51
|
Design and Optimization of Coupling Coils for Bidirectional Wireless Charging System of Unmanned Aerial Vehicle. ELECTRONICS 2020. [DOI: 10.3390/electronics9111964] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
To solve the battery power supply problem with wireless sensor networks (WSNs), a novel bidirectional wireless charging system is proposed, in which an unmanned aerial vehicle (UAV) can fly to the WSNs to charge sensors through high-frequency wireless power transfer (WPT) and also obtain energy for its own battery in the same way. To improve the performance of the UAV bidirectional wireless charging system, a lightweight design is adopted to increase its loading capacity and working time. Moreover, the radii and the numbers of turns and pitches of coupling coils were designed and optimized on the basis of simulations and experiments. Experimental results show that the weight of optimized UAV coil was reduced by 34.45%. The power transfer efficiency (PTE) of the UAV coil to sensor coil increased from 60.2% to 74.4% at a transmission distance of 15 cm, while that of the ground transmitting coil to UAV coil increased from 65.2% to 90.1% at 10 cm.
Collapse
|
52
|
Awan KA, Ud Din I, Almogren A, Almajed H. AgriTrust-A Trust Management Approach for Smart Agriculture in Cloud-based Internet of Agriculture Things. SENSORS 2020; 20:s20216174. [PMID: 33138295 PMCID: PMC7662657 DOI: 10.3390/s20216174] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 10/14/2020] [Accepted: 10/26/2020] [Indexed: 02/04/2023]
Abstract
Internet of Things (IoT) provides a diverse platform to automate things where smart agriculture is one of the most promising concepts in the field of Internet of Agriculture Things (IoAT). Due to the requirements of more processing power for computations and predictions, the concept of Cloud-based smart agriculture is proposed for autonomic systems. This is where digital innovation and technology helps to improve the quality of life in the area of urbanization expansion. For the integration of cloud in smart agriculture, the system is shown to have security and privacy challenges, and most significantly, the identification of malicious and compromised nodes along with a secure transmission of information between sensors, cloud, and base station (BS). The identification of malicious and compromised node among soil sensors communicating with the BS is a notable challenge in the BS to cloud communications. The trust management mechanism is proposed as one of the solutions providing a lightweight approach to identify these nodes. In this article, we have proposed a novel trust management mechanism to identify malicious and compromised nodes by utilizing trust parameters. The trust mechanism is an event-driven process that computes trust based on the pre-defined time interval and utilizes the previous trust degree to develop an absolute trust degree. The system also maintains the trust degree of a BS and cloud service providers using distinct approaches. We have also performed extensive simulations to evaluate the performance of the proposed mechanism against several potential attacks. In addition, this research helps to create friendlier environments and efficient agricultural productions for the migration of people to the cities.
Collapse
Affiliation(s)
- Kamran Ahmad Awan
- Department of Information Technology, The University of Haripur, Haripur 22620, Pakistan; (K.A.A.); (I.U.D.)
| | - Ikram Ud Din
- Department of Information Technology, The University of Haripur, Haripur 22620, Pakistan; (K.A.A.); (I.U.D.)
| | - Ahmad Almogren
- Department of Computer Science, College of Computer and Information Sciences, King Saud University, Riyadh 11633, Saudi Arabia;
- Correspondence:
| | - Hisham Almajed
- Department of Computer Science, College of Computer and Information Sciences, King Saud University, Riyadh 11633, Saudi Arabia;
| |
Collapse
|
53
|
Adesipo A, Fadeyi O, Kuca K, Krejcar O, Maresova P, Selamat A, Adenola M. Smart and Climate-Smart Agricultural Trends as Core Aspects of Smart Village Functions. SENSORS 2020; 20:s20215977. [PMID: 33105622 PMCID: PMC7659955 DOI: 10.3390/s20215977] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 10/15/2020] [Accepted: 10/17/2020] [Indexed: 02/05/2023]
Abstract
Attention has shifted to the development of villages in Europe and other parts of the world with the goal of combating rural–urban migration, and moving toward self-sufficiency in rural areas. This situation has birthed the smart village idea. Smart village initiatives such as those of the European Union is motivating global efforts aimed at improving the live and livelihood of rural dwellers. These initiatives are focused on improving agricultural productivity, among other things, since most of the food we eat are grown in rural areas around the world. Nevertheless, a major challenge faced by proponents of the smart village concept is how to provide a framework for the development of the term, so that this development is tailored towards sustainability. The current work examines the level of progress of climate smart agriculture, and tries to borrow from its ideals, to develop a framework for smart village development. Given the advances in technology, agricultural development that encompasses reduction of farming losses, optimization of agricultural processes for increased yield, as well as prevention, monitoring, and early detection of plant and animal diseases, has now embraced varieties of smart sensor technologies. The implication is that the studies and results generated around the concept of climate smart agriculture can be adopted in planning of villages, and transforming them into smart villages. Hence, we argue that for effective development of the smart village framework, smart agricultural techniques must be prioritized, viz-a-viz other developmental practicalities.
Collapse
Affiliation(s)
- Adegbite Adesipo
- Department of Soil Protection and Recultivation, Brandenburg University of Technology, Konrad-Wachsmann-Alle 6, 03046 Cottbus, Germany;
| | - Oluwaseun Fadeyi
- Department of Geology, Faculty of Geography and Geoscience, University of Trier, Universitätsring 15, 54296 Trier, Germany;
- Center for Basic and Applied Research, Faculty of Informatics and Management, University of Hradec Kralove, Rokitanskeho 62, 50003 Hradec Kralove, Czech Republic; (K.K.); (A.S.)
| | - Kamil Kuca
- Center for Basic and Applied Research, Faculty of Informatics and Management, University of Hradec Kralove, Rokitanskeho 62, 50003 Hradec Kralove, Czech Republic; (K.K.); (A.S.)
| | - Ondrej Krejcar
- Center for Basic and Applied Research, Faculty of Informatics and Management, University of Hradec Kralove, Rokitanskeho 62, 50003 Hradec Kralove, Czech Republic; (K.K.); (A.S.)
- Malaysia Japan International Institute of Technology (MJIIT), Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, Kuala Lumpur 54100, Malaysia
- Correspondence:
| | - Petra Maresova
- Department of Economy, Faculty of Informatics and Management, University of Hradec Kralove, Rokitanskeho 62, 500 03 Hradec Kralove, Czech Republic;
| | - Ali Selamat
- Center for Basic and Applied Research, Faculty of Informatics and Management, University of Hradec Kralove, Rokitanskeho 62, 50003 Hradec Kralove, Czech Republic; (K.K.); (A.S.)
- Malaysia Japan International Institute of Technology (MJIIT), Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, Kuala Lumpur 54100, Malaysia
| | - Mayowa Adenola
- Department of Urban and Regional Planning, School of Environmental Technology, Federal University of Technology, PMB 704, Akure 340252, Nigeria;
| |
Collapse
|
54
|
Evaluating Irrigation Efficiency with Performance Indicators: A Case Study of Citrus in the East of Spain. AGRONOMY-BASEL 2020. [DOI: 10.3390/agronomy10091359] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Improving water efficiency in farming systems is one of the major challenges of these decades. Water scarcity due to climate change, together with the increasing demand of food, is leading experts from around the world find appropriate indicators for water-use efficiency. In this paper we propose and test different indicators for service delivery performance, productive efficiency, and economic efficiency. Since the characteristics of the studied area and the citrus cropping system in the East of Spain are particular, we include in our analysis two other variables which are key to understanding the changes in the indicators: the obtained productivity, and the applied irrigation. The indicators and these two variables are tested with the information provided by farmers of citrus orchards belonging to an irrigation community from the East of Spain. The effect of different factors, such as cultivated varieties, type of farmer (professional or non-professional), or plantations’ size, are evaluated against the productivity and irrigation performance of the evaluated orchards. The effect of excess of irrigation on the indicators is also studied with the previous factors. Finally, an artificial intelligence system is used to predict productive efficiency of an orchard, based on the size and the water supply. Among the proposed indicators, the service delivery performance indicators came out to be the least useful and might provoke overirrigation due to the lack of accuracy of the data used for its calculation. The productive and economic efficiency indicators have been useful to illustrate the remarkable effect that excess of irrigation has on water efficiency, since a reduction of 66% of productive efficiency is found for some of the analysed varieties. On other cases, a reduction of 50% in economic efficiency is detected due to the excess of irrigation. Moreover, the excess of irrigation implied higher economic efficiency in only one of the evaluated varieties.
Collapse
|
55
|
Abstract
When the Internet and other interconnected networks are used in a health system, it is referred to as “e-Health.” In this paper, we examined research studies from 2017–2020 to explore the utilization of intelligent techniques in health and its evolution over time, particularly the integration of Internet of Things (IoT) devices and cloud computing. E-Health is defined as “the ability to seek, find, understand and appraise health information derived from electronic sources and acquired knowledge to properly solve or treat health problems. As a repository for health information as well as e-Health analysis, the Internet has the potential to protect consumers from harm and empower them to participate fully in informed health-related decision-making. Most importantly, high levels of e-Health integration mitigate the risk of encountering unreliable information on the Internet. Various research perspectives related to security and privacy within IoT-cloud-based e-Health systems are examined, with an emphasis on the opportunities, benefits and challenges of the implementation such systems. The combination of IoT-based e-Health systems integrated with intelligent systems such as cloud computing that provide smart objectives and applications is a promising future trend.
Collapse
|
56
|
Oliveira-Jr A, Resende C, Pereira A, Madureira P, Gonçalves J, Moutinho R, Soares F, Moreira W. IoT Sensing Platform as a Driver for Digital Farming in Rural Africa. SENSORS 2020; 20:s20123511. [PMID: 32575891 PMCID: PMC7348922 DOI: 10.3390/s20123511] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 06/10/2020] [Accepted: 06/19/2020] [Indexed: 12/02/2022]
Abstract
Small-scale farming can benefit from the usage of information and communication technology (ICT) to improve crop and soil management and increase yield. However, in order to introduce digital farming in rural areas, related ICT solutions must be viable, seamless and easy to use, since most farmers are not acquainted with technology. With that in mind, this paper proposes an Internet of Things (IoT) sensing platform that provides information on the state of the soil and surrounding environment in terms of pH, moisture, texture, colour, air temperature, and light. This platform is coupled with computer vision to further analyze and understand soil characteristics. Moreover, the platform hardware is housed in a specifically designed robust casing to allow easy assembly, transport, and protection from the deployment environment. To achieve requirements of usability and reproducibility, the architecture of the IoT sensing platform is based on low-cost, off-the-shelf hardware and software modularity, following a do-it-yourself approach and supporting further extension. In-lab validations of the platform were carried out to finetune its components, showing the platform’s potential for application in rural areas by introducing digital farming to small-scale farmers, and help them delivering better produce and increasing income.
Collapse
Affiliation(s)
- Antonio Oliveira-Jr
- Fraunhofer Portugal AICOS, 4200-135 Porto, Portugal or (A.O.-J.); (C.R.); (A.P.); (P.M.); (J.G.); (R.M.); (F.S.)
- Institute of Informatics (INF)—Federal University of Goiás (UFG), Goiânia 74690-900, Brazil
| | - Carlos Resende
- Fraunhofer Portugal AICOS, 4200-135 Porto, Portugal or (A.O.-J.); (C.R.); (A.P.); (P.M.); (J.G.); (R.M.); (F.S.)
| | - André Pereira
- Fraunhofer Portugal AICOS, 4200-135 Porto, Portugal or (A.O.-J.); (C.R.); (A.P.); (P.M.); (J.G.); (R.M.); (F.S.)
| | - Pedro Madureira
- Fraunhofer Portugal AICOS, 4200-135 Porto, Portugal or (A.O.-J.); (C.R.); (A.P.); (P.M.); (J.G.); (R.M.); (F.S.)
| | - João Gonçalves
- Fraunhofer Portugal AICOS, 4200-135 Porto, Portugal or (A.O.-J.); (C.R.); (A.P.); (P.M.); (J.G.); (R.M.); (F.S.)
| | - Ruben Moutinho
- Fraunhofer Portugal AICOS, 4200-135 Porto, Portugal or (A.O.-J.); (C.R.); (A.P.); (P.M.); (J.G.); (R.M.); (F.S.)
| | - Filipe Soares
- Fraunhofer Portugal AICOS, 4200-135 Porto, Portugal or (A.O.-J.); (C.R.); (A.P.); (P.M.); (J.G.); (R.M.); (F.S.)
| | - Waldir Moreira
- Fraunhofer Portugal AICOS, 4200-135 Porto, Portugal or (A.O.-J.); (C.R.); (A.P.); (P.M.); (J.G.); (R.M.); (F.S.)
- Correspondence:
| |
Collapse
|
57
|
Abstract
Smart farming based on Internet of Things (IoT) technologies enables crop farmers to collect real-time data related to irrigation and plant protection processes, aiming to increase production volume, improve product quality, and predict diseases, while optimizing resources and farming processes. IoT devices can collect vast amounts of environmental, soil, and crop performance data, thus building time series data that can be analyzed to forecast and compute recommendations and deliver critical information to farmers in real time. In this sense, the added-value from the farmers’ perspective is that such smart farming techniques have the potential to deliver a more sustainable agricultural production, based on a more precise and resource-efficient approach in the complex and versatile agricultural environment. The aim of this study is to investigate possible advantages of applying the Smart Farming as a Service (SFaaS) paradigm, aiming to support small-scale farmers, by taking over the technological investment burden and offering next generation farming advice through the combined utilization of heterogeneous information sources. The overall results of the pilot application demonstrate a potential reduction of up to 22% on total irrigation needs and important optimization opportunities on pesticides use efficiency. The current work offers opportunities for innovation targeting and climate change adaptation options (new agricultural technologies), and could help farmers to reduce their ecological footprint.
Collapse
|
58
|
Mawlood Hussein S, López Ramos JA, Álvarez Bermejo JA. Distributed Key Management to Secure IoT Wireless Sensor Networks in Smart-Agro. SENSORS 2020; 20:s20082242. [PMID: 32326650 PMCID: PMC7218854 DOI: 10.3390/s20082242] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 03/23/2020] [Accepted: 04/14/2020] [Indexed: 11/16/2022]
Abstract
With the deepening of the research and development in the field of embedded devices, the paradigm of the Internet of things (IoT) is gaining momentum. Its technology's widespread applications increasing the number of connected devices constantly. IoT is built on sensor networks, which are enabling a new variety of solutions for applications in several fields (health, industry, defense, agrifood and agro sectors, etc.). Wireless communications are indispensable for taking full advantage of sensor networks but implies new requirements in the security and privacy of communications. Security in wireless sensor networks (WSNs) is a major challenge for extending IoT applications, in particular those related to the smart-agro. Moreover, limitations on processing capabilities of sensor nodes, and power consumption have made the encryption techniques devised for conventional networks not feasible. In such scenario, symmetric-key ciphers are preferred for key management in WSN; key distribution is therefore an issue. In this work, we provide a concrete implementation of a novel scalable group distributed key management method and a protocol for securing communications in IoT systems used in the smart agro sector, based on elliptic curve cryptography, to ensure that information exchange between layers of the IoT framework is not affected by sensor faults or intentional attacks. In this sense, each sensor node executes an initial key agreement, which is done through every member's public information in just two rounds and uses some authenticating information that avoids external intrusions. Further rekeying operations require just a single message and provide backward and forward security.
Collapse
Affiliation(s)
- Safwan Mawlood Hussein
- Department of Computer Engineering, Faculty of Engineering, Tishk International University, Erbil 44001, Iraq;
| | - Juan Antonio López Ramos
- Department of Mathematics, University of Almería, 04120 Almería, Spain
- Correspondence: (J.A.L.R.); (J.A.Á.B.)
| | | |
Collapse
|
59
|
Borrero JD, Zabalo A. An Autonomous Wireless Device for Real-Time Monitoring of Water Needs. SENSORS (BASEL, SWITZERLAND) 2020; 20:E2078. [PMID: 32272757 PMCID: PMC7180496 DOI: 10.3390/s20072078] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 03/31/2020] [Accepted: 04/05/2020] [Indexed: 11/28/2022]
Abstract
The agri-food sector is in constantly renewing, continuously demanding new systems that facilitate farmers´ work. Efficient agricultural practices are essential to increasing farm profitability, and reducing water consumption can be achieved by real-time monitoring of water needs. However, the prices of automatic systems for collecting data from several sources (soil and climate) are expensive and their autonomy is very low. This paper presents a low-consumption solution using the Internet of Things (IoT) based on wireless sensor networks (WSNs) and long-range wide-area network (LoRaWAN) technologies. By means of low-power wide-area network (LPWAN) communication, a farmer can monitor the state of crops in real time thanks to a large number of sensors connected wirelessly and distributed across the farm. The wireless sensor node developed, called BoXmote, exhibits very low power, since it has been optimized both in terms of hardware and software. The result is a higher degree of autonomy than commercial motes. This will allow the farmer to have access to all of the information necessary to achieve an efficient irrigation management of his crops with full autonomy.
Collapse
Affiliation(s)
- Juan D. Borrero
- Department of Business and Marketing, Huelva University, Huelva 21071, Spain
| | - Alberto Zabalo
- Department of Agroforestry Science, Huelva University, Huelva 21071, Spain;
| |
Collapse
|
60
|
An Efficient Superframe Structure with Optimal Bandwidth Utilization and Reduced Delay for Internet of Things Based Wireless Sensor Networks. SENSORS 2020; 20:s20071971. [PMID: 32244668 PMCID: PMC7180611 DOI: 10.3390/s20071971] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 03/26/2020] [Accepted: 03/30/2020] [Indexed: 11/17/2022]
Abstract
Internet of Things (IoT) is a promising technology that uses wireless sensor networks to enable data collection, monitoring, and transmission from the physical devices to the Internet. Due to its potential large scale usage, efficient routing and Medium Access Control (MAC) techniques are vital to meet various application requirements. Most of the IoT applications need low data rate and low powered wireless transmissions and IEEE 802.15.4 standard is mostly used in this regard which offers superframe structure at the MAC layer. However, for IoT applications where nodes have adaptive data traffic, the standard has some limitations such as bandwidth wastage and latency. In this paper, a new superframe structure is proposed that is backward compatible with the existing parameters of the standard. The proposed superframe overcomes limitations of the standard by fine-tuning its superframe structure and squeezing the size of its contention-free slots. Thus, the proposed superframe adjusts its duty cycle according to the traffic requirements and accommodates more nodes in a superframe structure. The analytical results show that our proposed superframe structure has almost 50% less delay, accommodate more nodes and has better link utilization in a superframe as compared to the IEEE 802.15.4 standard.
Collapse
|
61
|
Analysis of the Functionality of the Feed Chain in Olive Pitting, Slicing and Stuffing Machines by IoT, Computer Vision and Neural Network Diagnosis. SENSORS 2020; 20:s20051541. [PMID: 32164394 PMCID: PMC7085645 DOI: 10.3390/s20051541] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 03/02/2020] [Accepted: 03/06/2020] [Indexed: 11/17/2022]
Abstract
Olive pitting, slicing and stuffing machines (DRR in Spanish) are characterized by the fact that their optimal functioning is based on appropriate adjustments. Traditional systems are not completely reliable because their minimum error rate is 1–2%, which can result in fruit loss, since the pitting process is not infallible, and food safety issues can arise. Such minimum errors are impossible to remove through mechanical adjustments. In order to achieve this objective, an innovative solution must be provided in order to remove errors at operating speed rates over 2500 olives/min. This work analyzes the appropriate placement of olives in the pockets of the feed chain by using the following items: (1) An IoT System to control the DRR machine and the data analysis. (2) A computer vision system with an external shot camera and a LED lighting system, which takes a picture of every pocket passing in front of the camera. (3) A chip with a neural network for classification that, once trained, classifies between four possible pocket cases: empty, normal, incorrectly de-stoned olives at any angles (also known as a “boat”), and an anomalous case (foreign elements such as leafs, small branches or stones, two olives or small parts of olives in the same pocket). The main objective of this paper is to illustrate how with the use of a system based on IoT and a physical chip (NeuroMem CM1K, General Vision Inc.) with neural networks for sorting purposes, it is possible to optimize the functionality of this type of machine by remotely analyzing the data obtained. The use of classifying hardware allows it to work at the nominal operating speed for these machines. This would be limited if other classifying techniques based on software were used.
Collapse
|