51
|
Grozio A, Gonzalez VM, Millo E, Sturla L, Vigliarolo T, Bagnasco L, Guida L, D'Arrigo C, De Flora A, Salis A, Martin EM, Bellotti M, Zocchi E. Selection and characterization of single stranded DNA aptamers for the hormone abscisic Acid. Nucleic Acid Ther 2013; 23:322-31. [PMID: 23971905 PMCID: PMC3760064 DOI: 10.1089/nat.2013.0418] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The hormone abscisic acid (ABA) is a small molecule involved in pivotal physiological functions in higher plants. Recently, ABA has been also identified as an endogenous hormone in mammals, regulating different cell functions including inflammatory processes, stem cell expansion, insulin release, and glucose uptake. Aptamers are short, single-stranded (ss) oligonucleotidesable to recognize target molecules with high affinity. The small size of the ABA molecule represented a challenge for aptamer development and the aim of this study was to develop specific anti-ABA DNA aptamers. Biotinylated abscisic acid (bio-ABA) was immobilized on streptavidin-coated magnetic beads. DNA aptamers against bio-ABA were selected with 7 iterative rounds of the systematic evolution of ligands by exponential enrichment method (SELEX), each round comprising incubation of the ABA-binding beads with the ssDNA sequences, DNA elution, electrophoresis, and polymerase chain reaction (PCR) amplification. The PCR product was cloned and sequenced. The binding affinity of several clones was determined using bio-ABA immobilized on streptavidin-coated plates. Aptamer 2 and aptamer 9 showed the highest binding affinity, with dissociation constants values of 0.98 ± 0.14 μM and 0.80 ± 0.07 μM, respectively. Aptamers 2 and 9 were also able to bind free, unmodified ABA and to discriminate between different ABA enantiomers and isomers. Our findings indicate that ssDNA aptamers can selectively bind ABA and could be used for the development of ABA quantitation assays.
Collapse
Affiliation(s)
- Alessia Grozio
- Department of Experimental Medicine, Section of Biochemistry, University of Genova, Genova, Italy
| | - Victor M. Gonzalez
- Departamento de Bioquímica-Investigación, IRYCIS-Hospital Ramón y Cajal, Madrid, Spain
| | - Enrico Millo
- Center of Excellence for Biomedical Research (CEBR), University of Genova, Genova, Italy
| | - Laura Sturla
- Center of Excellence for Biomedical Research (CEBR), University of Genova, Genova, Italy
| | - Tiziana Vigliarolo
- Department of Experimental Medicine, Section of Biochemistry, University of Genova, Genova, Italy
| | - Luca Bagnasco
- Department of Internal Medicine, University of Genova, Genova, Italy
| | - Lucrezia Guida
- Center of Excellence for Biomedical Research (CEBR), University of Genova, Genova, Italy
| | - Cristina D'Arrigo
- Institute for Macromolecular Studies, National Research Council, Genova, Italy
| | - Antonio De Flora
- Center of Excellence for Biomedical Research (CEBR), University of Genova, Genova, Italy
| | - Annalisa Salis
- Center of Excellence for Biomedical Research (CEBR), University of Genova, Genova, Italy
| | - Elena M. Martin
- Departamento de Bioquímica-Investigación, IRYCIS-Hospital Ramón y Cajal, Madrid, Spain
| | - Marta Bellotti
- Center of Excellence for Biomedical Research (CEBR), University of Genova, Genova, Italy
| | - Elena Zocchi
- Center of Excellence for Biomedical Research (CEBR), University of Genova, Genova, Italy
| |
Collapse
|
52
|
Detection of thrombin using an excimer aptamer switch labeled with dual pyrene molecules. Anal Bioanal Chem 2013; 405:8233-9. [PMID: 23912830 DOI: 10.1007/s00216-013-7240-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Revised: 07/06/2013] [Accepted: 07/09/2013] [Indexed: 01/30/2023]
Abstract
We constructed an excimer aptamer probe containing one pyrene molecule at each end of a DNA aptamer to achieve the detection of thrombin, which binds to the heparin-binding site of thrombin with high binding affinity. The specific binding of thrombin to the excimer aptamer probe brought the two pyrene molecules at the termini of the duplex of the aptamer into close proximity, generating an excimer. The excimer emitted a distinct fluorescence peak, and fluorometric measurement of excimer allowed the sensitive detection of thrombin. The effects of experimental conditions like pH, ionic strength, and cations were investigated and optimized. The detection limit for thrombin was about 42 pM. This aptamer switch has potential in the study of molecular interactions and protein sensing with other switch-based detection strategy.
Collapse
|
53
|
Schachermeyer S, Ashby J, Zhong W. Aptamer–protein binding detected by asymmetric flow field flow fractionation. J Chromatogr A 2013; 1295:107-13. [DOI: 10.1016/j.chroma.2013.04.063] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2013] [Revised: 04/18/2013] [Accepted: 04/19/2013] [Indexed: 01/11/2023]
|
54
|
Yin Y, Bilek MM, Fisher K, Guo C, McKenzie DR. An integrated solution for rapid biosensing with robust linker free covalent bindingsurfaces. Biosens Bioelectron 2013; 42:447-52. [DOI: 10.1016/j.bios.2012.11.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Revised: 11/13/2012] [Accepted: 11/14/2012] [Indexed: 11/16/2022]
|
55
|
Šípová H, Homola J. Surface plasmon resonance sensing of nucleic acids: a review. Anal Chim Acta 2013; 773:9-23. [PMID: 23561902 DOI: 10.1016/j.aca.2012.12.040] [Citation(s) in RCA: 137] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Revised: 12/19/2012] [Accepted: 12/21/2012] [Indexed: 12/12/2022]
Abstract
Biosensors based on surface plasmon resonance (SPR) have become a central tool for the investigation and quantification of biomolecules and their interactions. Nucleic acids (NAs) play a vital role in numerous biological processes and therefore have been one of the major groups of biomolecules targeted by the SPR biosensors. This paper discusses the advances of NA SPR biosensor technology and reviews its applications both in the research of molecular interactions involving NAs (NA-NA, NA-protein, NA-small molecule), as well as for the field of bioanalytics in the areas of food safety, medical diagnosis and environmental monitoring.
Collapse
Affiliation(s)
- Hana Šípová
- Institute of Photonics and Electronics, Academy of Sciences of the Czech Republic, Chaberská 57, Prague, Czech Republic
| | - Jiří Homola
- Institute of Photonics and Electronics, Academy of Sciences of the Czech Republic, Chaberská 57, Prague, Czech Republic.
| |
Collapse
|
56
|
Schill M, Koslowski T. Sensing organic molecules by charge transfer through aptamer-target complexes: theory and simulation. J Phys Chem B 2013; 117:475-83. [PMID: 23227783 DOI: 10.1021/jp308042n] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Aptamers, i.e., short sequences of RNA and single-stranded DNA, are capable of specificilly binding objects ranging from small molecules over proteins to entire cells. Here, we focus on the structure, stability, dynamics, and electronic properties of oligonucleotides that interact with aromatic or heterocyclic targets. Large-scale molecular dynamics simulations indicate that aromatic rings such as dyes, metabolites, or alkaloides form stable adducts with their oligonucleotide host molecules at least on the simulation time scale. From molecular dynamics snapshots, the energy parameters relevant to Marcus' theory of charge transfer are computed using a modified Su-Schrieffer-Heeger Hamiltonian, permitting an estimate of the charge transfer rates. In many cases, aptamer binding seriously influences the charge transfer kinetics and the charge carrier mobility within the complex, with conductivities up to the nanoampere range for a single complex. We discuss the conductivity properties with reference to potential applications as biosensors.
Collapse
Affiliation(s)
- Maria Schill
- Institut für Physikalische Chemie, Universität Freiburg, Albertstrasse 23a, D-79104 Freiburg im Breisgau, Germany
| | | |
Collapse
|
57
|
Xiang Y, Wu P, Tan LH, Lu Y. DNAzyme-functionalized gold nanoparticles for biosensing. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2013; 140:93-120. [PMID: 24026635 DOI: 10.1007/10_2013_242] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Recent progress in using DNAzyme-functionalized gold nanoparticles (AuNPs) for biosensing is summarized in this chapter. A variety of methods, including those for attaching DNA on AuNPs, detecting metal ions and small molecules by DNAzyme-functionalized AuNPs, and intracellular applications of DNAzyme-functionalized AuNPs are discussed. DNAzyme-functionalized AuNPs will increasingly play more important roles in biosensing and many other multidisciplinary applications. This chapter covers the recent advancement in biosensing applications of DNAzyme-functionalized gold nanoparticles, including the detection of metal ions, small molecules, and intracellular imaging.
Collapse
Affiliation(s)
- Yu Xiang
- Department of Chemistry and Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | | | | | | |
Collapse
|
58
|
Wu K, Zhou Y, Li T, Sun J, Xing X, Song Q. Cadmium Tellurium Quantum Dots in Sol-Gel-Derived Silica Spheres Coated with Calix[6]Arene as an Optical Probe for Dalapon. ANAL LETT 2012. [DOI: 10.1080/00032719.2012.703740] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
59
|
Kwok CK, Sherlock ME, Bevilacqua PC. Decrease in RNA Folding Cooperativity by Deliberate Population of Intermediates in RNA G-Quadruplexes. Angew Chem Int Ed Engl 2012; 52:683-6. [DOI: 10.1002/anie.201206475] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2012] [Revised: 09/09/2012] [Indexed: 01/16/2023]
|
60
|
Kwok CK, Sherlock ME, Bevilacqua PC. Decrease in RNA Folding Cooperativity by Deliberate Population of Intermediates in RNA G-Quadruplexes. Angew Chem Int Ed Engl 2012. [DOI: 10.1002/ange.201206475] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
61
|
Lighting Up RNA-Cleaving DNAzymes for Biosensing. J Nucleic Acids 2012; 2012:958683. [PMID: 23209883 PMCID: PMC3503364 DOI: 10.1155/2012/958683] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Accepted: 10/03/2012] [Indexed: 01/02/2023] Open
Abstract
The development of the in vitro selection technique has allowed the isolation of functional nucleic acids, including catalytic DNA molecules (DNAzymes), from random-sequence pools. The first-ever catalytic DNA obtained by this technique in 1994 is a DNAzyme that cleaves RNA. Since then, many other RNase-like DNAzymes have been reported from multiple in vitro selection studies. The discovery of various RNase DNAzymes has in turn stimulated the exploration of these enzymatic species for innovative applications in many different areas of research, including therapeutics, biosensing, and DNA nanotechnology. One particular research topic that has received considerable attention for the past decade is the development of RNase DNAzymes into fluorescent reporters for biosensing applications. This paper provides a concise survey of the most significant achievements within this research topic.
Collapse
|
62
|
Zhang J, Zhang X, Yang G, Chen J, Wang S. A signal-on fluorescent aptasensor based on Tb3+ and structure-switching aptamer for label-free detection of Ochratoxin A in wheat. Biosens Bioelectron 2012; 41:704-9. [PMID: 23089328 DOI: 10.1016/j.bios.2012.09.053] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Revised: 09/13/2012] [Accepted: 09/25/2012] [Indexed: 01/19/2023]
Abstract
On the basis of Tb(3+), structure-switching aptamer and magnetic beads (MBs), a signal-on fluorescent aptasensor was developed for the label-free determination of OTA in wheat. Initially, the specific sequence of the anti-OTA aptamer labeled with a biotin group, was attached to streptavidin-modified MBs. Two single-stranded signal probes were added and naturally hybridized with anti-OTA aptamer to form the duplex structure in the solution. Due to the fact that single-stranded oligonucleotides can greatly enhance the emission of Tb(3+) in solution but duplexes do not, through magnetic separation, the supernatant liquid of the above solution contained no single-stranded DNA and cannot increase the emission of Tb(3+). While upon OTA addition, it will bind with aptamer to form OTA-aptamer G-quadruplex while releasing two single-stranded signal probes. Through magnetic separation, the released single-stranded signal probes left in the supernatant liquid can dramatically increase the fluorescent intensity of Tb(3+). By employing the above strategy, this aptasensor can detect as low as 20 pg/mL OTA with high specificity. To the best of our knowledge, the proposed aptasensor is the first attempt to use the fluorescent characteristics of Tb(3+) for OTA detection, which may represent a promising path toward routine quality control of food safety.
Collapse
Affiliation(s)
- Jing Zhang
- The Ministry of Education Key Laboratory of Biopesticide and Chemical Biology, and College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | | | | | | | | |
Collapse
|
63
|
Li LL, Ge P, Selvin PR, Lu Y. Direct detection of adenosine in undiluted serum using a luminescent aptamer sensor attached to a terbium complex. Anal Chem 2012; 84:7852-6. [PMID: 22894546 PMCID: PMC3461325 DOI: 10.1021/ac302167d] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Aptamers, single-stranded nucleic acids that can selectively bind to various target molecules, have been widely used for constructing biosensors. A major challenge in this field, however, is direct sensing of analytes in complex biological media such as undiluted serum. While progress has been made in developing an inhomogeneous assay by using a preseparation step to wash away the interferences within serum, a facile strategy for direct detection of targets in homogeneous unprocessed serum is highly desired. We herein report a turn-on luminescent aptamer biosensor for the direct detection of adenosine in undiluted and unprocessed serum, by taking advantage of a terbium chelate complex with long luminescence lifetime to achieve time-resolved detection. The sensor exhibits a detection limit of 60 μM adenosine while marinating excellent selectivity that is comparable to those in buffer. The approach demonstrated here can be applied for direct detection and quantification of a broad range of analytes in biological media by using other aptamers.
Collapse
Affiliation(s)
- Le-Le Li
- Department of Chemistry, University of Illinois at Urbana–Champaign, Urbana, Illinois 61801, United States
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana–Champaign, Urbana, Illinois 61801, United States
| | - Pinghua Ge
- Department of Physics, Center for the Physics of Living Cells, University of Illinois at Urbana–Champaign, Urbana, Illinois 61801, United States
| | - Paul R. Selvin
- Department of Physics, Center for the Physics of Living Cells, University of Illinois at Urbana–Champaign, Urbana, Illinois 61801, United States
| | - Yi Lu
- Department of Chemistry, University of Illinois at Urbana–Champaign, Urbana, Illinois 61801, United States
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana–Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
64
|
Kiani Z, Shafiei M, Rahimi-Moghaddam P, Karkhane AA, Ebrahimi SA. In vitro selection and characterization of deoxyribonucleic acid aptamers for digoxin. Anal Chim Acta 2012; 748:67-72. [PMID: 23021809 DOI: 10.1016/j.aca.2012.08.025] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Revised: 07/08/2012] [Accepted: 08/10/2012] [Indexed: 11/19/2022]
Abstract
The low therapeutic index of digoxin necessitates careful monitoring of its serum levels. Most of digoxin immunoassays suffer from interferences with digoxin-like immunoreactive substances. Since aptamers have been shown to be highly specific for their targets, the aim of this study was to develop DNA aptamers for this widely used cardiac glycoside. Digoxin was coated onto the surface of streptavidin magnetic beads. DNA aptamers against digoxin were designed using Systematic Evolution of Ligands by Exponential enrichment method (SELEX) by 11 iterative rounds of incubation of digoxin-coated streptavidin magnetic beads with synthetic DNA library, DNA elution, electrophoresis and PCR amplification. The PCR product was cloned and sequenced. Binding affinity was determined using digoxin-BSA conjugate, coated onto ELISA plate. Inhibitory effect of anti-digoxin aptamer was conducted using isolated guinea-pig atrium. Three aptamers (D1, D2 and D3) were identified. Binding studies of fluorescein-labeled truncated (without primer binding region) D1 and D2 and full length D1 anti-digoxin aptamers were performed and their corresponding dissociation constants values were 8.2×10(-9), 44.0×10(-9) and 17.8×10(-9) M, respectively. This is comparable to what other workers have obtained for interaction of monoclonal antibodies raised against digoxin. There was little difference in binding affinity between full length and truncated anti-digoxin D1 aptamer. D1 anti-digoxin aptamer also inhibited the effects of digoxin on the isolated guinea-pig atrium. D1 anti-digoxin aptamer distinguished between digoxin and ouabain in both tissue study and binding experiments. Our finding indicated that D1 anti-digoxin aptamer can selectively bind to digoxin. Further studies might show its suitability for use in digoxin assays and as a therapeutic agent in life-threatening digoxin toxicity.
Collapse
Affiliation(s)
- Zahra Kiani
- Tehran University of Medical Sciences, School of Medicine, Department of Pharmacology, Tehran, Iran
| | | | | | | | | |
Collapse
|
65
|
Thomas JM, Chakraborty B, Sen D, Yu HZ. Analyte-driven switching of DNA charge transport: de novo creation of electronic sensors for an early lung cancer biomarker. J Am Chem Soc 2012; 134:13823-33. [PMID: 22835075 DOI: 10.1021/ja305458u] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
A general approach is described for the de novo design and construction of aptamer-based electrochemical biosensors, for potentially any analyte of interest (ranging from small ligands to biological macromolecules). As a demonstration of the approach, we report the rapid development of a made-to-order electronic sensor for a newly reported early biomarker for lung cancer (CTAP III/NAP2). The steps include the in vitro selection and characterization of DNA aptamer sequences, design and biochemical testing of wholly DNA sensor constructs, and translation to a functional electrode-bound sensor format. The working principle of this distinct class of electronic biosensors is the enhancement of DNA-mediated charge transport in response to analyte binding. We first verify such analyte-responsive charge transport switching in solution, using biochemical methods; successful sensor variants were then immobilized on gold electrodes. We show that using these sensor-modified electrodes, CTAP III/NAP2 can be detected with both high specificity and sensitivity (K(d) ~1 nM) through a direct electrochemical reading. To investigate the underlying basis of analyte binding-induced conductivity switching, we carried out Förster Resonance Energy Transfer (FRET) experiments. The FRET data establish that analyte binding-induced conductivity switching in these sensors results from very subtle structural/conformational changes, rather than large scale, global folding events. The implications of this finding are discussed with respect to possible charge transport switching mechanisms in electrode-bound sensors. Overall, the approach we describe here represents a unique design principle for aptamer-based electrochemical sensors; its application should enable rapid, on-demand access to a class of portable biosensors that offer robust, inexpensive, and operationally simplified alternatives to conventional antibody-based immunoassays.
Collapse
Affiliation(s)
- Jason M Thomas
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | | | | | | |
Collapse
|
66
|
Lai YT, DeStefano JJ. DNA aptamers to human immunodeficiency virus reverse transcriptase selected by a primer-free SELEX method: characterization and comparison with other aptamers. Nucleic Acid Ther 2012; 22:162-76. [PMID: 22554064 PMCID: PMC3423876 DOI: 10.1089/nat.2011.0327] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2011] [Accepted: 03/24/2012] [Indexed: 12/17/2022] Open
Abstract
A 30-nucleotide DNA aptamer (5'-AGGAAGGCTTTAGGTCTGAGATCTCGGAAT-3', denoted PF1) selected for high affinity to human immunodeficiency virus reverse transcriptase (HIV RT) using a primer-free SELEX (systematic evolution of ligands by exponential enrichment) method was characterized to determine features promoting tight binding. PF1's equilibrium dissociation constant for RT was ∼80 nM, over 10-fold lower than a random 30-mer. Changing the 2 terminal diguanosine repeats (underlined above) to diadenosine or dithymidine modestly decreased binding. Any changes to the 2 central diguanosines dramatically decreased binding. Binding was highly sensitive to length, with any truncations that deleted part of the 4 diguanosine motifs resulting in a 6-fold or more decrease in affinity. Even a construct with all the diguanosine motifs but lacking the 5' terminal A and 3 nucleotides at the 3' end showed ∼3-fold binding decrease. Changes to the nucleotides between the diguanosines, even those that did not alter PF1's low secondary structure (free energy of folding ΔG=-0.61 kcal/mol), dramatically decreased binding, suggesting sequence specificity. Despite the diguanosine motifs, circular dichroism (CD) spectra indicated that PF1 did not form a G-quartet. PF1 inhibited HIV RT synthesis with a half-maximal inhibitory value (IC(50)) of ∼60 nM. Larger, more structured RT DNA aptamers based on the HIV polypurine tract and those that formed G-quartets (denoted S4 and R1T) were more potent inhibitors, with IC(50) values of ∼4 and ∼1 nM, respectively. An RNA pseudoknot aptamer (denoted 1.1) showed an IC(50) near 4 nM. Competition binding assays with PF1 and several previously characterized RT aptamers indicated that they all bound at or near the primer-template pocket. These other more structured and typically larger aptamers bound more tightly than PF1 to RT based on filter binding assays. Results indicate that PF1 represents a new class of RT aptamers that are relatively small and have very low secondary structure, attributes that could be advantageous for further development as HIV inhibitors.
Collapse
Affiliation(s)
- Yi-Tak Lai
- Department of Cell Biology and Molecular Genetics, University of Maryland College Park, College Park, Maryland 20742, USA
| | | |
Collapse
|
67
|
Nakamura Y, Ishiguro A, Miyakawa S. RNA plasticity and selectivity applicable to therapeutics and novel biosensor development. Genes Cells 2012; 17:344-64. [PMID: 22487172 PMCID: PMC3444689 DOI: 10.1111/j.1365-2443.2012.01596.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2012] [Accepted: 02/03/2012] [Indexed: 12/25/2022]
Abstract
Aptamers are short, single-stranded nucleic acid sequences that are selected in vitro from large oligonucleotide libraries based on their high affinity to a target molecule. Hence, aptamers can be thought of as a nucleic acid analog to antibodies. However, several viewpoints hold that the potential of aptamers arises from interesting characteristics that are distinct from, or in some cases, superior to those of antibodies. This review summarizes the recent achievements in aptamer programs developed in our laboratory against basic and therapeutic protein targets. Through these studies, we became aware of the remarkable conformational plasticity and selectivity of RNA, on which the published report has not shed much light even though this is evidently a crucial feature for the strong specificity and affinity of RNA aptamers.
Collapse
Affiliation(s)
- Yoshikazu Nakamura
- Department of Basic Medical Sciences, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan.
| | | | | |
Collapse
|
68
|
Sharma R, Agrawal VV, Sharma P, Varshney R, Sinha RK, Malhotra BD. Aptamer based electrochemical sensor for detection of human lung adenocarcinoma A549 cells. ACTA ACUST UNITED AC 2012. [DOI: 10.1088/1742-6596/358/1/012001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
69
|
Waveguide-mode sensors as aptasensors. SENSORS 2012; 12:2136-51. [PMID: 22438756 PMCID: PMC3304158 DOI: 10.3390/s120202136] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2012] [Revised: 02/07/2012] [Accepted: 02/08/2012] [Indexed: 12/28/2022]
Abstract
Aptamers are artificial nucleic acid ligands that can be generated by in vitro selection through partition and amplification. Aptamers can be generated against a wide range of biomolecules through the formation of versatile stem-loop structures. Because aptamers are potential substitutes for antibodies and drugs, the development of an aptamer-based sensor (aptasensor) is mandatory for diagnosis. We previously reported that waveguide-mode sensors are useful in the analysis of a wide range of biomolecular interactions, including aptamers. The advantages of the waveguide-mode sensor that we developed include physical and chemical stability and that higher sensitivity can be achieved with ease by perforating the waveguide layer or using colored materials such as dyes or metal nanoparticles as labels. Herein, we provide an overview of the strategies and applications for aptamer-based analyses using waveguide-mode sensors.
Collapse
|
70
|
Citartan M, Gopinath SCB, Tominaga J, Tan SC, Tang TH. Assays for aptamer-based platforms. Biosens Bioelectron 2012; 34:1-11. [PMID: 22326894 DOI: 10.1016/j.bios.2012.01.002] [Citation(s) in RCA: 132] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2011] [Revised: 12/14/2011] [Accepted: 01/06/2012] [Indexed: 11/19/2022]
Abstract
Aptamers are single stranded DNA or RNA oligonucleotides that have high affinity and specificity towards a wide range of target molecules. Aptamers have low molecular weight, amenable to chemical modifications and exhibit stability undeterred by repetitive denaturation and renaturation. Owing to these indispensable advantages, aptamers have been implemented as molecular recognition element as alternative to antibodies in various assays for diagnostics. By amalgamating with a number of methods that can provide information on the aptamer-target complex formation, aptamers have become the elemental tool for numerous biosensor developments. In this review, administration of aptamers in applications involving assays of fluorescence, electrochemistry, nano-label and nano-constructs are discussed. Although detection strategies are different for various aptamer-based assays, the core of the design strategies is similar towards reporting the presence of specific target binding to the corresponding aptamers. It is prognosticated that aptamers will find even broader applications with the development of new methods of transducing aptamer target binding.
Collapse
Affiliation(s)
- Marimuthu Citartan
- Infectious Disease Cluster, Advanced Medical & Dental Institute (AMDI), Universiti Sains Malaysia, 13200 Kepala Batas, Penang, Malaysia
| | | | | | | | | |
Collapse
|
71
|
Xu W, Xiang Y, Ihms H, Lu Y. Label-Free Fluorescent Sensors Based on Functional Nucleic Acids. REVIEWS IN FLUORESCENCE 2010 2012. [DOI: 10.1007/978-1-4419-9828-6_11] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
72
|
Hsu CL, Wei SC, Jian JW, Chang HT, Chen WH, Huang CC. Highly flexible and stable aptamer-caged nanoparticles for control of thrombin activity. RSC Adv 2012. [DOI: 10.1039/c1ra00344e] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
73
|
Abstract
Aptamers comprise a range of molecular recognition scaffolds that can be engineered to bind to a legion of different proteins and other targets with excellent specificity and affinity. Because these non-natural oligonucleotides are accessible entirely synthetically, aptamers can be equipped with all sorts of reporter groups and can be coupled to many different carriers, surfaces, nanoparticles, or other biomolecules. They can be used in a highly modular fashion and often recognize their targets by a mechanism in which the aptamer undergoes considerable structural rearrangement, which can be exploited for transducing a binding event into a signal. As a consequence, aptamers have been adapted to a huge variety of "read-out configurations" and are increasingly used as capture agents in many different bioanalytical methods. But despite considerable success with these applications, many remaining challenges must still be overcome for the more widespread incorporation of aptasensors in clinical and environmental biosensing and diagnostics to take place. Some particularly noteworthy progress on this front is currently being made with aptasensor configurations that can be used for the multiplexed sensing of many analytes in parallel. In this Account, we describe some of the concepts involved in transducing the binding of a ligand into a signal through various physico-chemical interactions. Research in this area usually involves the combination of the molecular biology of proteins and nucleic acids with biotechnology, synthetic chemistry, physical chemistry, and surface physics. We begin with a brief introduction of the properties and characteristics that qualify aptamers as capture agents for many different analytes and their suitability as highly versatile biosensor components. We then address approaches that apply to surface acoustic wave configurations, drawing largely from our own contributions to aptasensor development, before moving on to describe previous and recent progress in multiplexed aptasensors. Obtaining proteome-wide profiles in cells, organs, organisms, or full populations requires the ability to accurately measure many different analytes in small sample volumes over a broad dynamic range. Multiplexed sensing is an invaluable tool in this endeavor. We discuss what we consider the biggest obstacles to the broader clinical use of aptasensor-based diagnostics and our perspective on how they can be surmounted. Finally,we explore the tremendous potential of aptamer-based sensors that can specifically discriminate between diseased and healthy cells. Progress in these areas will greatly expand the range of aptasensor applications, leading to enhanced diagnosis of diseases in clinical practice and, ultimately, improved patient care.
Collapse
Affiliation(s)
- Michael Famulok
- LIMES Institute, Chemical Biology and Medicinal Chemistry Unit, University of Bonn, Gerhard-Domagk-Strasse 1, 53121 Bonn, Germany
| | - Günter Mayer
- LIMES Institute, Chemical Biology and Medicinal Chemistry Unit, University of Bonn, Gerhard-Domagk-Strasse 1, 53121 Bonn, Germany
| |
Collapse
|
74
|
Zhu Z, Schmidt T, Mahrous M, Guieu V, Perrier S, Ravelet C, Peyrin E. Optimization of the structure-switching aptamer-based fluorescence polarization assay for the sensitive tyrosinamide sensing. Anal Chim Acta 2011; 707:191-6. [PMID: 22027138 DOI: 10.1016/j.aca.2011.09.022] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2011] [Revised: 08/31/2011] [Accepted: 09/14/2011] [Indexed: 11/19/2022]
Abstract
In this paper, a structure-switching aptamer assay based on a fluorescence polarization (FP) signal transduction approach and dedicated to the L-tyrosinamide sensing was described and optimized. A fluorescently labelled complementary strand (CS) of the aptamer central region was used as a probe. The effects of critical parameters such as buffer composition and pH, temperature, aptamer:CS stoichiometry, nature of the dye (Fluorescein (F) or Texas Red (TR)) and length of the CS (15-, 12-, 9- and 6-mer) on the assay analytical performances were evaluated. Under optimized experimental conditions (10 mM Tris-HCl, 5 mM MgCl(2) and 25 mM NaCl, pH 7.5 temperature of 22°C and stoichiometry 1:1), the results showed that, for a 12-mer CS, the F dye moderately increased the method sensitivity in comparison to the TR label. The F labelled 9-mer CS, however, did not allow the hybrid formation with the functional nucleic acid, thus emphasizing the importance of the nature of the fluorophore. In contrast, the same 9-mer CS labelled with the TR dye was able to effectively associate with the aptamer and was easily displaced upon target binding as demonstrated by a significant improvement of the sensitivity and a detection limit of 250 nM, comparable to those reported with direct aptasensing methods. The present study demonstrates that not only the CS length but also the nature of the dye played a preponderant role in the performance of the structure-switching aptamer assay, highlighting the importance of interdependently controlling these two factors for an optimal FP-based sensing platform.
Collapse
Affiliation(s)
- Zhenyu Zhu
- Département de Pharmacochimie Moléculaire UMR 5063 CNRS, ICMG FR 2607, Université Grenoble I, Saint-Martin d'Hères, France
| | | | | | | | | | | | | |
Collapse
|
75
|
Campbell K, Rawn DFK, Niedzwiadek B, Elliott CT. Paralytic shellfish poisoning (PSP) toxin binders for optical biosensor technology: problems and possibilities for the future: a review. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2011; 28:711-25. [PMID: 21623494 PMCID: PMC3118526 DOI: 10.1080/19440049.2010.531198] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
This review examines the developments in optical biosensor technology, which uses the phenomenon of surface plasmon resonance, for the detection of paralytic shellfish poisoning (PSP) toxins. Optical biosensor technology measures the competitive biomolecular interaction of a specific biological recognition element or binder with a target toxin immobilised onto a sensor chip surface against toxin in a sample. Different binders such as receptors and antibodies previously employed in functional and immunological assays have been assessed. Highlighted are the difficulties in detecting this range of low molecular weight toxins, with analogues differing at four chemical substitution sites, using a single binder. The complications that arise with the toxicity factors of each toxin relative to the parent compound, saxitoxin, for the measurement of total toxicity relative to the mouse bioassay are also considered. For antibodies, the cross-reactivity profile does not always correlate to toxic potency, but rather to the toxin structure to which it was produced. Restrictions and availability of the toxins makes alternative chemical strategies for the synthesis of protein conjugate derivatives for antibody production a difficult task. However, when two antibodies with different cross-reactivity profiles are employed, with a toxin chip surface generic to both antibodies, it was demonstrated that the cross-reactivity profile of each could be combined into a single-assay format. Difficulties with receptors for optical biosensor analysis of low molecular weight compounds are discussed, as are the potential of alternative non-antibody-based binders for future assay development in this area.
Collapse
Affiliation(s)
- K Campbell
- Institute of Agri-Food and Land Use, School of Biological Sciences, Queen's University, Belfast, UK.
| | | | | | | |
Collapse
|
76
|
Cass AEG, Zhang Y. Nucleic acid aptamers: ideal reagents for point-of-care diagnostics? Faraday Discuss 2011; 149:49-61; discussion 63-77. [PMID: 21413174 DOI: 10.1039/c005487a] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Nucleic acid aptamers have many of the properties that make for effective reagents in point-of-care diagnostic devices and whilst superficially similar to antibodies as affinity reagents the scope for engineering them to fit this role is considerable. Synthesis of aptamers allows for the incorporation of functionality for both immobilisation and electrochemical signalling in a way that is compatible with the 'strip' type sensors familiar in enzyme sensors, such as those for glucose. Control of the structure of DNA aptamers through Watson-Crick base pairing allows for different electrochemical assay formats, whilst ferrocenes provide a versatile redox label and insights into the interactions between the aptamer and its target are obtained through both cyclic and square-wave voltammetries. Square-wave voltammetry in particular demonstrates good analytical utility. Two different approaches were used to assemble aptamer/redox probe structures on the surface of gold electrodes and both showed "signal on" behaviour (i.e. the current increases in the presence of analyte) although the two different methods appear to give quite distinct surface coatings.
Collapse
Affiliation(s)
- Anthony E G Cass
- Institute of Biomedical Engineering, Imperial College London, UK.
| | | |
Collapse
|
77
|
|
78
|
|
79
|
A primer-free method that selects high-affinity single-stranded DNA aptamers using thermostable RNA ligase. Anal Biochem 2011; 414:246-53. [PMID: 21420926 DOI: 10.1016/j.ab.2011.03.018] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2011] [Revised: 03/11/2011] [Accepted: 03/15/2011] [Indexed: 11/22/2022]
Abstract
This article describes a method for selecting single-stranded DNA (ssDNA) molecules that bind with high-affinity aptamers to specific target proteins. This SELEX (systematic evolution of ligands by exponential enrichment) method is similar to other "primer-free" approaches where the random sequence ssDNA starting pool has no fixed sequences at the 5' and 3' termini. Therefore, there are no predetermined sequences that could bias selection. Like other SELEX methods, repeated cycles (typically 5-15) of selection and then amplification and reselection are used. The method differs from other primer-free approaches in that the key step for regenerating new material for subsequent rounds is ligation of the selected ssDNA to a defined sequence oligonucleotide using thermostable RNA ligase. Under specific conditions, this ligase ligated 30-nt random sequence ssDNA (5'-N(30)-3') to a specified 20-nt ssDNA with approximately 50% efficiency. Efficiency was improved to approximately 90% by the addition of a single T residue to the 3' end (5'-N(29)T-3'). High efficiency in this step is critical, especially early in the procedure because any selected material that is not ligated is lost. In this study, human immunodeficiency virus reverse transcriptase was used as the target protein, but the method could be applied to essentially any protein.
Collapse
|
80
|
Lau PS, Coombes BK, Li Y. A general approach to the construction of structure-switching reporters from RNA aptamers. Angew Chem Int Ed Engl 2011; 49:7938-42. [PMID: 20845339 DOI: 10.1002/anie.201002621] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Pui Sai Lau
- Department of Biochemistry and Biomedical Sciences, McMaster University, 1200 Main St. W., Hamilton, ON L8N 3Z5, Canada
| | | | | |
Collapse
|
81
|
Zhang J, Chen P, Wu X, Chen J, Xu L, Chen G, Fu F. A signal-on electrochemiluminescence aptamer biosensor for the detection of ultratrace thrombin based on junction-probe. Biosens Bioelectron 2010; 26:2645-50. [PMID: 21146976 DOI: 10.1016/j.bios.2010.11.028] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2010] [Revised: 11/18/2010] [Accepted: 11/19/2010] [Indexed: 11/18/2022]
Abstract
A novel signal-on junction-probe electrogenerated chemiluminescence (ECL) aptamer biosensor has been developed for the detection of ultratrace thrombin based on a structure-switching ECL-quenching mechanism. The ECL aptamer biosensor comprises two main parts: an ECL substrate and an ECL intensity switch. The ECL substrate was made by modifying the complex of Au nanoparticle and ruthenium (II) tris-bipyridine (Ru(bpy)(3)(2+)-AuNPs) on the surface of gold electrode (GE), and the ECL intensity switch contains three probes designed according to the "junction-probe" strategy. The first probe is capture probe (Cp) which was functionalized with a thiol group at one end and covalently attached to Ru(bpy)(3)(2+)-AuNPs modified GE through S-Au bonding. The second probe is aptamer probe (Ap), which containing 15-base anti-thrombin DNA aptamer. The third one is ferrocene-labeled probe (Fp), which was functionalized with ferrocene tag at one end. We demonstrated that, in the absence of thrombin, Cp, Ap and Fp will hybridize to form a ternary "Y" junction structure and resulted in a quenching of ECL of Ru(bpy)(3)(2+). Whereas, in the presence of thrombin, the Ap prefers to form the G-quadruplex aptamer-thrombin complex and lead to an obvious recovery of ECL of Ru(bpy)(3)(2+), which provided a sensing platform for the detection of thrombin. Using this reusable sensing platform, a simple, rapid and selective signal-on ECL aptamer biosensor for the detection of thrombin with a detection limit of 8.0×10(-15) M has been developed. The success in the present biosensor served as a significant step towards the development of monitoring ultratrace thrombin in clinical detection.
Collapse
Affiliation(s)
- Jing Zhang
- Key Lab of Analysis and Detection for Food Safety of Ministry of Education, Department of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | | | | | | | | | | | | |
Collapse
|
82
|
Huang PJJ, Liu J. Flow cytometry-assisted detection of adenosine in serum with an immobilized aptamer sensor. Anal Chem 2010; 82:4020-6. [PMID: 20405823 DOI: 10.1021/ac9028505] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Aptamers are single-stranded nucleic acids that can selectively bind to essentially any molecule of choice. Because of their high stability, low cost, ease of modification, and availability through selection, aptamers hold great promise in addressing key challenges in bioanalytical chemistry. In the past 15 years, many highly sensitive fluorescent aptamer sensors have been reported. However, few such sensors showed high performance in serum samples. Further challenges related to practical applications include detection in a very small sample volume and a low dependence of sensor performance on ionic strength. We report the immobilization of an aptamer sensor on a magnetic microparticle and the use of flow cytometry for detection. Flow cytometry allows the detection of individual particles in a capillary and can effectively reduce the light scattering effect of serum. Since DNA immobilization generated a highly negatively charged surface and caused an enrichment of counterions, the sensor performance showed a lower salt dependence. The detection limits for adenosine are determined to be 178 microM in buffer and 167 microM in 30% serum. Finally, we demonstrated that the detection can be carried out in 10 microL of 90% human blood serum.
Collapse
Affiliation(s)
- Po-Jung Jimmy Huang
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario, N2L 3G1, Canada
| | | |
Collapse
|
83
|
Lau PS, Coombes BK, Li Y. A General Approach to the Construction of Structure-Switching Reporters from RNA Aptamers. Angew Chem Int Ed Engl 2010. [DOI: 10.1002/ange.201002621] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
84
|
Li B, Dong S, Wang E. Homogeneous analysis: label-free and substrate-free aptasensors. Chem Asian J 2010; 5:1262-72. [PMID: 20408164 DOI: 10.1002/asia.200900660] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In this Focus Review, we introduce a kind of "label-free" and "substrate-free" (LFSF) aptasensor that carries out the whole sensing process in a homogeneous solution. This means that commonly used covalent label; separation, and immobilization steps in biosensors are successfully avoided, which simplifies the sensing operations to the greatest degree. After brief description about the advantages of aptamers and "LFSF" aptasensors, the main content of the review is divided into fluorescent aptasenors, calorimetric aptasensors, and hemin-aptamer-DNAzyme "LFSF" aptasensors, which are three most widely developed sensing systems in this field. It is hoped that this review can provide an overall scene about how aptamers function as ideal recognition elements in smart analysis.
Collapse
Affiliation(s)
- Bingling Li
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022 P. R. China
| | | | | |
Collapse
|
85
|
Abstract
Aptamers are nucleic acid sequences synthesized through in vitro selection and amplification technique, possessing a broader range of applications in therapeutics, biosensing, diagnostics, and research. Aptamers offer a number of advantages over their antibodies counterpart, one of them is their ability to undergo chemical derivatization to increase their life in the body fluids and bioavailability in animals. Although aptamers were discovered in 1990s, they have become one of the most widely investigated molecules, with a huge number of publications in the last decade. This article presents an overview of the advancements that have been made in aptamers. We mainly focused on articles published since 2005.
Collapse
Affiliation(s)
- Muhammad Ali Syed
- Department of Biosciences, Comsats Institute of Information Technology, Islamabad, Pakistan.
| | | |
Collapse
|
86
|
Zhou J, Battig MR, Wang Y. Aptamer-based molecular recognition for biosensor development. Anal Bioanal Chem 2010; 398:2471-80. [PMID: 20644915 DOI: 10.1007/s00216-010-3987-y] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2010] [Revised: 06/21/2010] [Accepted: 06/29/2010] [Indexed: 11/30/2022]
Abstract
Nucleic acid aptamers are an emerging class of synthetic ligands and have recently attracted significant attention in numerous fields. One is in biosensor development. In principle, nucleic acid aptamers can be discovered to recognize any molecule of interest with high affinity and specificity. In addition, unlike most ligands evolved in nature, synthetic nucleic acid aptamers are usually tolerant of harsh chemical, physical, and biological conditions. These distinguished characteristics make aptamers attractive molecular recognition ligands for biosensing applications. This review first concisely introduces methods for aptamer discovery including upstream selection and downstream truncation, then discusses aptamer-based biosensor development from the viewpoint of signal production.
Collapse
Affiliation(s)
- Jing Zhou
- Department of Chemical, Materials and Biomolecular Engineering, University of Connecticut, 191 Auditorium Road, Storrs, CT 06269-3222, USA
| | | | | |
Collapse
|
87
|
|
88
|
Han K, Liang Z, Zhou N. Design strategies for aptamer-based biosensors. SENSORS 2010; 10:4541-57. [PMID: 22399891 PMCID: PMC3292130 DOI: 10.3390/s100504541] [Citation(s) in RCA: 173] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2010] [Revised: 04/01/2010] [Accepted: 04/04/2010] [Indexed: 11/16/2022]
Abstract
Aptamers have been widely used as recognition elements for biosensor construction, especially in the detection of proteins or small molecule targets, and regarded as promising alternatives for antibodies in bioassay areas. In this review, we present an overview of reported design strategies for the fabrication of biosensors and classify them into four basic modes: target-induced structure switching mode, sandwich or sandwich-like mode, target-induced dissociation/displacement mode and competitive replacement mode. In view of the unprecedented advantages brought about by aptamers and smart design strategies, aptamer-based biosensors are expected to be one of the most promising devices in bioassay related applications.
Collapse
Affiliation(s)
- Kun Han
- Department of Biochemistry and National Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210093, China
- Suzhou Institute of Biomedical Engineering Technology, Chinese Academy of Science, Suzhou 215163, China; E-Mail:
| | - Zhiqiang Liang
- Laboratory of Biosensing Technology, School of Life Sciences, Shanghai University, Shanghai 200444, China; E-Mail:
| | - Nandi Zhou
- Department of Biochemistry and National Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210093, China
- School of Biotechnology and the Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +86-510-8591-8116; Fax: +86-510-8591-8116
| |
Collapse
|
89
|
Lubin AA, Plaxco KW. Folding-based electrochemical biosensors: the case for responsive nucleic acid architectures. Acc Chem Res 2010; 43:496-505. [PMID: 20201486 DOI: 10.1021/ar900165x] [Citation(s) in RCA: 382] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Biomolecular recognition is versatile, specific, and high affinity, qualities that have motivated decades of research aimed at adapting biomolecules into a general platform for molecular sensing. Despite significant effort, however, so-called "biosensors" have almost entirely failed to achieve their potential as reagentless, real-time analytical devices; the only quantitative, reagentless biosensor to achieve commercial success so far is the home glucose monitor, employed by millions of diabetics. The fundamental stumbling block that has precluded more widespread success of biosensors is the failure of most biomolecules to produce an easily measured signal upon target binding. Antibodies, for example, do not change their shape or dynamics when they bind their recognition partners, nor do they emit light or electrons upon binding. It has thus proven difficult to transduce biomolecular binding events into a measurable output signal, particularly one that is not readily spoofed by the binding of any of the many potentially interfering species in typical biological samples. Analytical approaches based on biomolecular recognition are therefore mostly cumbersome, multistep processes relying on analyte separation and isolation (such as Western blots, ELISA, and other immunochemical methods); these techniques have proven enormously useful, but are limited almost exclusively to laboratory settings. In this Account, we describe how we have refined a potentially general solution to the problem of signal detection in biosensors, one that is based on the binding-induced "folding" of electrode-bound DNA probes. That is, we have developed a broad new class of biosensors that employ electrochemistry to monitor binding-induced changes in the rigidity of a redox-tagged probe DNA that has been site-specifically attached to an interrogating electrode. These folding-based sensors, which have been generalized to a wide range of specific protein, nucleic acid, and small-molecule targets, are rapid (responding in seconds to minutes), sensitive (detecting sub-picomolar to micromolar concentrations), and reagentless. They are also greater than 99% reusable, are supported on micrometer-scale electrodes, and are readily fabricated into densely packed sensor arrays. Finally, and critically, their signaling is linked to a binding-specific change in the physics of the probe DNA, and not simply to adsorption of the target onto the sensor head. Accordingly, they are selective enough to be employed directly in blood, crude soil extracts, cell lysates, and other grossly contaminated clinical and environmental samples. Indeed, we have recently demonstrated the ability to quantitatively monitor a specific small molecule in real-time directly in microliters of flowing, unmodified blood serum. Because of their sensitivity, substantial background suppression, and operational convenience, these folding-based biosensors appear potentially well suited for electronic, on-chip applications in pathogen detection, proteomics, metabolomics, and drug discovery.
Collapse
Affiliation(s)
| | - Kevin W. Plaxco
- Department of Chemistry and Biochemistry
- Biomolecular Science and Engineering Program
| |
Collapse
|
90
|
Fang J, Yu L, Gao P, Cai Y, Wei Y. Detection of protein–DNA interaction and regulation using gold nanoparticles. Anal Biochem 2010; 399:262-7. [DOI: 10.1016/j.ab.2009.11.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2009] [Revised: 11/09/2009] [Accepted: 11/11/2009] [Indexed: 10/20/2022]
|
91
|
Rich RL, Myszka DG. Grading the commercial optical biosensor literature-Class of 2008: 'The Mighty Binders'. J Mol Recognit 2010; 23:1-64. [PMID: 20017116 DOI: 10.1002/jmr.1004] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Optical biosensor technology continues to be the method of choice for label-free, real-time interaction analysis. But when it comes to improving the quality of the biosensor literature, education should be fundamental. Of the 1413 articles published in 2008, less than 30% would pass the requirements for high-school chemistry. To teach by example, we spotlight 10 papers that illustrate how to implement the technology properly. Then we grade every paper published in 2008 on a scale from A to F and outline what features make a biosensor article fabulous, middling or abysmal. To help improve the quality of published data, we focus on a few experimental, analysis and presentation mistakes that are alarmingly common. With the literature as a guide, we want to ensure that no user is left behind.
Collapse
Affiliation(s)
- Rebecca L Rich
- Center for Biomolecular Interaction Analysis, University of Utah, Salt Lake City, UT 84132, USA
| | | |
Collapse
|
92
|
Design strategies of fluorescent biosensors based on biological macromolecular receptors. SENSORS 2010; 10:1355-76. [PMID: 22205872 PMCID: PMC3244018 DOI: 10.3390/s100201355] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2010] [Revised: 01/29/2010] [Accepted: 02/04/2010] [Indexed: 11/17/2022]
Abstract
Fluorescent biosensors to detect the bona fide events of biologically important molecules in living cells are increasingly demanded in the field of molecular cell biology. Recent advances in the development of fluorescent biosensors have made an outstanding contribution to elucidating not only the roles of individual biomolecules, but also the dynamic intracellular relationships between these molecules. However, rational design strategies of fluorescent biosensors are not as mature as they look. An insatiable request for the establishment of a more universal and versatile strategy continues to provide an attractive alternative, so-called modular strategy, which permits facile preparation of biosensors with tailored characteristics by a simple combination of a receptor and a signal transducer. This review describes an overview of the progress in design strategies of fluorescent biosensors, such as auto-fluorescent protein-based biosensors, protein-based biosensors covalently modified with synthetic fluorophores, and signaling aptamers, and highlights the insight into how a given receptor is converted to a fluorescent biosensor. Furthermore, we will demonstrate a significance of the modular strategy for the sensor design.
Collapse
|
93
|
Endo K, Nakamura Y. A binary Cy3 aptamer probe composed of folded modules. Anal Biochem 2010; 400:103-9. [PMID: 20093103 DOI: 10.1016/j.ab.2010.01.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2009] [Accepted: 01/11/2010] [Indexed: 10/19/2022]
Abstract
Aptamers are short single-stranded DNA or RNA sequences that are selected in vitro based on their high affinity to a target molecule. Dye-binding aptamers are promising tools for real-time detection of not only DNA or RNA sequences but also proteins of interest both in vitro and in vivo. In this study, we aimed to isolate an RNA aptamer to Cy3, a widely used, membrane-permeant, and nontoxic fluorescent cyanine dye. Extensive selection of affinity RNA molecules to Cy3 yielded a unique sequence aptamer named Cy3_apt. The selected Cy3_apt was 83 nucleotides long and successfully shortened to 49 nucleotides long with increased affinity to Cy3 by multiple base changes. The shortest Cy3_apt is composed of two separate hairpin modules that are required for the affinity to Cy3 as monitored by the surface plasmon resonance (SPR) assay. Also, the fluorescence of Cy3 increased on binding to Cy3_apt. The two modules of Cy3_apt, when detached from each other, functioned as a binary aptamer probe. We demonstrate that the binary Cy3_apt probe is applicable to the detection of target oligonucleotides or RNA-RNA interaction by tagging with target sequences. This binary probe consists of two folded modules, referred to as a folded binary probe.
Collapse
Affiliation(s)
- Kei Endo
- Department of Basic Medical Sciences, Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo 108-8639, Japan
| | | |
Collapse
|
94
|
Xu W, Lu Y. Label-free fluorescent aptamer sensor based on regulation of malachite green fluorescence. Anal Chem 2010; 82:574-8. [PMID: 20017558 PMCID: PMC2821951 DOI: 10.1021/ac9018473] [Citation(s) in RCA: 118] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We report a label-free fluorescent aptamer sensor for adenosine based on the regulation of malachite green (MG) fluorescence, with comparable sensitivity and selectivity to other labeled adenosine aptamer-based sensors. The sensor consists of free MG, an aptamer strand containing an adenosine aptamer next to an MG aptamer, and a bridging strand that partially hybridizes to the aptamer strand. Such a hybridization prevents MG from binding to MG aptamer, resulting in low fluorescence of MG in the absence of adenosine. Addition of adenosine causes the adenosine aptamer to bind adenosine, weakening the hybridization of the aptamer strand with the bridging strand, making it possible for MG to bind to the aptamer strand and exhibit high fluorescence intensity. Since this design is based purely on nucleic acid hybridization, it can be generally applied to other aptamers for the label-free detection of a broad range of analytes.
Collapse
Affiliation(s)
- Weichen Xu
- Department of Chemistry, University of Illinois, 600 S Mathews Avenue, Urbana, Illinois 61801, USA
| | | |
Collapse
|
95
|
Yadav R, Dwivedi S, Kumar S, Chaudhury A. Trends and Perspectives of Biosensors for Food and Environmental Virology. FOOD AND ENVIRONMENTAL VIROLOGY 2010; 2. [PMCID: PMC7090531 DOI: 10.1007/s12560-010-9034-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Food and environmental virology has become a very important and interesting area of research because of food safety and public health concerns. During the last few decades, increasing foodborne diseases and environmental generated illnesses are considered to be highly challenging issues. Biosensor technology holds great promise for the healthcare market, and the security sector. Similar to clinical diagnostic tools, biosensors are being developed for the rapid, reliable, yet inexpensive identification and enumeration of pathogenic viruses which are adulterating environment, food and feed commodities. In this modern era, bio-and nano-technologies play a pivotal role in virological diagnostics of food industry, environmental and veterinary samples. This review covers the recent advances and future prospects of nanotechnology-based bioanalytical microsystems for food and environmental virology.
Collapse
Affiliation(s)
- Rakesh Yadav
- Department of Bio and Nano Technology, Guru Jambheshwar University of Science and Technology, Hisar, 125001 Haryana India
| | - Sadhana Dwivedi
- Department of Bio and Nano Technology, Guru Jambheshwar University of Science and Technology, Hisar, 125001 Haryana India
| | - Sandeep Kumar
- Division of Biochemistry, Directorate of Rapeseed-Mustard Research, ICAR, Sewar, Bharatpur, 321303 Rajasthan India
| | - Ashok Chaudhury
- Department of Bio and Nano Technology, Guru Jambheshwar University of Science and Technology, Hisar, 125001 Haryana India
| |
Collapse
|
96
|
Null EL, Lu Y. Rapid determination of enantiomeric ratio using fluorescent DNA or RNA aptamers. Analyst 2009; 135:419-22. [PMID: 20098779 DOI: 10.1039/b921267a] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The natural chirality of DNA and RNA aptamers has been used to develop fluorescent agents to determine the enantiomeric ratio of adenosine and arginine, respectively. The quantification is based on structure-switching DNA or RNA aptamers labeled with fluorophore and quencher, allowing chiral detection down to 0.1 : 99.9 (L : D) for arginine after calibration. Such a method provides a general platform for simple, low-cost and high throughput detection and quantification of chirality of a broad range of molecules.
Collapse
Affiliation(s)
- Eric L Null
- Department of Chemistry, University of Illinois at Urbana-Champaign Urbana, IL 61801, USA
| | | |
Collapse
|
97
|
Chiu TC, Huang CC. Aptamer-functionalized nano-biosensors. SENSORS 2009; 9:10356-88. [PMID: 22303178 PMCID: PMC3267226 DOI: 10.3390/s91210356] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2009] [Revised: 12/03/2009] [Accepted: 12/03/2009] [Indexed: 12/12/2022]
Abstract
Nanomaterials have become one of the most interesting sensing materials because of their unique size- and shape-dependent optical properties, high surface energy and surface-to-volume ratio, and tunable surface properties. Aptamers are oligonucleotides that can bind their target ligands with high affinity. The use of nanomaterials that are bioconjugated with aptamers for selective and sensitive detection of analytes such as small molecules, metal ions, proteins, and cells has been demonstrated. This review focuses on recent progress in the development of biosensors by integrating functional aptamers with different types of nanomaterials, including quantum dots, magnetic nanoparticles (NPs), metallic NPs, and carbon nanotubes. Colorimetry, fluorescence, electrochemistry, surface plasmon resonance, surface-enhanced Raman scattering, and magnetic resonance imaging are common detection modes for a broad range of analytes with high sensitivity and selectivity when using aptamer bioconjugated nanomaterials (Apt-NMs). We highlight the important roles that the size and concentration of nanomaterials, the secondary structure and density of aptamers, and the multivalent interactions play in determining the specificity and sensitivity of the nanosensors towards analytes. Advantages and disadvantages of the Apt-NMs for bioapplications are focused.
Collapse
Affiliation(s)
- Tai-Chia Chiu
- Department of Applied Science, National Taitung University, 684, Section 1, Chunghua Road, Taitung, 95002, Taiwan
- Authors to whom correspondence should be addressed; E-Mails: (T.C.C.); (C.C.H.); Tel.: +886-89-318855 Ext. 3801; Fax: +886-89-342-539
| | - Chih-Ching Huang
- Institute of Bioscience and Biotechnology, National Taiwan Ocean University, 2 Beining Road, Keelung, 20224, Taiwan
- Authors to whom correspondence should be addressed; E-Mails: (T.C.C.); (C.C.H.); Tel.: +886-89-318855 Ext. 3801; Fax: +886-89-342-539
| |
Collapse
|
98
|
Ruta J, Perrier S, Ravelet C, Fize J, Peyrin E. Noncompetitive fluorescence polarization aptamer-based assay for small molecule detection. Anal Chem 2009; 81:7468-73. [PMID: 19630421 DOI: 10.1021/ac9014512] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
In this paper, a new fluorescence polarization (FP) assay strategy is described reporting the first demonstration of a noncompetitive FP technique dedicated to the small molecule sensing. This approach was based on the unique induced-fit binding mechanism of nucleic acid aptamers which was exploited to convert the small target binding event into a detectable fluorescence anisotropy signal. An anti-L-tyrosinamide DNA aptamer, labeled by a single fluorescent dye at its extremity, was employed as a model functional nucleic acid probe. The DNA conformational change generated by the L-tyrosinamide binding was able to induce a significant increase in the fluorescence anisotropy signal. The method allowed enantioselective sensing of tyrosinamide and analysis in practical samples. The methodology was also applied to the L-argininamide detection, suggesting the potential generalizability of the direct FP-based strategy. Such aptamer-based assay appeared to be a sensitive analytical system of remarkable simplicity and ease of use.
Collapse
Affiliation(s)
- Josephine Ruta
- Département de Pharmacochimie Moléculaire UMR 5063, Institut de Chimie Moléculaire de Grenoble FR 2607, CNRS-Université Grenoble I (Joseph Fourier), 38041 Grenoble cedex 9, France
| | | | | | | | | |
Collapse
|
99
|
Rational design and performance testing of aptamer-based electrochemical biosensors for adenosine. J Electroanal Chem (Lausanne) 2009. [DOI: 10.1016/j.jelechem.2009.08.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
100
|
Cheng AKH, Sen D, Yu HZ. Design and testing of aptamer-based electrochemical biosensors for proteins and small molecules. Bioelectrochemistry 2009; 77:1-12. [PMID: 19473883 DOI: 10.1016/j.bioelechem.2009.04.007] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2009] [Revised: 04/23/2009] [Accepted: 04/27/2009] [Indexed: 11/25/2022]
Abstract
The fabrication of aptamer-based electrochemical biosensors as an emerging technology has made the detection of small and macromolecular analytes easier, faster, and more suited for the ongoing transition from fundamental analytical science to the early detection of protein biomarkers. Aptamers are synthetic oligonucleotides that have undergone iterative rounds of in vitro selection for binding with high affinity to specific analytes of choice; a sensitive yet simple method to utilize aptamers as recognition entities for the development of biosensors is to transduce the signal electrochemically. In this review article, we attempt to summarize the state-of-the-art research progresses that have been published in recent years; in particular, we focus on the electrochemical biosensors that incorporate aptamers for sensing small organic molecules and proteins. Based on differences in the design of the DNA/RNA-modified electrodes, we classify aptamer-based electrochemical sensors into three categories, for which the analyte detection relies on: (a) configurational change, i.e., the analyte binding induces either an assembly or dissociation of the sensor construct; (b) conformational change, i.e., the analyte binding induces an alteration in the conformation (folding) of the surface immobilized aptamer strands; and (c) conductivity change, i.e., the analyte binding "switches on" the conductivity of the surface-bound aptamer-DNA constructs. In each section, we will discuss the performance of these novel biosensors with representative examples reported in recent literature.
Collapse
Affiliation(s)
- Alan K H Cheng
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia, Canada V5A 1S6
| | | | | |
Collapse
|