51
|
Li X, Xie H, Lin J, Zeng Y. Microstructure evolution of electrospun polyvinylidene fluoride fibers via stretching at varying temperatures. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.125434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
52
|
Nivedhitha DM, Jeyanthi S. Polyvinylidene fluoride, an advanced futuristic smart polymer material: A comprehensive review. POLYM ADVAN TECHNOL 2022. [DOI: 10.1002/pat.5914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
53
|
Chan Lee J, Hee Park C, Sang Kim C. Amplified piezoelectric response with β-phase formation in PVDF blended 3D cotton type nanofibers for osteogenic differentiation. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.10.054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
54
|
Highly oriented PVDF molecular chains for enhanced material performance. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.125366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
55
|
Huang R, Dai Y, Ahmed J, Edirisinghe M. Facile One-Step Synthesis of PVDF Bead-on-String Fibers by Pressurized Gyration for Reusable Face Masks. Polymers (Basel) 2022; 14:4498. [PMID: 36365492 PMCID: PMC9654049 DOI: 10.3390/polym14214498] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/12/2022] [Accepted: 10/20/2022] [Indexed: 08/10/2023] Open
Abstract
Single-use face masks pose a threat to the environment and are not cost-effective, which prompts the need for developing reusable masks. In this study, pressurized gyration (PG) successfully produced bead-on-string polyvinylidene fluoride (PVDF) fibers with fiber diameters ranging from 2.3 μm to 26.1 μm, and bead diameters ranging from 60.9 μm to 88.5 μm by changing the solution parameters. The effect of the solution parameters on the crystalline phase was studied by Fourier-transform infrared spectroscopy (FT-IR), where the β-phase contents of PG PVDF fibers reached over 75%. The fiber morphology and β-phase contents of PG PVDF fibers indicated the potential mechanical and electrostatic filtration efficiency of PG PVDF fibers, respectively. Additionally, the hydrophobicity was investigated by static water contact angle tests, and the PVDF fibers showed superior hydrophobicity properties (all samples above 125°) over commercial polypropylene (PP) single-use masks (approximately 107°). This study supports the notion that the PG PVDF fiber mats are a promising candidate for future reusable face masks.
Collapse
Affiliation(s)
| | | | | | - Mohan Edirisinghe
- Department of Mechanical Engineering, University College London, Torrington Place, London WC1E 7JE, UK
| |
Collapse
|
56
|
Cho H, Kouh T. Static Tactile Sensing Based on Electrospun Piezoelectric Nanofiber Membrane. SENSORS (BASEL, SWITZERLAND) 2022; 22:6779. [PMID: 36146129 PMCID: PMC9504021 DOI: 10.3390/s22186779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/05/2022] [Accepted: 09/07/2022] [Indexed: 06/16/2023]
Abstract
Here, a static tactile sensing scheme based on a piezoelectric nanofiber membrane, prepared via the electrospinning method, is presented. When the nanofiber membrane is kept under a constant vibration, an external contact onto the membrane will attenuate its vibration. By monitoring this change in the oscillation amplitude due to the physical contact via the piezoelectrically coupled voltage from the nanofiber membrane, the strength and duration of the static contact can be determined. The proof-of-concept experiment demonstrated here shows that the realization of a static tactile sensor is possible by implementing the piezoelectric nanofiber membrane as an effective sensing element.
Collapse
Affiliation(s)
| | - Taejoon Kouh
- Department of Physics, Kookmin University, Seoul 136-702, Korea
| |
Collapse
|
57
|
Qu C, Zhao P, Ren Y, Wu C, Liu J. Increase the Surface PANI Occupancy of Electrospun PMMA/PANI Fibers: Effect of the Electrospinning Parameters on Surface Segregation. Polymers (Basel) 2022; 14:3401. [PMID: 36015658 PMCID: PMC9413340 DOI: 10.3390/polym14163401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 08/18/2022] [Accepted: 08/18/2022] [Indexed: 12/03/2022] Open
Abstract
For preparing high-performance electrospun fibers with functional molecules that cannot cross-entangle themselves, such as conductive polymers, promoting the aggregation of functional molecules on the surface by surface segregation is a promising approach. In the present study, electrospun polymethyl methacrylate/polyaniline (PMMA/PANI) fibers were prepared under various conditions, including solution composition, applied voltage, tip-to-collector distance, temperature, humidity, and gas-phase solvent concentration, to examine the effects of the parameters on fiber morphology and surface segregation. The changes in fiber morphology and variations in the intensity of PANI and PMMA's characteristic bands were investigated with scanning electron microscopy (SEM) and Raman spectroscopy. The results demonstrated that by changing the saturation difference and the viscosity, the amount of PMMA and PANI added significantly influenced whether surface segregation could occur. The effect of other investigated parameters on surface segregation was concluded to alter the molecular migratable time by affecting the jet flight time and the solvent volatilization rate. Among them, increasing the solvent concentration could significantly promote surface segregation without sacrificing morphological advantages. When the solvent concentration increased from 1.4 to 158 mg/m3, the Raman peak intensity ratio of PANI and PMMA increased from 2.91 to 5.05, while the fiber diameter remained essentially constant.
Collapse
Affiliation(s)
- Chen Qu
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Peng Zhao
- Institute of Urban Safety and Environmental Science, Beijing Academy of Science and Technology, Beijing 100052, China
| | - Yifan Ren
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Chuandong Wu
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Jiemin Liu
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| |
Collapse
|
58
|
Xia G, Song B, Fang J. Electrical Stimulation Enabled via Electrospun Piezoelectric Polymeric Nanofibers for Tissue Regeneration. RESEARCH (WASHINGTON, D.C.) 2022; 2022:9896274. [PMID: 36061820 PMCID: PMC9394050 DOI: 10.34133/2022/9896274] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Accepted: 07/08/2022] [Indexed: 11/22/2022]
Abstract
Electrical stimulation has demonstrated great effectiveness in the modulation of cell fate in vitro and regeneration therapy in vivo. Conventionally, the employment of electrical signal comes with the electrodes, battery, and connectors in an invasive fashion. This tedious procedure and possible infection hinder the translation of electrical stimulation technologies in regenerative therapy. Given electromechanical coupling and flexibility, piezoelectric polymers can overcome these limitations as they can serve as a self-powered stimulator via scavenging mechanical force from the organism and external stimuli wirelessly. Wireless electrical cue mediated by electrospun piezoelectric polymeric nanofibers constitutes a promising paradigm allowing the generation of localized electrical stimulation both in a noninvasive manner and at cell level. Recently, numerous studies based on electrospun piezoelectric nanofibers have been carried out in electrically regenerative therapy. In this review, brief introduction of piezoelectric polymer and electrospinning technology is elucidated first. Afterward, we highlight the activating strategies (e.g., cell traction, physiological activity, and ultrasound) of piezoelectric stimulation and the interaction of piezoelectric cue with nonelectrically/electrically excitable cells in regeneration medicine. Then, quantitative comparison of the electrical stimulation effects using various activating strategies on specific cell behavior and various cell types is outlined. Followingly, this review explores the present challenges in electrospun nanofiber-based piezoelectric stimulation for regeneration therapy and summarizes the methodologies which may be contributed to future efforts in this field for the reality of this technology in the clinical scene. In the end, a summary of this review and future perspectives toward electrospun nanofiber-based piezoelectric stimulation in tissue regeneration are elucidated.
Collapse
Affiliation(s)
- Guangbo Xia
- College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
- National Engineering Laboratory for Modern Silk, Soochow University, Suzhou 215123, China
| | - Beibei Song
- College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
- National Engineering Laboratory for Modern Silk, Soochow University, Suzhou 215123, China
| | - Jian Fang
- College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
- National Engineering Laboratory for Modern Silk, Soochow University, Suzhou 215123, China
| |
Collapse
|
59
|
Hybrid biodegradable electrospun scaffolds based on poly(l-lactic acid) and reduced graphene oxide with improved piezoelectric response. Polym J 2022. [DOI: 10.1038/s41428-022-00669-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
60
|
Shehata N, Nair R, Boualayan R, Kandas I, Masrani A, Elnabawy E, Omran N, Gamal M, Hassanin AH. Stretchable nanofibers of polyvinylidenefluoride (PVDF)/thermoplastic polyurethane (TPU) nanocomposite to support piezoelectric response via mechanical elasticity. Sci Rep 2022; 12:8335. [PMID: 35585095 PMCID: PMC9117269 DOI: 10.1038/s41598-022-11465-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 03/14/2022] [Indexed: 01/19/2023] Open
Abstract
Interest in piezoelectric nanocomposites has been vastly growing in the energy harvesting field. They are applied in wearable electronics, mechanical actuators, and electromechanical membranes. In this research work, nanocomposite membranes of different blend ratios from PVDF and TPU have been synthesized. The PVDF is responsible for piezoelectric performance where it is one of the promising polymeric organic materials containing β-sheets, to convert applied mechanical stress into electric voltage. In addition, the TPU is widely used in the plastic industry due to its superior elasticity. Our work investigates the piezoresponse analysis for different blending ratios of PVDF/TPU. It has been found that TPU blending ratios of 15–17.5% give higher output voltage at different stresses conditions along with higher piezosensitivity. Then, TPU addition with its superior mechanical elasticity can partially compensate PVDF to enhance the piezoelectric response of the PVDF/TPU nanocomposite mats. This work can help reducing the amount of added PVDF in piezoelectric membranes with enhanced piezo sensitivity and mechanical elasticity.
Collapse
Affiliation(s)
- Nader Shehata
- Kuwait College of Science and Technology (KCST), 13133, Doha, Kuwait. .,Center of Smart Materials, Nanotechnology and Photonics (CSMNP), Smart CI Research Center, Alexandria University, Alexandria, 21544, Egypt. .,Department of Engineering Mathematics and Physics, Faculty of Engineering, Alexandria University, Alexandria, 21544, Egypt. .,USTAR Bioinnovations Center, Faculty of Science, Utah State University, Logan, UT, 84341, USA.
| | - Remya Nair
- Kuwait College of Science and Technology (KCST), 13133, Doha, Kuwait
| | - Rabab Boualayan
- Kuwait College of Science and Technology (KCST), 13133, Doha, Kuwait.,Department of Mechanical Engineering, Roberts Engineering Building, University College London (UCL), London, WC1E 7JW, UK
| | - Ishac Kandas
- Kuwait College of Science and Technology (KCST), 13133, Doha, Kuwait.,Center of Smart Materials, Nanotechnology and Photonics (CSMNP), Smart CI Research Center, Alexandria University, Alexandria, 21544, Egypt.,Department of Engineering Mathematics and Physics, Faculty of Engineering, Alexandria University, Alexandria, 21544, Egypt
| | - Abdulrzak Masrani
- Kuwait College of Science and Technology (KCST), 13133, Doha, Kuwait.,Micro System Design and Manufacturing Center, Department of Mechanical Engineering, Bilkent University, Ankara, 06800, Turkey
| | - Eman Elnabawy
- Center of Smart Materials, Nanotechnology and Photonics (CSMNP), Smart CI Research Center, Alexandria University, Alexandria, 21544, Egypt
| | - Nada Omran
- Center of Smart Materials, Nanotechnology and Photonics (CSMNP), Smart CI Research Center, Alexandria University, Alexandria, 21544, Egypt
| | - Mohammed Gamal
- Center of Smart Materials, Nanotechnology and Photonics (CSMNP), Smart CI Research Center, Alexandria University, Alexandria, 21544, Egypt
| | - Ahmed H Hassanin
- Center of Smart Materials, Nanotechnology and Photonics (CSMNP), Smart CI Research Center, Alexandria University, Alexandria, 21544, Egypt.,Material Science and Engineering Department, School of Innovative Design Engineering, Egypt-Japan University of Science and Technology (E-JUST), New Borg El-Arab City, Alexandria, Egypt.,Department of Textile Engineering, Faculty of Engineering, Alexandria University, Alexandria, 21544, Egypt
| |
Collapse
|
61
|
Kianfar P, Bongiovanni R, Ameduri B, Vitale A. Electrospinning of Fluorinated Polymers: Current State of the Art on Processes and Applications. POLYM REV 2022. [DOI: 10.1080/15583724.2022.2067868] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Parnian Kianfar
- Department of Applied Science and Technology, Politecnico di Torino, Torino, Italy
| | - Roberta Bongiovanni
- Department of Applied Science and Technology, Politecnico di Torino, Torino, Italy
| | - Bruno Ameduri
- ICGM, Université de Montpellier, CNRS, ENSCM, Montpellier, France
| | - Alessandra Vitale
- Department of Applied Science and Technology, Politecnico di Torino, Torino, Italy
| |
Collapse
|
62
|
Hermenegildo B, Meira RM, Correia D, Díez A, Ribeiro S, Serra J, Ribeiro C, Pérez-Álvarez L, Vilas-Vilela JL, Lanceros-Méndez S. Poly(lactic-co-glycolide) based biodegradable electrically and magnetically active microenvironments for tissue regeneration applications. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111197] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
63
|
Hejabri Kandeh S, Amini S, Ebrahimzadeh H. PVA/Stevia/MIL-88A@AuNPs composite nanofibers as a novel sorbent for simultaneous extraction of eight agricultural pesticides in food and vegetable samples followed by HPLC-UV analysis. Food Chem 2022; 386:132734. [PMID: 35334325 DOI: 10.1016/j.foodchem.2022.132734] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 02/14/2022] [Accepted: 03/15/2022] [Indexed: 11/26/2022]
Abstract
Herein, an electrospun composite from poly(vinyl alcohol) (PVA) and Stevia extract as a cross-linked nanofibrous was prepared with incorporating Fe-metal organic framework@Au nanoparticles (MIL-88A@AuNPs). The final composite was characterized, and then used as an efficient sorbent in pipette-tip micro solid-phase extraction (PT-µSPE) of eight selected pesticides in food samples followed by HPLC-UV analysis. Under the opted conditions, the linearity was in the range of 1.0-1000.0 ng mL-1 for atrazine and ametryn, 3.0-1500.0 ng mL-1 for tribenuron-methyl, metribuzin, profenofos and chlorpyrifos, 5.0 to 1500.0 ng mL-1 for phosalone, and 5.0-2000.0 ng mL-1 for malation with coefficient of determination (r2) ≥ 0.9943. The LODs (based on S/N = 3) ranged from 0.3 to 1.5 ng m L-1. The relative standard deviations (RSDs) were between 5.2% and 6.6% (intra-day, n = 5) and 5.9%-7.4% (inter-day, n = 3) for three consecutive days. Ultimately, the capability of the method in various food samples was appraised with good recoveries (79.3 to 97.6%).
Collapse
Affiliation(s)
- Saeed Hejabri Kandeh
- Department of Analytical Chemistry and Pollutants, Faculty of Chemistry and Petroleum Sciences, Shahid Beheshti University, Tehran, Iran
| | - Shima Amini
- Department of Analytical Chemistry and Pollutants, Faculty of Chemistry and Petroleum Sciences, Shahid Beheshti University, Tehran, Iran
| | - Homeira Ebrahimzadeh
- Department of Analytical Chemistry and Pollutants, Faculty of Chemistry and Petroleum Sciences, Shahid Beheshti University, Tehran, Iran.
| |
Collapse
|
64
|
Features and Methods of Making Nanofibers by Electrospinning, Phase Separation and Self-assembly. JORJANI BIOMEDICINE JOURNAL 2022. [DOI: 10.52547/jorjanibiomedj.10.1.13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
|
65
|
Electroactive and photoluminescence of electrospun P(VDF-HFP) composite nanofibers with Eu3+ complex and BaTiO3 nanoparticles. POLYMER 2022. [DOI: 10.1016/j.polymer.2021.124496] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
66
|
Asai H, Terada Y, Nakane K. Effects of the addition of protic organic solvents and the sample formation processes on the crystal structure of poly(vinylidene fluoride): Detailed mechanism of promoting the formation of the β-phase. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.124650] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
67
|
Hermenegildo B, Correia DM, Ribeiro C, Serra JP, Pérez L, Vilas‐Vilela JL, Lanceros‐Méndez S. Tuning magnetic response and ionic conductivity of electrospun hybrid membranes for tissue regeneration strategies. POLYM ADVAN TECHNOL 2022. [DOI: 10.1002/pat.5596] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Bruno Hermenegildo
- BC Materials, Basque Center for Materials, Applications and Nanostructures UPV/EHU Science Park Leioa Spain
| | - Daniela M. Correia
- Centre of Physics University of Minho Braga Portugal
- Centre of Chemistry University of Trás‐os‐Montes e Alto Douro Vila Real Portugal
| | - Clarisse Ribeiro
- Centre of Physics University of Minho Braga Portugal
- CEB—Centre of Biological Engineering University of Minho Braga Portugal
| | - João P. Serra
- Centre of Physics University of Minho Braga Portugal
| | - Leyre Pérez
- BC Materials, Basque Center for Materials, Applications and Nanostructures UPV/EHU Science Park Leioa Spain
- Macromolecular Chemistry Research Group (Labquimac), Department of Physical Chemistry, Faculty of Science and Technology University of the Basque Country (UPV/EHU) Leioa Spain
| | - José L. Vilas‐Vilela
- BC Materials, Basque Center for Materials, Applications and Nanostructures UPV/EHU Science Park Leioa Spain
- Macromolecular Chemistry Research Group (Labquimac), Department of Physical Chemistry, Faculty of Science and Technology University of the Basque Country (UPV/EHU) Leioa Spain
| | - Senentxu Lanceros‐Méndez
- BC Materials, Basque Center for Materials, Applications and Nanostructures UPV/EHU Science Park Leioa Spain
- IKERBASQUE Basque Foundation for Science Bilbao Spain
| |
Collapse
|
68
|
Electroactive poly(vinylidene fluoride) electrospun fiber mats coated with polyaniline and polypyrrole for tissue regeneration applications. REACT FUNCT POLYM 2022. [DOI: 10.1016/j.reactfunctpolym.2021.105118] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
69
|
Tai Y, Banerjee A, Goodrich R, Jin L, Nam J. Development and Utilization of Multifunctional Polymeric Scaffolds for the Regulation of Physical Cellular Microenvironments. Polymers (Basel) 2021; 13:3880. [PMID: 34833179 PMCID: PMC8624881 DOI: 10.3390/polym13223880] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 10/30/2021] [Accepted: 11/06/2021] [Indexed: 12/11/2022] Open
Abstract
Polymeric biomaterials exhibit excellent physicochemical characteristics as a scaffold for cell and tissue engineering applications. Chemical modification of the polymers has been the primary mode of functionalization to enhance biocompatibility and regulate cellular behaviors such as cell adhesion, proliferation, differentiation, and maturation. Due to the complexity of the in vivo cellular microenvironments, however, chemical functionalization alone is usually insufficient to develop functionally mature cells/tissues. Therefore, the multifunctional polymeric scaffolds that enable electrical, mechanical, and/or magnetic stimulation to the cells, have gained research interest in the past decade. Such multifunctional scaffolds are often combined with exogenous stimuli to further enhance the tissue and cell behaviors by dynamically controlling the microenvironments of the cells. Significantly improved cell proliferation and differentiation, as well as tissue functionalities, are frequently observed by applying extrinsic physical stimuli on functional polymeric scaffold systems. In this regard, the present paper discusses the current state-of-the-art functionalized polymeric scaffolds, with an emphasis on electrospun fibers, that modulate the physical cell niche to direct cellular behaviors and subsequent functional tissue development. We will also highlight the incorporation of the extrinsic stimuli to augment or activate the functionalized polymeric scaffold system to dynamically stimulate the cells.
Collapse
Affiliation(s)
| | | | | | | | - Jin Nam
- Department of Bioengineering, University of California, Riverside, CA 92521, USA; (Y.T.); (A.B.); (R.G.); (L.J.)
| |
Collapse
|
70
|
Pu L, Zhang J, Wang C, Pan Y, Zhao Y, Bu Y, Zhang Q, Pan B, Gao G. Membrane cleaning strategy via in situ oscillation driven by piezoelectricity. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119722] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
71
|
Xie T, Liu Q, Xue G, Zhang Y, Zhou J, Zhu Z, Gou X. Experimental-numerical analysis of cell adhesion-mediated electromechanical stimulation on piezoelectric nanofiber scaffolds. J Biomech 2021; 129:110777. [PMID: 34601217 DOI: 10.1016/j.jbiomech.2021.110777] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/22/2021] [Accepted: 09/23/2021] [Indexed: 12/13/2022]
Abstract
Electrospun nanofibers exhibiting piezoelectricity are a specific class of smart materials which could provide electric stimulation to cells in a noninvasive way and contribute to tissue regeneration. During cell-material interaction, the materials display electromechanical behavior by transforming cell adhesion force into surface charge. In the process, how the cell adhesion states and the electromechanical properties of scaffolds determine the actual piezoelectric potential implemented on a cell is still unclear. Herein, we fabricated piezoelectric poly(vinylidene fluoride) (PVDF) nanofiber scaffolds with different topographies, and investigated their influences on cell morphology and cell adhesion-mediated electromechanical stimulation of mesenchymal stem cell (MSC). Our results demonstrated that MSC seeded on aligned piezoelectric nanofibers exhibited elongated morphology combined with higher intracellular calcium activity than those adhered on random nanofibers with rounded shape. The underlying mechanism was further quantitatively analyzed using a three-dimensional (3D) finite element method with respect to cell adhesion states and architecture parameters of nanofiber scaffolds. The results suggested that cell morphology and cell adhesion force influenced the piezoelectric output through modulating the location and magnification of force implemented on the scaffolds. In addition, the change of alignment, pore size and diameter of the nanofiber network could alter the mechanical property of the scaffolds, and then bias the actual piezoelectric output experienced by a cell. These findings provide new insights for probing the mechanism of cell self-stimulation on piezoelectric scaffolds, and pave the way for rational design of piezoelectric scaffolds for cell regulation and tissue regeneration.
Collapse
Affiliation(s)
- Tianpeng Xie
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031. PR China
| | - Qingjie Liu
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031. PR China
| | - Guilan Xue
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031. PR China
| | - Yimeng Zhang
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031. PR China
| | - Junyu Zhou
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031. PR China
| | - Zixin Zhu
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031. PR China
| | - Xue Gou
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031. PR China.
| |
Collapse
|
72
|
Microstructure Dependence of Output Performance in Flexible PVDF Piezoelectric Nanogenerators. Polymers (Basel) 2021; 13:polym13193252. [PMID: 34641066 PMCID: PMC8512523 DOI: 10.3390/polym13193252] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 09/15/2021] [Accepted: 09/22/2021] [Indexed: 01/17/2023] Open
Abstract
Flexible piezoelectric nanogenerators have attracted great attention due to their ability to convert ambient mechanical energy into electrical energy for low-power wearable electronic devices. Controlling the microstructure of the flexible piezoelectric materials is a potential strategy to enhance the electrical outputs of the piezoelectric nanogenerator. Three types of flexible polyvinylidene fluoride (PVDF) piezoelectric nanogenerator were fabricated based on well-aligned nanofibers, random oriented nanofibers and thick films. The electrical output performance of PVDF nanogenerators is systematically investigated by the influence of microstructures. The aligned nanofiber arrays exhibit highly consistent orientation, uniform diameter, and a smooth surface, which possesses the highest fraction of the polar crystalline β phase compared with the random-oriented nanofibers and thick films. The highly aligned structure and the large fraction of the polar β phase enhanced the output performance of the well-aligned nanofiber nanogenerator. The highest output voltage of 14 V and a short-circuit current of 1.22 µA were achieved under tapping mode of 10 N at 2.5 Hz, showing the potential application in flexible electronic devices. These new results shed some light on the design of the flexible piezoelectric polymer-based nanogenerators.
Collapse
|
73
|
Dolez PI. Energy Harvesting Materials and Structures for Smart Textile Applications: Recent Progress and Path Forward. SENSORS (BASEL, SWITZERLAND) 2021; 21:6297. [PMID: 34577509 PMCID: PMC8470160 DOI: 10.3390/s21186297] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/06/2021] [Accepted: 09/15/2021] [Indexed: 12/04/2022]
Abstract
A major challenge with current wearable electronics and e-textiles, including sensors, is power supply. As an alternative to batteries, energy can be harvested from various sources using garments or other textile products as a substrate. Four different energy-harvesting mechanisms relevant to smart textiles are described in this review. Photovoltaic energy harvesting technologies relevant to textile applications include the use of high efficiency flexible inorganic films, printable organic films, dye-sensitized solar cells, and photovoltaic fibers and filaments. In terms of piezoelectric systems, this article covers polymers, composites/nanocomposites, and piezoelectric nanogenerators. The latest developments for textile triboelectric energy harvesting comprise films/coatings, fibers/textiles, and triboelectric nanogenerators. Finally, thermoelectric energy harvesting applied to textiles can rely on inorganic and organic thermoelectric modules. The article ends with perspectives on the current challenges and possible strategies for further progress.
Collapse
Affiliation(s)
- Patricia I Dolez
- Department of Human Ecology, University of Alberta, Edmonton, AB T6G 2N1, Canada
| |
Collapse
|
74
|
Wang Y, Wang H, Liu K, Wang T, Yuan C, Yang H. Effect of dehydrofluorination reaction on structure and properties of PVDF electrospun fibers. RSC Adv 2021; 11:30734-30743. [PMID: 35498925 PMCID: PMC9041349 DOI: 10.1039/d1ra05667k] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 09/04/2021] [Indexed: 11/21/2022] Open
Abstract
Piezoelectric nanosensors were prepared with a novel type of dehydrofluorinated poly(vinylidene fluoride) (PVDF) nanofibrous membrane. With the synergistic effect of the dehydrofluorination reaction and applied high voltage electric field, the piezoelectric and energy storage properties of fibrous membranes attained great improvement. It was found that the simultaneous introduction of conjugated double bonds to the backbone of PVDF which was accompanied with the elimination of HF, resulted in the decrease of its molecular weight, solution viscosity and hydrophobicity. The crystalline phase, diameter, piezoelectric and energy storage properties of electro-spun PVDF nanofiber membranes significantly depend on the degree of HF elimination in dehydrofluorinated PVDF. The dehydrofluorinated PVDF with 5 hours of reaction exhibits the highest discharged energy density (Wrec) and energy storage efficiency (η), but excessive dehydrofluorination reaction is unfavorable to the energy storage properties. In addition, the dehydrofluorinated PVDF fiber membrane-based nanosensor possesses a larger electrical throughput (open circuit voltage of 30 V, which is three time that of the untreated PVDF), indicating that the introduction of double bonds can also improve the piezoelectric properties of PVDF nanofibers. A piezoelectric nanosensor was prepared with a novel type of dehydrofluorinated poly(vinylidene fluoride) (PVDF) nanofibrous membrane.![]()
Collapse
Affiliation(s)
- Yuxin Wang
- Shaanxi University of Science and Technology Xi'an 710021 Shaanxi China
| | - Haijun Wang
- Shaanxi University of Science and Technology Xi'an 710021 Shaanxi China
| | - Kun Liu
- Shaanxi University of Science and Technology Xi'an 710021 Shaanxi China
| | - Tong Wang
- Shaanxi University of Science and Technology Xi'an 710021 Shaanxi China
| | - Chunlei Yuan
- Shaanxi University of Science and Technology Xi'an 710021 Shaanxi China
| | - Haibo Yang
- Shaanxi University of Science and Technology Xi'an 710021 Shaanxi China
| |
Collapse
|
75
|
Chang YT, Wang RT, Wang JC. PMMA Application in Piezo Actuation Jet for Dissipating Heat of Electronic Devices. Polymers (Basel) 2021; 13:polym13162596. [PMID: 34451136 PMCID: PMC8400684 DOI: 10.3390/polym13162596] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 08/02/2021] [Accepted: 08/02/2021] [Indexed: 11/30/2022] Open
Abstract
The present study utilizes an acrylic (PMMA) plate with circular piezoelectric ceramics (PC) as an actuator to design and investigate five different types of piezo actuation jets (PAJs) with operating conditions. The results show that the heat transfer coefficient of a device of PAJ is 200% greater than that of a traditional rotary fan when PAJ is placed at the proper distance of 10 to 20 mm from the heat source, avoiding the suck back of surrounding fluids. The cooling effect of these five PAJs was calculated by employing the thermal analysis method and the convection thermal resistance of the optimal PAJ can be reduced by about 36%, while the voltage frequency, wind speed, and noise were all positively correlated. When the supplied piezoelectric frequency is 300 Hz, the decibel level of the noise is similar to that of a commercial rotary fan. The piezoelectric sheets had one of two diameters of 31 mm or 41 mm depending on the size of the tested PAJs. The power consumption of a single PAJ was less than 10% of that of a rotary fan. Among the five types of PAJ, the optimal one has the characteristics that the diameter of the piezoelectric sheet is 41 mm, the piezoelectric spacing is 2 mm, and the length of the opening is 4 mm. Furthermore, the optimal operating conditions are a voltage frequency of 300 Hz and a placement distance of 20 mm in the present study.
Collapse
Affiliation(s)
- Yu-Teng Chang
- Department of Information Management, Yu Da University of Science and Technology, Miaoli County 36143, Taiwan
- Correspondence: (Y.-T.C.); (R.-T.W.); (J.-C.W.); Tel.: +886-2-24622192 (ext. 7109/7139) (J.-C.W.)
| | - Rong-Tsu Wang
- Department of Marketing and Logistics Management, Yu Da University of Science and Technology, Miaoli County 36143, Taiwan
- Correspondence: (Y.-T.C.); (R.-T.W.); (J.-C.W.); Tel.: +886-2-24622192 (ext. 7109/7139) (J.-C.W.)
| | - Jung-Chang Wang
- Department of Marine Engineering (DME), National Taiwan Ocean University (NTOU), Keelung 202301, Taiwan
- Correspondence: (Y.-T.C.); (R.-T.W.); (J.-C.W.); Tel.: +886-2-24622192 (ext. 7109/7139) (J.-C.W.)
| |
Collapse
|
76
|
Zavan B, Gardin C, Guarino V, Rocca T, Cruz Maya I, Zanotti F, Ferroni L, Brunello G, Chachques JC, Ambrosio L, Gasbarro V. Electrospun PCL-Based Vascular Grafts: In Vitro Tests. NANOMATERIALS 2021; 11:nano11030751. [PMID: 33809791 PMCID: PMC8002398 DOI: 10.3390/nano11030751] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 02/17/2021] [Accepted: 03/03/2021] [Indexed: 12/18/2022]
Abstract
BACKGROUND Electrospun fibers have attracted a lot of attention from researchers due to their several characteristics, such as a very thin diameter, three-dimensional topography, large surface area, flexible surface, good mechanical characteristics, suitable for widespread applications. Indeed, electro-spinning offers many benefits, such as great surface-to-volume ratio, adjustable porosity, and the ability of imitating the tissue extra-cellular matrix. METHODS we processed Poly ε-caprolactone (PCL) via electrospinning for the production of bilayered tubular scaffolds for vascular tissue engineering application. Endothelial cells and fibroblasts were seeded into the two side of the scaffolds: endothelial cells onto the inner side composed of PCL/Gelatin fibers able to mimic the inner surface of the vessels, and fibroblasts onto the outer side only exposing PCL fibers. Extracellular matrix production and organization has been performed by means of classical immunofluorescence against collagen type I fibers, Scanning Electron-Microscopy (SEM) has been performed in order to evaluated ultrastructural morphology, gene expression by means gene expression has been performed to evaluate the phenotype of endothelial cells and fibroblasts. RESULTS AND CONCLUSION results confirmed that both cells population are able to conserve their phenotype colonizing the surface supporting the hypothesis that PCL scaffolds based on electrospun fibers should be a good candidate for vascular surgery.
Collapse
Affiliation(s)
- Barbara Zavan
- GVM Care & Research, Maria Cecilia Hospital, 48033 Cotignola, Italy; (C.G.); (L.F.)
- Translational Medicine Department, University of Ferrara, 44123 Ferrara, Italy;
- Correspondence:
| | - Chiara Gardin
- GVM Care & Research, Maria Cecilia Hospital, 48033 Cotignola, Italy; (C.G.); (L.F.)
| | - Vincenzo Guarino
- Institute of Polymers, Composites, and Biomaterials, National Research Council of Italy, Mostra d’Oltremare, Pad.20, V.le J.F.Kennedy 54, 80125 Naples, Italy; (V.G.); (I.C.M.); (L.A.)
| | - Tiberio Rocca
- Division of Internal Medicine, St. Anna Hospital, 44123 Ferrara, Italy; (T.R.); (V.G.)
| | - Iriczalli Cruz Maya
- Institute of Polymers, Composites, and Biomaterials, National Research Council of Italy, Mostra d’Oltremare, Pad.20, V.le J.F.Kennedy 54, 80125 Naples, Italy; (V.G.); (I.C.M.); (L.A.)
| | - Federica Zanotti
- Translational Medicine Department, University of Ferrara, 44123 Ferrara, Italy;
| | - Letizia Ferroni
- GVM Care & Research, Maria Cecilia Hospital, 48033 Cotignola, Italy; (C.G.); (L.F.)
| | - Giulia Brunello
- Department of Neurosciences, Dentistry Section, University of Padova, Via Giustiniani 2, 35128 Padova, Italy;
| | - Juan-Carlos Chachques
- Laboratory of Biosurgical Research (Alain Carpentier Foundation), Pompidu Hospital, University Paris Descartes, 75015 Paris, France;
| | - Luigi Ambrosio
- Institute of Polymers, Composites, and Biomaterials, National Research Council of Italy, Mostra d’Oltremare, Pad.20, V.le J.F.Kennedy 54, 80125 Naples, Italy; (V.G.); (I.C.M.); (L.A.)
| | - Vincenzo Gasbarro
- Division of Internal Medicine, St. Anna Hospital, 44123 Ferrara, Italy; (T.R.); (V.G.)
- Department of Medical Sciences, Ferrara University, 44123 Ferrara, Italy
| |
Collapse
|
77
|
Abd El-Aziz AM, El-Maghraby A, Ewald A, Kandil SH. In-Vitro Cytotoxicity Study: Cell Viability and Cell Morphology of Carbon Nanofibrous Scaffold/Hydroxyapatite Nanocomposites. Molecules 2021; 26:molecules26061552. [PMID: 33799902 PMCID: PMC7999924 DOI: 10.3390/molecules26061552] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 02/28/2021] [Accepted: 03/05/2021] [Indexed: 12/23/2022] Open
Abstract
Electrospun carbon nanofibers (CNFs), which were modified with hydroxyapatite, were fabricated to be used as a substrate for bone cell proliferation. The CNFs were derived from electrospun polyacrylonitrile (PAN) nanofibers after two steps of heat treatment: stabilization and carbonization. Carbon nanofibrous (CNF)/hydroxyapatite (HA) nanocomposites were prepared by two different methods; one of them being modification during electrospinning (CNF-8HA) and the second method being hydrothermal modification after carbonization (CNF-8HA; hydrothermally) to be used as a platform for bone tissue engineering. The biological investigations were performed using in-vitro cell counting, WST cell viability and cell morphology after three and seven days. L929 mouse fibroblasts were found to be more viable on the hydrothermally-modified CNF scaffolds than on the unmodified CNF scaffolds. The biological characterizations of the synthesized CNF/HA nanofibrous composites indicated higher capability of bone regeneration.
Collapse
Affiliation(s)
- Asmaa M. Abd El-Aziz
- Fabrication Technology Research Department, Advanced Technology and New Materials Research Institute, City for Scientific Research and Technological Applications, Alexandria 23713, Egypt;
- Department of Materials Science, Institute of Graduate Studies and Research, Alexandria University, Alexandria 21526, Egypt;
- Correspondence: ; Tel.: +20-01149431552
| | - Azza El-Maghraby
- Fabrication Technology Research Department, Advanced Technology and New Materials Research Institute, City for Scientific Research and Technological Applications, Alexandria 23713, Egypt;
| | - Andrea Ewald
- Department of Functional Materials in Medicine and Dentistry, University Hospital Würzburg Center for Dental, Würzburg University, 97070 Würzburg, Germany;
| | - Sherif H. Kandil
- Department of Materials Science, Institute of Graduate Studies and Research, Alexandria University, Alexandria 21526, Egypt;
| |
Collapse
|