
Abstract
Aneurysms are malformations within the arterial vasculature brought on by the structural breakdown of the microarchitecture of the vessel wall, with aneurysms posing serious health risks in the event of their rupture. Blood flow within vessels is generally laminar with high, unidirectional wall shear stressors that modulate vascular endothelial cell functionality and regulate vascular smooth muscle cells. However, altered vascular geometry induced by bifurcations, significant curvature, stenosis, or clinical interventions can alter the flow, generating low stressor disturbed flow patterns. Disturbed flow is associated with altered cellular morphology, upregulated expression of proteins modulating inflammation, decreased regulation of vascular permeability, degraded extracellular matrix, and heightened cellular apoptosis. The understanding of the effects disturbed flow has on the cellular cascades which initiate aneurysms and promote their subsequent growth can further elucidate the nature of this complex pathology. This review summarizes the current knowledge about the disturbed flow and its relation to aneurysm pathology, the methods used to investigate these relations, as well as how such knowledge has impacted clinical treatment methodologies. This information can contribute to the understanding of the development, growth, and rupture of aneurysms and help develop novel research and aneurysmal treatment techniques.
Collapse
Affiliation(s)
- Kevin Sunderland
- Department of Biomedical Engineering, Michigan Technological University, Houghton, MI 49931
| | - Jingfeng Jiang
- Department of Biomedical Engineering, Michigan Technological University, Houghton, MI 49931,Corresponding Authors: Feng Zhao, 101 Bizzell Street, College Station, TX 77843-312, Tel : 979-458-1239, , Jingfeng Jiang, 1400 Townsend Dr., Houghton, MI 49931, Tel: 906-487-1943
| | - Feng Zhao
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843,Corresponding Authors: Feng Zhao, 101 Bizzell Street, College Station, TX 77843-312, Tel : 979-458-1239, , Jingfeng Jiang, 1400 Townsend Dr., Houghton, MI 49931, Tel: 906-487-1943
| |
Collapse
|
78
|
Lin Y, Huang H, Yu Y, Zhu F, Xiao W, Yang Z, Shao L, Shen Z. Long non-coding RNA RP11-465L10.10 promotes vascular smooth muscle cells phenotype switching and MMP9 expression via the NF-κB pathway. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1776. [PMID: 35071470 PMCID: PMC8756256 DOI: 10.21037/atm-21-6402] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 12/17/2021] [Indexed: 01/02/2023]
Abstract
Background Thoracic aortic aneurysm/dissection (TAA/D) are complicated vascular disorders with rapid development and high mortality. Vascular smooth muscle cells (VSMCs) phenotype switching plays an important role in the pathological process of TAA/D. Previous studies have indicated a potential correlation between long non-coding RNA (lncRNA) RP11-465L10.10 and matrix metallopeptidase 9 (MMP9) involved in the development of TAA/D. This study aims to investigate the role of lncRNA RP11-465L10.10 in VSMCs phenotype switching and the molecular mechanism in regulating MMP9 expression. Methods The expression of RP11-465L10.10 in vascular tissues and in VMSCs was detected by RT-qPCR. To investigate the role of RP11-465L10.10 on VSMCs phenotype switching, an RP11-465L10.10-overexpressed lentiviral vector was constructed and transfected into VSMCs. Through EdU staining, migration assay, flow cytometry analysis, the roles of RP11-465L10.10 were estimated. Bioinformatics indicated that RP11-465L10.10 upregulating MMP9 expression via NF-κB signaling, and SN50 (a specific inhibitor of NF-κB pathway) was used to inhibit the NF-κB pathway activation, then the expression of MMP9 was detected in RP11-465L10.10 overexpressed VMSCs. Results In this study, we found RP11-465L10.10 and MMP9 were highly increased in TAD patient tissues, which was consistent in angiotensin II-induced VSMCs phenotype switching. RP11-465L10.10 overexpression facilitated VSMCs phenotype switching and MMP9 expression. Mechanismly, NF-κB signal pathway was involved in RP11-465L10.10 induced VSMCs phenotype switching and MMP9 expression by transcriptome data analysis and experimental confirm. Conclusion This study demonstrated that RP11-465L10.10 induces VSMCs phenotype switching and MMP9 expression via the NF-κB signal pathway, suggesting that RP11-465L10.10 might be a potential therapeutic target for TAA/D treatment.
Collapse
Affiliation(s)
- Yang Lin
- Department of Cardiovascular Surgery, the First Affiliated Hospital of Soochow University, Suzhou, China
| | - Haoyue Huang
- Department of Cardiovascular Surgery, the First Affiliated Hospital of Soochow University, Suzhou, China.,Institute for Cardiovascular Science, Soochow University, Suzhou, China
| | - You Yu
- Department of Cardiovascular Surgery, the First Affiliated Hospital of Soochow University, Suzhou, China.,Institute for Cardiovascular Science, Soochow University, Suzhou, China
| | - Feng Zhu
- Department of Cardiovascular Surgery, the First Affiliated Hospital of Soochow University, Suzhou, China
| | - Weizhang Xiao
- Department of Cardiovascular Surgery, the First Affiliated Hospital of Soochow University, Suzhou, China
| | - Ziying Yang
- Department of Cardiovascular Surgery, the First Affiliated Hospital of Soochow University, Suzhou, China.,Institute for Cardiovascular Science, Soochow University, Suzhou, China
| | - Lianbo Shao
- Department of Cardiovascular Surgery, the First Affiliated Hospital of Soochow University, Suzhou, China.,Institute for Cardiovascular Science, Soochow University, Suzhou, China
| | - Zhenya Shen
- Department of Cardiovascular Surgery, the First Affiliated Hospital of Soochow University, Suzhou, China.,Institute for Cardiovascular Science, Soochow University, Suzhou, China
| |
Collapse
|
79
|
Temme S, Yakoub M, Bouvain P, Yang G, Schrader J, Stegbauer J, Flögel U. Beyond Vessel Diameters: Non-invasive Monitoring of Flow Patterns and Immune Cell Recruitment in Murine Abdominal Aortic Disorders by Multiparametric MRI. Front Cardiovasc Med 2021; 8:750251. [PMID: 34760945 PMCID: PMC8572976 DOI: 10.3389/fcvm.2021.750251] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 09/27/2021] [Indexed: 02/03/2023] Open
Abstract
The pathophysiology of the initiation and progression of abdominal aortic aneurysms (AAAs) and aortic dissections (AADs) is still unclear. However, there is strong evidence that monocytes and macrophages are of crucial importance in these processes. Here, we utilized a molecular imaging approach based on background-free 19F MRI and employed perfluorocarbon nanoemulsions (PFCs) for in situ 19F labeling of monocytes/macrophages to monitor vascular inflammation and AAA/AAD formation in angiotensin II (angII)-treated apolipoproteinE-deficient (apoE-/-) mice. In parallel, we used conventional 1H MRI for the characterization of aortic flow patterns and morphology. AngII (1 μg/kg/min) was infused into apoE-/- mice via osmotic minipumps for 10 days and mice were monitored by multiparametric 1H/19F MRI. PFCs were intravenously injected directly after pump implantation followed by additional applications on day 2 and 4 to allow an efficient 19F loading of circulating monocytes. The combination of angiographic, hemodynamic, and anatomical measurements allowed an unequivocal classification of mice in groups with developing AAAs, AADs or without any obvious aortic vessel alterations despite the exposure to angII. Maximal luminal and external diameters of the aorta were enlarged in AAAs, whereas AADs showed either a slight decrease of the luminal diameter or no alteration. 1H/19F MRI after intravenous PFC application demonstrated significantly higher 19F signals in aortae of mice that developed AAAs or AADs as compared to mice in which no aortic disorders were detected. High resolution 1H/19F MRI of excised aortae revealed a patchy pattern of the 19F signals predominantly in the adventitia of the aorta. Histological analysis confirmed the presence of macrophages in this area and flow cytometry revealed higher numbers of immune cells in aortae of mice that have developed AAA/AAD. Importantly, there was a linear correlation of the 19F signal with the total number of infiltrated macrophages. In conclusion, our approach enables a precise differentiation between AAA and AAD as well as visualization and quantitative assessment of inflammatory active vascular lesions, and therefore may help to unravel the complex interplay between macrophage accumulation, vascular inflammation, and the development and progression of AAAs and AADs.
Collapse
Affiliation(s)
- Sebastian Temme
- Department of Experimental Anesthesia, Heinrich-Heine-University, Düsseldorf, Germany.,Experimental Cardiovascular Imaging, Heinrich-Heine-University, Düsseldorf, Germany
| | - Mina Yakoub
- Department of Nephrology, Medical Faculty, University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Pascal Bouvain
- Experimental Cardiovascular Imaging, Heinrich-Heine-University, Düsseldorf, Germany.,Department of Molecular Cardiology, Heinrich-Heine-University, Düsseldorf, Germany
| | - Guang Yang
- Department of Nephrology, Medical Faculty, University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Jürgen Schrader
- Department of Molecular Cardiology, Heinrich-Heine-University, Düsseldorf, Germany
| | - Johannes Stegbauer
- Department of Nephrology, Medical Faculty, University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Ulrich Flögel
- Experimental Cardiovascular Imaging, Heinrich-Heine-University, Düsseldorf, Germany.,Department of Molecular Cardiology, Heinrich-Heine-University, Düsseldorf, Germany
| |
Collapse
|
80
|
Ugajin A, Iwakoshi S, Ichihashi S, Inoue T, Nakai T, Kishida H, Chanoki Y, Tanaka T, Mori H, Kichikawa K. Prediction of Abdominal Aortic Aneurysm Growth After Endovascular Aortic Repair by Measuring Brachial-Ankle Pulse Wave Velocity. Ann Vasc Surg 2021; 81:163-170. [PMID: 34748949 DOI: 10.1016/j.avsg.2021.08.056] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/29/2021] [Accepted: 08/30/2021] [Indexed: 11/01/2022]
Abstract
BACKGROUND Although endovascular aortic repair (EVAR) has become the dominant therapeutic approach for abdominal aortic aneurysm (AAA), continued sac growth after EVAR remains a major concern and is still unpredictable. Since AAA formation is thought to arise from atherosclerotic vascular damage of the aortic wall, we hypothesize that the severity of atherosclerosis in the AAA wall may influence sac growth. Therefore, we investigated whether brachial-ankle pulse wave velocity (baPWV), a marker of atherosclerosis severity obtained by noninvasive automatic devices, can predict sac growth after EVAR. METHODS The data from all patients who underwent elective EVAR for AAA at a single institution from January 2012 to March 2019 were reviewed. We extracted the baPWV before EVAR and divided patients into 2 groups according to the baPWV cut-off value identified by a classification and regression tree (CART). The primary outcome was significant sac growth, defined as an increment of 5 mm or more in aneurysm size after EVAR relative to the aneurysm size before EVAR. Cox regression analysis was performed to assess the potential predictors of sac growth. RESULTS During the follow-up period, 222 consecutive patients underwent elective EVAR for AAA. Of these, 175 patients with a median follow-up period of 36 months were included. The baPWV values were classified as <1854 cm/s (Group 0) in 100 patients and ≥1854 cm/s (Group 1) in 75 patients according to the cut-off value identified by CART. During the follow-up period, 10 (10.0%) patients in Group 0 and 18 (24.0%) patients in Group 1 demonstrated significant sac growth (P = 0.021). Risk factors for significant sac growth included baPWV (hazard ratio [HR], 3.059; 95% confidence interval [CI], 1.41-6.64; P = 0.005), age (HR, 1.078; 95% CI, 1.01-1.16; P = 0.036), and persistent type II endoleak (HR, 3.552; 95% CI, 1.69-7.48; P < 0.001). Multivariate analysis revealed that baPWV remained a significant risk factor for sac growth after adjustment for age (HR, 2.602; 95% CI, 1.15-5.82; P = 0.02) and persistent type II endoleak (HR, 2.957; 95% CI, 1.36-6.43; P = 0.006). CONCLUSIONS The baPWV before EVAR was associated with significant sac growth after EVAR; thus, measuring the baPWV may be useful for assessing the risk of future sac growth in patients after EVAR.
Collapse
Affiliation(s)
- Atsushi Ugajin
- Department of Radiology, IVR Center, Nara Medical University, Kashihara, Nara, Japan; Department of Radiology, Jichi Medical University, Shimotsuke, Tochigi, Japan
| | - Shinichi Iwakoshi
- Department of Radiology, IVR Center, Nara Medical University, Kashihara, Nara, Japan.
| | - Shigeo Ichihashi
- Department of Radiology, IVR Center, Nara Medical University, Kashihara, Nara, Japan
| | - Takashi Inoue
- Institute for Clinical Translational Science, Nara Medical University Hospital, Kashihara, Nara, Japan
| | - Takahiro Nakai
- Department of Radiology, IVR Center, Nara Medical University, Kashihara, Nara, Japan
| | - Hayato Kishida
- Department of Radiology, IVR Center, Nara Medical University, Kashihara, Nara, Japan
| | - Yuto Chanoki
- Department of Radiology, IVR Center, Nara Medical University, Kashihara, Nara, Japan
| | - Toshihiro Tanaka
- Department of Radiology, IVR Center, Nara Medical University, Kashihara, Nara, Japan
| | - Harushi Mori
- Department of Radiology, Jichi Medical University, Shimotsuke, Tochigi, Japan
| | - Kimihiko Kichikawa
- Department of Radiology, IVR Center, Nara Medical University, Kashihara, Nara, Japan
| |
Collapse
|
81
|
Chen S, Luo K, Bian S, Chen J, Qiu R, Wu X, Li G. Paeonol Ameliorates Abdominal Aortic Aneurysm Progression by the NF-κB Pathway. Ann Vasc Surg 2021; 77:255-262. [PMID: 34411666 DOI: 10.1016/j.avsg.2021.06.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 06/08/2021] [Accepted: 06/15/2021] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Abdominal aortic aneurysm (AAA) is a chronic inflammatory disease characterized by localized progressive dilatation. Currently, paeonol has been shown to possess anti-inflammatory and protective cardiovascular properties. Our study aimed to investigate the potential influences of paeonol on AAA progression. METHODS Experimental AAAs were created in C57BL/6J mice by intra-aortic infusion of porcine pancreatic elastase, and then intragastrically administered paeonol (20 mg/kg/day) for 14 days. The effects of paeonol on experimental AAA were measured by ultrasound imaging, histopathology, and western blot analyses. RESULTS Paeonol treatment limited the enlargement of the aneurysmal diameter and alleviated the depletion of elastic fibers and vascular smooth muscle cells (VSMCs). Furthermore, the infiltration of CD68+ macrophages and CD8+ lymphocytes was obviously attenuated after paeonol administration, along with mural neoangiogenesis. Western blot results showed that paeonol inhibited the expression of matrix metalloproteinase (MMP) and the NF-κB pathway activation. CONCLUSIONS Paeonol might prevent experimental AAA progression by inhibiting the NF-κB pathway, which suggests that it is a potential drug for AAA.
Collapse
MESH Headings
- Acetophenones/pharmacology
- Animals
- Anti-Inflammatory Agents/pharmacology
- Aorta, Abdominal/drug effects
- Aorta, Abdominal/immunology
- Aorta, Abdominal/metabolism
- Aorta, Abdominal/pathology
- Aortic Aneurysm, Abdominal/immunology
- Aortic Aneurysm, Abdominal/metabolism
- Aortic Aneurysm, Abdominal/pathology
- Aortic Aneurysm, Abdominal/prevention & control
- CD8-Positive T-Lymphocytes/drug effects
- CD8-Positive T-Lymphocytes/enzymology
- CD8-Positive T-Lymphocytes/immunology
- Disease Models, Animal
- Disease Progression
- Macrophages/drug effects
- Macrophages/immunology
- Macrophages/metabolism
- Male
- Matrix Metalloproteinase 9/metabolism
- Mice, Inbred C57BL
- NF-kappa B/metabolism
- Neovascularization, Pathologic
- Signal Transduction
- Mice
Collapse
Affiliation(s)
- Shuxiao Chen
- Department of Vascular Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Kun Luo
- Department of Vascular Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Shuai Bian
- Department of Vascular Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Jianfeng Chen
- Department of Vascular Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Renfeng Qiu
- Department of Vascular Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China; Department of Vascular Surgery, Shouguang People Hospital, Shouguang, Shandong, China
| | - Xuejun Wu
- Department of Vascular Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China; Department of Vascular Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Gang Li
- Department of Vascular Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China; Department of Vascular Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China.
| |
Collapse
|
82
|
Chen MT, Chung CH, Ke HY, Peng CK, Chien WC, Shen CH. Risk of Aortic Aneurysm and Dissection in Patients with Tuberculosis: A Nationwide Population-Based Cohort Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph182111075. [PMID: 34769592 PMCID: PMC8583242 DOI: 10.3390/ijerph182111075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 10/18/2021] [Accepted: 10/19/2021] [Indexed: 11/16/2022]
Abstract
Tuberculosis (TB) can cause chronic inflammation. The occurrence of aortic aneurysm (AA) and aortic dissection (AD) may be associated with chronic inflammatory disease, but whether TB increases the risk of AA and AD remains to be determined. This study aimed to investigate the association between TB and the development of AA and AD. We conducted a population-based cohort study using data obtained from the Taiwan National Health Insurance Database. We selected 31,220 individuals with TB and 62,440 individuals without TB by matching the cohorts according to age, sex, and index year at a ratio of 1:2. Cox regression analysis revealed that the TB cohort had a 1.711-fold higher risk of AA and AD than the non-TB cohort after adjustment for sex, age, socioeconomic status, and comorbidities (adjusted hazard ratio = 1.711; 95% confidence interval = 1.098–2.666). Patients with pulmonary, extrapulmonary, and miliary TB had a 1.561-, 1.892-, and 8.334-fold higher risk of AA and AD, respectively. Furthermore, patients with TB at <6 months, 6–12 months, and 1–5 years of follow-up had a 6.896-, 2.671-, and 2.371-fold risk of AA and AD, respectively. Physicians should consider the subsequent development of AA and AD while treating patients with TB.
Collapse
Affiliation(s)
- Ming-Tsung Chen
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei 11490, Taiwan; (M.-T.C.); (C.-K.P.)
| | - Chi-Hsiang Chung
- Department of Medical Research, Tri-Service General Hospital, National Defense Medical Center, Taipei 11490, Taiwan;
- School of Public Health, National Defense Medical Center, Taipei 11490, Taiwan
| | - Hung-Yen Ke
- Division of Cardiovascular Surgery, Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei 11490, Taiwan;
| | - Chung-Kan Peng
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei 11490, Taiwan; (M.-T.C.); (C.-K.P.)
| | - Wu-Chien Chien
- Department of Medical Research, Tri-Service General Hospital, National Defense Medical Center, Taipei 11490, Taiwan;
- School of Public Health, National Defense Medical Center, Taipei 11490, Taiwan
- Correspondence: (W.-C.C.); (C.-H.S.); Tel.: +886-2-87923311 (W.-C.C. & C.-H.S.)
| | - Chih-Hao Shen
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei 11490, Taiwan; (M.-T.C.); (C.-K.P.)
- Correspondence: (W.-C.C.); (C.-H.S.); Tel.: +886-2-87923311 (W.-C.C. & C.-H.S.)
| |
Collapse
|
83
|
Li H, Xu H, Wen H, Wang H, Zhao R, Sun Y, Bai C, Ping J, Song L, Luo M, Chen J. Lysyl hydroxylase 1 (LH1) deficiency promotes angiotensin II (Ang II)-induced dissecting abdominal aortic aneurysm. Theranostics 2021; 11:9587-9604. [PMID: 34646388 PMCID: PMC8490513 DOI: 10.7150/thno.65277] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 09/03/2021] [Indexed: 12/13/2022] Open
Abstract
Rationale: The progressive disruption of extracellular matrix (ECM) proteins, particularly early elastin fragmentation followed by abnormalities in collagen fibril organization, are key pathological processes that contribute to dissecting abdominal aortic aneurysm (AAA) pathogenesis. Lysyl hydroxylase 1 (LH1) is essential for type I/III collagen intermolecular crosslinking and stabilization. However, its function in dissecting AAA has not been explored. Here, we investigated whether LH1 is significantly implicated in dissecting AAA progression and therapeutic intervention. Methods and Results: Sixteen-week-old male LH1-deficient and wild-type (WT) mice on the C57Bl/6NCrl background were infused with angiotensin II (Ang II, 1000 ng/kg per minute) via subcutaneously implanted osmotic pumps for 4 weeks. Ang II increased LH1 levels in the abdominal aortas of WT mice, whereas mice lacking LH1 developed dissecting AAA. To evaluate the related mechanism, we performed whole-transcriptomic analysis, which demonstrated that LH1 deficiency aggravated gene transcription alterations; in particular, the expression of thrombospondin-1 was markedly upregulated in the aortas of LH1-deficient mice. Furthermore, targeting thrombospondin-1 with TAX2 strongly inhibited the proinflammatory process, matrix metalloproteinase (MMP) activity and vascular smooth muscle cells (VSMCs) apoptosis, ultimately decreasing the incidence of dissecting AAA. Restoration of LH1 protein expression in LH1-deficient mice by intraperitoneal injection of an adeno-associated virus normalized thrombospondin-1 levels, subsequently alleviating dissecting AAA formation and preserving aortic structure and function. Consistently, in human AAA specimens, decreased LH1 expression was associated with increased thrombospondin-1 levels. Conclusions: LH1 deficiency contributes to dissecting AAA pathogenesis, at least in part, by upregulating thrombospondin-1 expression, which subsequently enables proinflammatory processes, MMP activation and VSMCs apoptosis. Our study provides evidence that LH1 is a potential critical therapeutic target for AAA.
Collapse
Affiliation(s)
- Hao Li
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| | - Haochen Xu
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| | - Hongyan Wen
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| | - Hongyue Wang
- Department of Pathology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| | - Ranxu Zhao
- Department of Pathology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| | - Yingying Sun
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| | - Congxia Bai
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| | - Jiedan Ping
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| | - Li Song
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| | - Mingyao Luo
- State Key Laboratory of Cardiovascular Disease, Center of Vascular Surgery, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
- Department of Vascular Surgery, Fuwai Yunnan Cardiovascular Hospital, Affiliated Cardiovascular Hospital of Kunming Medical University, Kunming, 650102, China
| | - Jingzhou Chen
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
- National Health Commission Key Laboratory of Cardiovascular Regenerative Medicine, Fuwai Central-China Hospital, Central-China Branch of National Center for Cardiovascular Diseases, Zhengzhou 450046, China
| |
Collapse
|
84
|
Neutrophils as Regulators and Biomarkers of Cardiovascular Inflammation in the Context of Abdominal Aortic Aneurysms. Biomedicines 2021; 9:biomedicines9091236. [PMID: 34572424 PMCID: PMC8467789 DOI: 10.3390/biomedicines9091236] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 09/10/2021] [Accepted: 09/14/2021] [Indexed: 12/22/2022] Open
Abstract
Neutrophils represent up to 70% of circulating leukocytes in healthy humans and combat infection mostly by phagocytosis, degranulation and NETosis. It has been reported that neutrophils are centrally involved in abdominal aortic aneurysm (AAA) pathogenesis. The natural course of AAA is growth and rupture, if left undiagnosed or untreated. The rupture of AAA has a very high mortality and is currently among the leading causes of death worldwide. The use of noninvasive cardiovascular imaging techniques for patient screening, surveillance and postoperative follow-up is well established and recommended by the current guidelines. Neutrophil-derived biomarkers may offer clinical value to the monitoring and prognosis of AAA patients, allowing for potential early therapeutic intervention. Numerous promising biomarkers have been studied. In this review, we discuss neutrophils and neutrophil-derived molecules as regulators and biomarkers of AAA, and our aim was to specifically highlight diagnostic and prognostic markers. Neutrophil-derived biomarkers may potentially, in the future, assist in determining AAA presence, predict size, expansion rate, rupture risk, and postoperative outcome once validated in highly warranted future prospective clinical studies.
Collapse
|
85
|
Qiu R, Chen S, Hua F, Bian S, Chen J, Li G, Wu X. Betanin Prevents Experimental Abdominal Aortic Aneurysm Progression by Modulating the TLR4/NF-κB and Nrf2/HO-1 Pathways. Biol Pharm Bull 2021; 44:1254-1262. [PMID: 34471054 DOI: 10.1248/bpb.b21-00042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Betanin, a bioactive ingredient mostly isolated from beetroots, exhibits a protective effect against cardiovascular diseases. However, its effects on abdominal aortic aneurysm (AAA) have not been elucidated. In this study, an AAA model was constructed by infusion of porcine pancreatic elastase in C57BL/6 mice. Mice were then administered with betanin or saline intragastrically once daily for 14 d. Our results showed that treatment with betanin remarkably limited AAA enlargement and mitigated the infiltration of inflammatory cells in the adventitia. The increased expression of proinflammatory cytokines and matrix metalloproteinases (MMPs) was also significantly alleviated following betanin treatment. Furthermore, betanin suppressed the activation of toll-like receptor 4 (TLR4)/nuclear factor-kappaB (NF-κB) signaling in the aortic wall, and downregulated the levels of tissue-reactive oxygen species as well as circulating 8-isoprostane by stimulating the nuclear factor-E2-related factor 2 (Nrf2)/heme oxygenase-1 (HO-1) pathway. Taken together, these data suggest that betanin may attenuate AAA progression and may be used as a therapeutic drug against AAA.
Collapse
Affiliation(s)
- Renfeng Qiu
- Department of Vascular Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University.,Department of Vascular Surgery, Shouguang People Hospital
| | - Shuxiao Chen
- Department of Vascular Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University
| | - Fang Hua
- Department of Clinical Laboratory, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University
| | - Shuai Bian
- Department of Vascular Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University
| | - Jianfeng Chen
- Department of Vascular Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University
| | - Gang Li
- Department of Vascular Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University.,Department of Vascular Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University
| | - Xuejun Wu
- Department of Vascular Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University.,Department of Vascular Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University
| |
Collapse
|
86
|
Liu H, Zhang Y, Song W, Sun Y, Jiang Y. Osteopontin N-Terminal Function in an Abdominal Aortic Aneurysm From Apolipoprotein E-Deficient Mice. Front Cell Dev Biol 2021; 9:681790. [PMID: 34458254 PMCID: PMC8397420 DOI: 10.3389/fcell.2021.681790] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 07/20/2021] [Indexed: 12/20/2022] Open
Abstract
The cleavage of osteopontin (OPN) by thrombin results in an N-terminal fragment (OPN-N), which exposes a cryptic integrin-binding motif that promotes the adherence of cells, and plays a proinflammatory role. However, the effect of OPN-N on abdominal aortic aneurysm (AAA) remains unknown. The aim of this study was to investigate the expression of OPN-N in aortic tissue samples obtained from patients, who underwent acute aortic dissection (AD), and normal aorta, effect of OPN-N on angiotensin (Ang) II-induced AAA in mice, and relationship between OPN-N and pyroptosis-related inflammatory factors in vitro. Hematoxylin and eosin staining was conducted to detect histological changes. Next, we detected the expression of the OPN-N protein. Additionally, ApoE−/− mice were divided into four groups: control, control + M5Ab (to block the OPN-N function in mice), Ang II, and Ang II + M5Ab. All mice were euthanized after a 28-day infusion and whole aortas, including thoracic and abdominal aortas, were collected for morphological and histological analysis of the AAA. The OPN-N protein expression was higher in patients with AD than in normal individuals, while histological changes in the aortas of Ang II mice were suppressed in Ang II + M5Ab mice. The expression of OPN-N, NOD-, LRR-, and pyrin domain-containing protein 3, pro-Caspase-1, ASC, Gasdermin-d, interleukin (IL)-18, IL-1β, matrix metalloproteinase (MMP) 2, and MMP9 was lower in the Ang II + M5Ab group than in the Ang II group. The gene expression of monocyte chemoattractant protein-1, IL-6, and tumor necrosis factor-α was suppressed in the aortic tissues of the Ang II + M5Ab group compared with the Ang II group. Moreover, the expression of α-smooth muscle actin was lower in the Ang II group than in the Ang II + M5Ab group. In vitro results showed that the increase in the expression of pyroptosis-related inflammatory factors induced by OPN was mediated through the nuclear factor (NF)-κB pathway. In conclusion, OPN-N promotes AAA by increasing the expression of pyroptosis-related inflammatory factors through the NF-κB pathway, inflammation, and extracellular matrix degradation. These results highlight the potential of OPN-N as a new therapeutic target to prevent AAA expansion.
Collapse
Affiliation(s)
- Hongyang Liu
- Department of Heart Intensive Care Unit, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Ying Zhang
- Department of Cardiology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Wei Song
- Department of Cardiology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Yancui Sun
- Department of Cardiology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Yinong Jiang
- Department of Cardiology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|
87
|
Campisi S, Jayendiran R, Condemi F, Viallon M, Croisille P, Avril S. Significance of Hemodynamics Biomarkers, Tissue Biomechanics and Numerical Simulations in the Pathogenesis of Ascending Thoracic Aortic Aneurysms. Curr Pharm Des 2021; 27:1890-1898. [PMID: 33319666 DOI: 10.2174/1381612826999201214231648] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 11/06/2020] [Indexed: 11/22/2022]
Abstract
Guidelines for the treatment of aortic wall diseases are based on measurements of maximum aortic diameter. However, aortic rupture or dissections do occur for small aortic diameters. Growing scientific evidence underlines the importance of biomechanics and hemodynamics in aortic disease development and progression. Wall shear stress (WWS) is an important hemodynamics marker that depends on aortic wall morphology and on the aortic valve function. WSS could be helpful to interpret aortic wall remodeling and define personalized risk criteria. The complementarity of Computational Fluid Dynamics and 4D Magnetic Resonance Imaging as tools for WSS assessment is a promising reality. The potentiality of these innovative technologies will provide maps or atlases of hemodynamics biomarkers to predict aortic tissue dysfunction. Ongoing efforts should focus on the correlation between these non-invasive imaging biomarkers and clinico-pathologic situations for the implementation of personalized medicine in current clinical practice.
Collapse
Affiliation(s)
- Salvatore Campisi
- Department of Cardiovascular Surgery; University Hospistal of Saint Etienne, France
| | - Raja Jayendiran
- Mines Saint-Etienne, Univ Lyon, Univ Jean Monnet, INSERM, U 1059 Sainbiose, Centre CIS, F - 42023 Saint-Etienne, France
| | - Francesca Condemi
- Mines Saint-Etienne, Univ Lyon, Univ Jean Monnet, INSERM, U 1059 Sainbiose, Centre CIS, F - 42023 Saint-Etienne, France
| | - Magalie Viallon
- Department of Radiology, University Hospital of Saint Etienne, France
| | - Pierre Croisille
- Department of Radiology, University Hospital of Saint Etienne, France
| | - Stéphane Avril
- Mines Saint-Etienne, Univ Lyon, Univ Jean Monnet, INSERM, U 1059 Sainbiose, Centre CIS, F - 42023 Saint-Etienne, France
| |
Collapse
|
88
|
Mid-term follow-up of aortic valve replacement for bicuspid aortic valve. Cardiol Young 2021; 31:1290-1296. [PMID: 33641690 DOI: 10.1017/s1047951121000160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
OBJECTIVE The purpose of this study was to evaluate the mid-term outcome of aortic valve replacement for bicuspid aortic valve and tricuspid aortic valve and the related risk factors. METHODS From January 2014 to June 2019, 177 tricuspid aortic valve patients and 101 bicuspid aortic valve patients who underwent aortic valve replacement in our hospital were collected. 1:1 propensity score matching analysis was used to control the bias in patient selection. The perioperative and follow-up data between the two groups were compared. Independent risk factors which were associated with the continued dilatation of the ascending aorta were identified by univariate or multivariate logistic regression analysis. RESULTS After the matching procedure, 160 patients were included in the analysis (80 in each group). Baseline characteristics, intraoperative, and perioperative outcomes were similar between the two groups (all p > 0.05). Moreover, 67 patients in the tricuspid aortic valve group and 70 in the bicuspid aortic valve group completed the follow-up. The ascending aorta change, annual change rate, and the proportion of continuous dilation of ascending aorta in bicuspid aortic valve group were significantly higher than those in the tricuspid aortic valve group (p < 0.05). Multivariate logistic regression analysis showed that type 1 in bicuspid aortic valve (OR 5.173; 95% CI 1.772, 15.101; p = 0.003), aortic regurgitation (OR 3.673; 95% CI 1.133, 11.908; p = 0.030), and aortic valve stenosis with regurgitation (OR 6.489; 95% CI 1.726, 24.404; p = 0.006) were independent risk factors for the continued dilatation of the ascending aorta in all AV patients. Furthermore, the multivariate logistic regression analysis showed that type 1 in bicuspid aortic valve (OR 5.157; 95% CI 1.053, 25.272; p = 0.043), age ≥ 40 years (OR 6.956; 95% CI 1.228, 39.410; p = 0.028), and aortic regurgitation (OR 4.322; 95% CI 1.174, 15.911; p = 0.028) were independent risk factors for the continued dilatation of the ascending aorta in bicuspid aortic valve patients. CONCLUSION Compared with tricuspid aortic valve patients, the ascending aorta of bicuspid aortic valve patients is more likely to continue to enlarge after aortic valve replacement. Type 1 in bicuspid aortic valve, age ≥ 40 years, and aortic regurgitation were the independent risk factors.
Collapse
|
89
|
Wei M, Wang X, Song Y, Zhu D, Qi D, Jiao S, Xie G, Liu Y, Yu B, Du J, Wang Y, Qu A. Inhibition of Peptidyl Arginine Deiminase 4-Dependent Neutrophil Extracellular Trap Formation Reduces Angiotensin II-Induced Abdominal Aortic Aneurysm Rupture in Mice. Front Cardiovasc Med 2021; 8:676612. [PMID: 34395553 PMCID: PMC8360833 DOI: 10.3389/fcvm.2021.676612] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 06/30/2021] [Indexed: 01/08/2023] Open
Abstract
Objective: Neutrophil infiltration plays an important role in the initiation and development of abdominal aortic aneurysm (AAA). Recent studies suggested that neutrophils could release neutrophil extracellular traps (NETs), leading to tissue injury in cardiovascular diseases. However, the role of NETs in AAA is elusive. This study aimed to investigate the role and underlying mechanism of NETs in AAA development. Methods and Results: An angiotensin II (Ang II) infusion-induced AAA model was established to investigate the role of NETs during AAA development. Immunofluorescence staining showed that citrullinated histone 3 (citH3), myeloperoxidase (MPO), and neutrophil elastase (NE) (NET marker) expressions were significantly increased in Ang II-infused ApoE−/− mice. The circulating double-stranded DNA (dsDNA) level was also elevated, indicating the increased NET formation during AAA. PAD4 inhibitor YW3-56 inhibited Ang II-induced NET formation. Disruption of NET formation by YW3-56 markedly reduced Ang II-induced AAA rupture, as revealed by decreased aortic diameter, vascular smooth muscle cell (VSMC) apoptosis, and elastin degradation. Apoptosis of VSMC was evaluated by TUNEL staining and Annexin V-FITC/PI staining through flow cytometry. Western blot and inhibition experiments revealed that NETs induced VSMC apoptosis via p38/JNK pathway, indicating that PAD4-dependent NET formation played an important role in AAA. Conclusions: This study suggests that PAD4-dependent NET formation is critical for AAA rupture, which provides a novel potential therapeutic strategy for AAA disease.
Collapse
Affiliation(s)
- Ming Wei
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China.,Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing, China
| | - Xia Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China.,Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing, China
| | - Yanting Song
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China.,Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing, China
| | - Di Zhu
- School of Pharmaceutical Sciences, Capital Medical University, Beijing, China
| | - Dan Qi
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China.,Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing, China
| | - Shiyu Jiao
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China.,Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing, China
| | - Guomin Xie
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China.,Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing, China
| | - Ye Liu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China.,Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing, China
| | - Baoqi Yu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China.,Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing, China
| | - Jie Du
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China.,Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, China.,Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Yuji Wang
- School of Pharmaceutical Sciences, Capital Medical University, Beijing, China
| | - Aijuan Qu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China.,Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing, China
| |
Collapse
|
90
|
Chen SW, Chou SH, Tung YC, Hsiao FC, Ho CT, Chan YH, Wu VCC, Chou AH, Hsu ME, Lin PJ, Kao WWY, Chu PH. Expression and role of lumican in acute aortic dissection: A human and mouse study. PLoS One 2021; 16:e0255238. [PMID: 34310653 PMCID: PMC8312931 DOI: 10.1371/journal.pone.0255238] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 07/09/2021] [Indexed: 11/18/2022] Open
Abstract
Introduction Aortic dissection (AD) is a life-threatening emergency, and lumican (LUM) is a potential Biomarker for AD diagnosis. We investigated LUM expression patterns in patients with AD and explored the molecular functions of Lum in AD mice model. Methods LUM expression patterns were analyzed using aortic tissues of AD patients, and serum soluble LUM (s-LUM) levels were compared between patients with acute AD (AAD) and chronic AD (CAD). Lum-knockout (Lum−/−) mice were challenged with β-aminopropionitrile (BAPN) and angiotensin II (Ang II) to induce AD. The survival rate, AD incidence, and aortic aneurysm (AA) in these mice were compared with those in BAPN–Ang II–challenged wildtype (WT) mice. Tgf-β/Smad2, Mmps, Lum, and Nox expression patterns were examined. Results LUM expression was detected in the intima and media of the ascending aorta in patients with AAD. Serum s-LUM levels were significantly higher in patients with AAD than CAD. Furthermore, AD-associated mortality and thoracic aortic rupture incidence were significantly higher in the Lum−/− AD mice than in the WT AD mice. However, no significant pathologic changes in AA were observed in the Lum−/− AD mice compared with the WT AD mice. The BAPN–Ang II–challenged WT and Lum−/− AD mice had higher Tgf-β, p-Smad2, Mmp2, Mmp9, and Nox4 levels than those of non-AD mice. We also found that Lum expression was significantly higher in the BAPN-Ang II–challenged WT in comparison to the unchallenged WT mice. Conclusion LUM expression was altered in patients with AD display increased s-LUM in blood, and Lum−/− mice exhibited augmented AD pathogenesis. These findings support the notion that LUM is a biomarker signifying the pathogenesis of injured aorta seen in AAD. The presence of LUM is essential for maintenance of connective tissue integrity. Future studies should elucidate the mechanisms underlying LUM association in aortic changes.
Collapse
Affiliation(s)
- Shao-Wei Chen
- Division of Thoracic and Cardiovascular Surgery, Department of Surgery, Chang Gung Memorial Hospital, Linkou Medical Center, Chang Gung University, Taoyuan City, Taiwan
- Center for Big Data Analytics and Statistics, Chang Gung Memorial Hospital, Linkou Medical Center, Taoyuan City, Taiwan
| | - Shing-Hsien Chou
- Department of Cardiology, Chang Gung Memorial Hospital, Linkou Medical Center, Taoyuan City, Taiwan
| | - Ying-Chang Tung
- Department of Cardiology, Chang Gung Memorial Hospital, Linkou Medical Center, Taoyuan City, Taiwan
| | - Fu-Chih Hsiao
- Department of Cardiology, Chang Gung Memorial Hospital, Linkou Medical Center, Taoyuan City, Taiwan
| | - Chien-Te Ho
- Department of Cardiology, Chang Gung Memorial Hospital, Linkou Medical Center, Taoyuan City, Taiwan
| | - Yi-Hsin Chan
- Department of Cardiology, Chang Gung Memorial Hospital, Linkou Medical Center, Taoyuan City, Taiwan
| | - Victor Chien-Chia Wu
- Department of Cardiology, Chang Gung Memorial Hospital, Linkou Medical Center, Taoyuan City, Taiwan
| | - An-Hsun Chou
- Department of Anesthesiology, Chang Gung Memorial Hospital, Linkou Medical Center, Chang Gung University, Taoyuan City, Taiwan
| | - Ming-En Hsu
- Division of Thoracic and Cardiovascular Surgery, Department of Surgery, Chang Gung Memorial Hospital, Linkou Medical Center, Chang Gung University, Taoyuan City, Taiwan
- Department of Anesthesiology, Chang Gung Memorial Hospital, Linkou Medical Center, Chang Gung University, Taoyuan City, Taiwan
| | - Pyng-Jing Lin
- Division of Thoracic and Cardiovascular Surgery, Department of Surgery, Chang Gung Memorial Hospital, Linkou Medical Center, Chang Gung University, Taoyuan City, Taiwan
| | - Winston W. Y. Kao
- Crawley Vision Research Center, Department of Ophthalmology, College of Medicine, University of Cincinnati, Cincinnati, Ohio, United States of America
| | - Pao-Hsien Chu
- Department of Cardiology, Chang Gung Memorial Hospital, Linkou Medical Center, Taoyuan City, Taiwan
- * E-mail:
| |
Collapse
|
91
|
Ielapi N, Caprino F, Malizia B, Sisinni A, Ssempijja L, Andreucci M, Licastro N, Serra R. Infection, Infectious Agents and Vascular Disease. Rev Recent Clin Trials 2021; 16:262-271. [PMID: 33823769 DOI: 10.2174/1574887116666210325124045] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 01/29/2021] [Accepted: 02/23/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Infectious agents may be involved in the pathogenesis of vascular disease and related complications. The aim of this review is to analyze the most relevant information on the common infections related to vascular disease, discussing the main pathophysiological mechanisms. METHODS In the current review, the most important evidence on the issue of infections and vascular disease is searched on Medline, Scopus, and ScienceDirect database. RESULTS Among infectious agents, herpesviruses, parvovirus B19, hepatitis viruses, human immunodeficiency virus, severe acute respiratory syndrome coronavirus 2, treponema pallidum, mycobacterium tuberculosis, pseudomonas aeruginosa, staphylococcus aureus, and candida albicans seem to particularly related to vascular disease. CONCLUSION Infectious agents may affect vessel's homeostasis and functionality, both on the arterial and venous side, by means of several pathophysiological mechanisms such as dysregulation in vasomotor function, thromboembolic complications, initiation and progression of atherosclerosis, alteration of perivascular adipose tissue, recruiting inflammatory cells and molecules.
Collapse
Affiliation(s)
- Nicola Ielapi
- Interuniversity Center of Phlebolymphology (CIFL). International Research and Educational Program in Clinical and Experimental Biotechnology" at the Department of Surgical and Medical Sciences University Magna Graecia of Catanzaro, Viale Europa 88100 Catanzaro, Italy
| | - Francesco Caprino
- Interuniversity Center of Phlebolymphology (CIFL). International Research and Educational Program in Clinical and Experimental Biotechnology" at the Department of Surgical and Medical Sciences University Magna Graecia of Catanzaro, Viale Europa 88100 Catanzaro, Italy
| | - Biagio Malizia
- Interuniversity Center of Phlebolymphology (CIFL). International Research and Educational Program in Clinical and Experimental Biotechnology" at the Department of Surgical and Medical Sciences University Magna Graecia of Catanzaro, Viale Europa 88100 Catanzaro, Italy
| | - Antonio Sisinni
- Interuniversity Center of Phlebolymphology (CIFL). International Research and Educational Program in Clinical and Experimental Biotechnology" at the Department of Surgical and Medical Sciences University Magna Graecia of Catanzaro, Viale Europa 88100 Catanzaro, Italy
| | - Lwanga Ssempijja
- Interuniversity Center of Phlebolymphology (CIFL). International Research and Educational Program in Clinical and Experimental Biotechnology" at the Department of Surgical and Medical Sciences University Magna Graecia of Catanzaro, Viale Europa 88100 Catanzaro, Italy
| | - Michele Andreucci
- Department of Health Sciences, University of Catanzaro, Catanzaro, Italy
| | - Noemi Licastro
- Interuniversity Center of Phlebolymphology (CIFL). International Research and Educational Program in Clinical and Experimental Biotechnology" at the Department of Surgical and Medical Sciences University Magna Graecia of Catanzaro, Viale Europa 88100 Catanzaro, Italy
| | - Raffaele Serra
- Interuniversity Center of Phlebolymphology (CIFL). International Research and Educational Program in Clinical and Experimental Biotechnology" at the Department of Surgical and Medical Sciences University Magna Graecia of Catanzaro, Viale Europa 88100 Catanzaro, Italy
| |
Collapse
|
92
|
Yi X, Zhou Y, Chen Y, Feng X, Liu C, Jiang DS, Geng J, Li X, Jiang X, Fang ZM. The Expression Patterns and Roles of Lysyl Oxidases in Aortic Dissection. Front Cardiovasc Med 2021; 8:692856. [PMID: 34307505 PMCID: PMC8292648 DOI: 10.3389/fcvm.2021.692856] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 06/11/2021] [Indexed: 12/13/2022] Open
Abstract
Background: Lysyl oxidases (LOXs), including LOX, LOXL1, LOXL2, LOXL3, and LOXL4, catalyze the formation of a cross-link between elastin (ELN) and collagen. Multiple LOX mutations have been shown to be associated with the occurrence of aortic dissection (AD) in humans, and LOX-knockout mice died during the perinatal period due to aortic aneurysm and rupture. However, the expression levels and roles of other LOX members in AD remain unknown. Methods: A total of 33 aorta samples of AD and 15 normal aorta were collected for LOXs mRNA and protein levels detection. We also analyzed the datasets of AD in GEO database through bioinformatics methods. LOXL2 and LOXL3 were knocked down in primary cultured human aortic smooth muscle cells (HASMCs) via lentivirus. Results: Here, we show that the protein levels of LOXL2 and LOXL3 are upregulated, while LOXL4 is downregulated in AD subjects compared with non-AD subjects, but comparable protein levels of LOX and LOXL1 are detected. Knockdown of LOXL2 suppressed MMP2 expression, the phosphorylation of AKT (p-AKT) and S6 (p-S6), but increased the mono-, di-, tri-methylation of H3K4 (H3K4me1/2/3), H3K9me3, and p-P38 levels in HASMCs. These results indicate that LOXL2 is involved in regulation of the extracellular matrix (ECM) in HASMCs. In contrast, LOXL3 knockdown inhibited PCNA and cyclin D1, suppressing HASMC proliferation. Our results suggest that in addition to LOX, LOXL2 and LOXL3 are involved in the pathological process of AD by regulating ECM and the proliferation of HASMCs, respectively. Furthermore, we found that LOXL2 and LOXL4 was inhibited by metformin and losartan in HASMCs, which indicated that LOXL2 and LOXL4 are the potential targets that involved in the therapeutic effects of metformin and losartan on aortic or aneurysm expansion. Conclusions: Thus, differential regulation of LOXs might be a novel strategy to prevent or treat AD.
Collapse
Affiliation(s)
- Xin Yi
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Yi Zhou
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Yue Chen
- Division of Cardiothoracic and Vascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xin Feng
- Division of Cardiothoracic and Vascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chang Liu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Ding-Sheng Jiang
- Division of Cardiothoracic and Vascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jing Geng
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Xiaoyan Li
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Xuejun Jiang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Ze-Min Fang
- Division of Cardiothoracic and Vascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
93
|
An iron oxide nanoworm hybrid on an interdigitated microelectrode silica surface to detect abdominal aortic aneurysms. Mikrochim Acta 2021; 188:185. [PMID: 33977395 DOI: 10.1007/s00604-021-04836-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 04/25/2021] [Indexed: 10/21/2022]
Abstract
An abdominal aortic aneurysm (AAA) is abnormal swelling in the abdominal aorta and a prevalent life-threatening disease. This research introduces a new interdigitated microelectrode (IDME)-sensing surface modified by iron oxide nanoworms (IONWs) for detecting the AAA biomarker insulin-like growth factor-1 (IGF1). A sandwich pattern was formulated with the IGF1 aptamer and IGFBP1 (IGF binding protein-1) on the IONW-constructed IDME hybrid to identify IGF1. The surface morphology of the IONWs revealed a uniform distribution of worm-like structures (80-100 nm) as confirmed by FESEM and FETEM analyses. Further, the presence of the major elements, Fe and O, was confirmed by EDX and XPS studies. The crystal planes that appeared in the IONW reflect cubic magnetite. IONW-modified IDME attained a limit of detection for IGF1 of 1 fM (3σ) with an aptamer-IGF1-IGFBP1 sandwich. This sandwich with IGFBP1 enhanced the current level at all concentrations of IGF1 and displayed linearity in the range 1 fM to 100 pM with a determination coefficient of R2 = 0.9373 [y = 3.38221x - 4.79]. Control experiments with complementary aptamer sequences, IGF2 and IGFBP3 did not show notable signal changes, indicating the specific detection of IGF1. This IONW constructed electrode helps to achieve the detection of low amounts of IGF1 and diagnose AAA at the stage prior to rupture.
Collapse
|
94
|
Aicher BO, Zhang J, Muratoglu SC, Galisteo R, Arai AL, Gray VL, Lal BK, Strickland DK, Ucuzian AA. Moderate aerobic exercise prevents matrix degradation and death in a mouse model of aortic dissection and aneurysm. Am J Physiol Heart Circ Physiol 2021; 320:H1786-H1801. [PMID: 33635167 PMCID: PMC8163659 DOI: 10.1152/ajpheart.00229.2020] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 02/17/2021] [Accepted: 02/18/2021] [Indexed: 11/22/2022]
Abstract
Thoracic aortic aneurysm and dissection (TAAD) is a deadly disease characterized by intimal disruption induced by hemodynamic forces of the circulation. The effect of exercise in patients with TAAD is largely unknown. β-Aminopropionitrile (BAPN) is an irreversible inhibitor of lysyl oxidase that induces TAAD in mice. The objective of this study was to investigate the effect of aerobic exercise on BAPN-induced TAAD. Upon weaning, mice were given either BAPN-containing water or standard drinking water and subjected to either conventional cage activity (BAPN-CONV) or forced treadmill exercise (BAPN-EX) for up to 26 wk. Mortality was 23.5% (20/85) for BAPN-CONV mice versus 0% (0/22) for BAPN-EX mice (hazard ratio 3.8; P = 0.01). BAPN induced significant elastic lamina fragmentation and intimal-medial thickening compared with BAPN-untreated controls, and aneurysms were identified in 50% (5/10) of mice that underwent contrast-enhanced CT scanning. Exercise significantly decreased BAPN-induced wall thickening, calculated circumferential wall tension, and lumen diameter, with 0% (0/5) of BAPN-EX demonstrating chronic aortic aneurysm formation on CT scan. Expression of selected genes relevant to vascular diseases was analyzed by qRT-PCR. Notably, exercise normalized BAPN-induced increases in TGF-β pathway-related genes Cd109, Smad4, and Tgfβr1; inflammation-related genes Vcam1, Bcl2a1, Ccr2, Pparg, Il1r1, Il1r1, Itgb2, and Itgax; and vascular injury- and response-related genes Mmp3, Fn1, and Vwf. Additionally, exercise significantly increased elastin expression in BAPN-treated animals compared with controls. This study suggests that moderate aerobic exercise may be safe and effective in preventing the most devastating outcomes in TAAD.NEW & NOTEWORTHY Moderate aerobic exercise was shown to significantly reduce mortality, extracellular matrix degradation, and thoracic aortic aneurysm and dissection formation associated with lysyl oxidase inhibition in a mouse model. Gene expression suggested a reversal of TGF-β, inflammation, and extracellular matrix remodeling pathway dysregulation, along with augmented elastogenesis with exercise.
Collapse
MESH Headings
- Aminopropionitrile
- Aortic Dissection/chemically induced
- Aortic Dissection/metabolism
- Aortic Dissection/pathology
- Aortic Dissection/therapy
- Animals
- Aorta, Thoracic/metabolism
- Aorta, Thoracic/pathology
- Aorta, Thoracic/physiopathology
- Aortic Aneurysm, Thoracic/chemically induced
- Aortic Aneurysm, Thoracic/metabolism
- Aortic Aneurysm, Thoracic/pathology
- Aortic Aneurysm, Thoracic/therapy
- Aortic Rupture/chemically induced
- Aortic Rupture/metabolism
- Aortic Rupture/pathology
- Aortic Rupture/prevention & control
- Dilatation, Pathologic
- Disease Models, Animal
- Disease Progression
- Exercise Therapy
- Extracellular Matrix/metabolism
- Extracellular Matrix/pathology
- Extracellular Matrix Proteins/metabolism
- Gene Expression Regulation
- Hemodynamics
- Male
- Mice, Inbred C57BL
- Proteolysis
- Signal Transduction
- Vascular Remodeling
- Mice
Collapse
Affiliation(s)
- Brittany O Aicher
- Center for Vascular & Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, Maryland
- Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland
| | - Jackie Zhang
- Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland
| | - Selen C Muratoglu
- Center for Vascular & Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, Maryland
- Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Rebeca Galisteo
- Center for Vascular & Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, Maryland
| | - Allison L Arai
- Center for Vascular & Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, Maryland
| | - Vicki L Gray
- Department of Physical Therapy and Rehabilitation Science, University of Maryland School of Medicine, Baltimore, Maryland
| | - Brajesh K Lal
- Center for Vascular & Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, Maryland
- Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland
- Baltimore Veterans Affairs Medical Center, Vascular Service, Baltimore, Maryland
| | - Dudley K Strickland
- Center for Vascular & Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, Maryland
- Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland
- Department of Physical Therapy and Rehabilitation Science, University of Maryland School of Medicine, Baltimore, Maryland
| | - Areck A Ucuzian
- Center for Vascular & Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, Maryland
- Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland
- Baltimore Veterans Affairs Medical Center, Vascular Service, Baltimore, Maryland
| |
Collapse
|
95
|
Chemerin-9 Attenuates Experimental Abdominal Aortic Aneurysm Formation in ApoE -/- Mice. JOURNAL OF ONCOLOGY 2021; 2021:6629204. [PMID: 33953746 PMCID: PMC8068550 DOI: 10.1155/2021/6629204] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 02/20/2021] [Accepted: 03/25/2021] [Indexed: 11/18/2022]
Abstract
Chronic inflammation plays an essential role in the pathogenesis of abdominal aortic aneurysm (AAA), a progressive segmental abdominal aortic dilation. Chemerin, a multifunctional adipocytokine, is mainly generated in the liver and adipose tissue. The combination of chemerin and chemokine-like receptor 1 (CMKLR1) has been demonstrated to promote the progression of atherosclerosis, arthritis diseases, and Crohn's disease. However, chemerin-9 acts as an analog of chemerin to exert an anti-inflammatory effect by binding to CMKLR1. Here, we first demonstrated that AAA exhibited higher levels of chemerin and CMKLR1 expression compared with the normal aortic tissues. Hence, we hypothesized that the chemerin/CMKLR1 axis might be involved in AAA progression. Moreover, we found that chemerin-9 treatment markedly suppressed inflammatory cell infiltration, neovascularization, and matrix metalloproteinase (MMP) expression, while increasing the elastic fibers and smooth muscle cells (SMCs) in Ang II-induced AAA in ApoE-/- mice. This demonstrated that chemerin-9 could inhibit AAA formation. Collectively, our findings indicate a potential mechanism underlying AAA progression and suggest that chemerin-9 can be used therapeutically.
Collapse
|
96
|
Cooper HA, Cicalese S, Preston KJ, Kawai T, Okuno K, Choi ET, Kasahara S, Uchida HA, Otaka N, Scalia R, Rizzo V, Eguchi S. Targeting mitochondrial fission as a potential therapeutic for abdominal aortic aneurysm. Cardiovasc Res 2021; 117:971-982. [PMID: 32384150 PMCID: PMC7898955 DOI: 10.1093/cvr/cvaa133] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 04/15/2020] [Accepted: 04/30/2020] [Indexed: 11/12/2022] Open
Abstract
AIMS Angiotensin II (AngII) is a potential contributor to the development of abdominal aortic aneurysm (AAA). In aortic vascular smooth muscle cells (VSMCs), exposure to AngII induces mitochondrial fission via dynamin-related protein 1 (Drp1). However, pathophysiological relevance of mitochondrial morphology in AngII-associated AAA remains unexplored. Here, we tested the hypothesis that mitochondrial fission is involved in the development of AAA. METHODS AND RESULTS Immunohistochemistry was performed on human AAA samples and revealed enhanced expression of Drp1. In C57BL6 mice treated with AngII plus β-aminopropionitrile, AAA tissue also showed an increase in Drp1 expression. A mitochondrial fission inhibitor, mdivi1, attenuated AAA size, associated aortic pathology, Drp1 protein induction, and mitochondrial fission but not hypertension in these mice. Moreover, western-blot analysis showed that induction of matrix metalloproteinase-2, which precedes the development of AAA, was blocked by mdivi1. Mdivi1 also reduced the development of AAA in apolipoprotein E-deficient mice infused with AngII. As with mdivi1, Drp1+/- mice treated with AngII plus β-aminopropionitrile showed a decrease in AAA compared to control Drp1+/+ mice. In abdominal aortic VSMCs, AngII induced phosphorylation of Drp1 and mitochondrial fission, the latter of which was attenuated with Drp1 silencing as well as mdivi1. AngII also induced vascular cell adhesion molecule-1 expression and enhanced leucocyte adhesion and mitochondrial oxygen consumption in smooth muscle cells, which were attenuated with mdivi1. CONCLUSION These data indicate that Drp1 and mitochondrial fission play salient roles in AAA development, which likely involves mitochondrial dysfunction and inflammatory activation of VSMCs.
Collapse
MESH Headings
- Aminopropionitrile
- Angiotensin II
- Animals
- Anti-Inflammatory Agents/pharmacology
- Aorta, Abdominal/drug effects
- Aorta, Abdominal/metabolism
- Aorta, Abdominal/pathology
- Aortic Aneurysm, Abdominal/chemically induced
- Aortic Aneurysm, Abdominal/metabolism
- Aortic Aneurysm, Abdominal/pathology
- Aortic Aneurysm, Abdominal/prevention & control
- Case-Control Studies
- Cell Adhesion/drug effects
- Cells, Cultured
- Disease Models, Animal
- Dynamins/genetics
- Dynamins/metabolism
- Humans
- Leukocytes/drug effects
- Leukocytes/metabolism
- Male
- Mice, Inbred C57BL
- Mice, Knockout, ApoE
- Mitochondria, Muscle/drug effects
- Mitochondria, Muscle/genetics
- Mitochondria, Muscle/metabolism
- Mitochondria, Muscle/pathology
- Mitochondrial Dynamics/drug effects
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Oxygen Consumption/drug effects
- Phosphorylation
- Quinazolinones/pharmacology
- Mice
Collapse
Affiliation(s)
- Hannah A Cooper
- Cardiovascular Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Stephanie Cicalese
- Cardiovascular Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Kyle J Preston
- Cardiovascular Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Tatsuo Kawai
- Cardiovascular Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Keisuke Okuno
- Cardiovascular Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Eric T Choi
- Department of Surgery, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Shingo Kasahara
- Department of Cardiovascular Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Haruhito A Uchida
- Department of Chronic Kidney Disease and Cardiovascular Disease, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Nozomu Otaka
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Rosario Scalia
- Cardiovascular Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Victor Rizzo
- Cardiovascular Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Satoru Eguchi
- Cardiovascular Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| |
Collapse
|
97
|
Khashkhusha A, Munir W, Bashir M, Idhrees M. Thoracic and abdominal aortic aneurysms: exploring their contrast and genetic associations. THE JOURNAL OF CARDIOVASCULAR SURGERY 2021; 62:211-219. [PMID: 33565748 DOI: 10.23736/s0021-9509.21.11810-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Until recently thoracic aortic aneurysm (TAA) and abdominal aortic aneurysm (AAA) were correlated with atherosclerosis but following a range of cohort studies, a linkage proved unlikely. Instead, data from the Genome wide association study detected two common significantly correlated lncRNA loci: miRNA and the antisense non-coding RNA in the INK4 locus (ANRIL). lncRNAs are sometimes utilized by the body as transcription regulators and signaling molecules. This is crucial in cell transformation and embryology, including that of the mammalian heart. ANRIL, a 19 exon RNA sequence found in the chromosome 9p21 region, will be one of the main focuses of this paper. TAA and AAA have many differences due to their vessel walls but similarities in their gross anatomic structure prove a genetic correlated disease likely. ANRIL has a convincing potential to be used as an additive therapeutic tool in TAA and AAA. This is because Chr9p21 is independent of typical risk factors. However, it remains that further research and clinical studies are required before clinical translation. It is best to consider TAA and AAA separately as the underlying pathophysiology has some distinct differences. They are both commonly diagnosed late, and the hope is that genetic mutations (ANRIL) can act as a biomarker for a faster diagnosis, management and possible treatment alternative.
Collapse
Affiliation(s)
| | - Wahaj Munir
- Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Mohamad Bashir
- Department of Vascular Surgery, Royal Blackburn Teaching Hospital, Blackburn, UK -
| | - Mohammed Idhrees
- Institute of Cardiac and Aortic Disorders, SRM Institutes for Medical Science (SIMS Hospitals), Chennai, India
| |
Collapse
|
98
|
Giannopoulos S, Kokkinidis DG, Avgerinos ED, Armstrong EJ. Association of Abdominal Aortic Aneurysm and Simple Renal Cysts: A Systematic Review and Meta-Analysis. Ann Vasc Surg 2021; 74:450-459. [PMID: 33556506 DOI: 10.1016/j.avsg.2021.01.075] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 12/31/2020] [Accepted: 01/06/2021] [Indexed: 11/18/2022]
Abstract
BACKGROUND-OBJECTIVE Prior studies have suggested a higher prevalence of simple renal cysts (SRC) among patients with aortic disease, including abdominal aortic aneurysms (AAA). Thus, the aim of this study was to systematically review all currently available literature and investigate whether patients with AAA are more likely to have SRC. METHODS This study was performed according to the PRISMA guidelines. A meta-analysis was conducted with the use of random effects modeling and the I-square was used to assess heterogeneity. Odds ratios (OR) and the corresponding 95% confidence intervals (CI) were synthesized to compare the prevalence of several patients' characteristics between AAA vs. no-AAA cases. RESULTS Eleven retrospective studies, 9 comparative (AAA vs. no-AAA groups) and 3 single-arm (AAA group), were included in this meta-analysis, enrolling patients (AAA: N = 2,297 vs. no-AAA: N = 35,873) who underwent computed tomography angiography as part of screening or preoperative evaluation for reasons other than AAA. The cumulative incidence of SRC among patients with AAA and no-AAA was 55% (95% CI: 49%-61%) and 32% (95% CI: 22%-42%) respectively, with a statistically higher odds of SRC among patients with AAA (OR: 3.02; 95% CI: 2.01-4.56; P< 0.001). The difference in SRC prevalence remained statistically significant in a sensitivity analysis, after excluding the study with the largest sample size (OR: 2.71; 95% CI: 1.91-3.84; P< 0.001). CONCLUSIONS Our meta-analysis demonstrated a 3-fold increased prevalence of SRC in patients with AAA compared to no-AAA cases, indicating that the pathogenic processes underlying SRC and AAA could share a common pathophysiologic mechanism. Thus, patients with SRC could be considered at high risk for AAA formation, potentially warranting an earlier AAA screening.
Collapse
Affiliation(s)
- Stefanos Giannopoulos
- Division of Cardiology, Rocky Mountain Regional VA Medical Center, University of Colorado, Denver, CO
| | | | - Efthymios D Avgerinos
- Division of Vascular Surgery, Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA
| | - Ehrin J Armstrong
- Division of Cardiology, Rocky Mountain Regional VA Medical Center, University of Colorado, Denver, CO.
| |
Collapse
|
99
|
LncRNA H19 regulates smooth muscle cell functions and participates in the development of aortic dissection through sponging miR-193b-3p. Biosci Rep 2021; 41:227493. [PMID: 33403385 PMCID: PMC7823186 DOI: 10.1042/bsr20202298] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 12/03/2020] [Accepted: 12/23/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Multiple studies showed that long-chain noncoding RNA H19 (LncRNA H19) is high-expressed in human and mouse abdominal aortic aneurysms (AAAs). We speculated that it plays an important role in arterial disease, and therefore studied the role and mechanism of H19 in aortic dissection (AD). METHODS The expressions of related genes in human aortic smooth muscle cells (HASMCs) induced by platelet-derived growth factor BB (PDGF-BB) or in the aortic tissue of AD patients/mice were identified by Western blot and quantitative real-time polymerase chain reaction. The targeting relationship between H19 and miR-193b-3p was predicted and verified by bioinformatics analysis, dual luciferase assay, RNA pull-down assay, RNA immunoprecipitation (RIP), and Pearson correlation coefficient. The H19 and miR-193b-3p effects on the biological functions of tissues and cells were examined by MTT (3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide, thiazolyl blue tetrazolium bromide) assay, wound-healing assay, and Hematoxylin-Eosin (HE) staining. RESULTS LncRNA H19 was abnormally high-expressed in thoracic aorta tissues of AD patients, and it could competitively bind to and inhibit miR-193b-3p. In the PDGF-BB group, the expressions of H19, matrix metallopeptidase (MMP) 2 (MMP-2) and MMP-9 were up-regulated and the expressions of miR-193b-3p, α-SMA, and SM22α were down-regulated; moreover, the proliferation and migration rate of HASMCs were increased. However, H19 silencing reversed the regulation of PDGF-BB on HASMCs. More interestingly, miR-193b-3p inhibitor could partially reverse the effect of H19 silencing. In addition, the above results were verified by animal experiments, showing that shH19 and up-regulated miR-193b-3p could significantly reduce the thoracic aorta pathological damage in AD mice. CONCLUSION LncRNA H19 regulated smooth muscle cell function by sponging miR-193b-3p and it participated in the development of AD.
Collapse
|
100
|
Kopacz A, Klóska D, Werner E, Hajduk K, Grochot-Przęczek A, Józkowicz A, Piechota-Polańczyk A. A Dual Role of Heme Oxygenase-1 in Angiotensin II-Induced Abdominal Aortic Aneurysm in the Normolipidemic Mice. Cells 2021; 10:cells10010163. [PMID: 33467682 PMCID: PMC7830394 DOI: 10.3390/cells10010163] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/09/2021] [Accepted: 01/12/2021] [Indexed: 11/16/2022] Open
Abstract
Abdominal aortic aneurysm (AAA) bears a high risk of rupture and sudden death of the patient. The pathogenic mechanisms of AAA remain elusive, and surgical intervention represents the only treatment option. Heme oxygenase-1 (HO-1), a heme degrading enzyme, is induced in AAA, both in mice and humans. HO-1 was reported to mitigate AAA development in an angiotensin II (AngII)-induced model of AAA in hyperlipidemic ApoE-/- mice. Since the role of hyperlipidaemia in the pathogenesis of AAA remains controversial, we aimed to evaluate the significance of HO-1 in the development and progression of AAA in normolipidemic animals. The experiments were performed in HO-1-deficient mice and their wild-type counterparts. We demonstrated in non-hypercholesterolemic mice that the high-dose of AngII leads to the efficient formation of AAA, which is attenuated by HO-1 deficiency. Yet, if formed, they are significantly more prone to rupture upon HO-1 shortage. Differential susceptibility to AAA formation does not rely on enhanced inflammatory response or oxidative stress. AAA-resistant mice are characterized by an increase in regulators of aortic remodeling and angiotensin receptor-2 expression, significant medial thickening, and delayed blood pressure elevation in response to AngII. To conclude, we unveil a dual role of HO-1 deficiency in AAA in normolipidemic mice, where it protects against AAA development, but exacerbates the state of formed AAA.
Collapse
Affiliation(s)
- Aleksandra Kopacz
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-392 Krakow, Poland; (A.K.); (D.K.); (E.W.); (K.H.); (A.G.-P.); (A.J.)
| | - Damian Klóska
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-392 Krakow, Poland; (A.K.); (D.K.); (E.W.); (K.H.); (A.G.-P.); (A.J.)
| | - Ewa Werner
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-392 Krakow, Poland; (A.K.); (D.K.); (E.W.); (K.H.); (A.G.-P.); (A.J.)
- Department of Animal Reproduction, Anatomy and Genomic, Faculty of Animal Science, University of Agriculture, 30-059 Krakow, Poland
| | - Karolina Hajduk
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-392 Krakow, Poland; (A.K.); (D.K.); (E.W.); (K.H.); (A.G.-P.); (A.J.)
| | - Anna Grochot-Przęczek
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-392 Krakow, Poland; (A.K.); (D.K.); (E.W.); (K.H.); (A.G.-P.); (A.J.)
| | - Alicja Józkowicz
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-392 Krakow, Poland; (A.K.); (D.K.); (E.W.); (K.H.); (A.G.-P.); (A.J.)
| | - Aleksandra Piechota-Polańczyk
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-392 Krakow, Poland; (A.K.); (D.K.); (E.W.); (K.H.); (A.G.-P.); (A.J.)
- Correspondence:
| |
Collapse
|