51
|
Dinan AM, Lukhovitskaya NI, Olendraite I, Firth AE. A case for a negative-strand coding sequence in a group of positive-sense RNA viruses. Virus Evol 2020; 6:veaa007. [PMID: 32064120 PMCID: PMC7010960 DOI: 10.1093/ve/veaa007] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Positive-sense single-stranded RNA viruses form the largest and most diverse group of eukaryote-infecting viruses. Their genomes comprise one or more segments of coding-sense RNA that function directly as messenger RNAs upon release into the cytoplasm of infected cells. Positive-sense RNA viruses are generally accepted to encode proteins solely on the positive strand. However, we previously identified a surprisingly long (∼1,000-codon) open reading frame (ORF) on the negative strand of some members of the family Narnaviridae which, together with RNA bacteriophages of the family Leviviridae, form a sister group to all other positive-sense RNA viruses. Here, we completed the genomes of three mosquito-associated narnaviruses, all of which have the long reverse-frame ORF. We systematically identified narnaviral sequences in public data sets from a wide range of sources, including arthropod, fungal, and plant transcriptomic data sets. Long reverse-frame ORFs are widespread in one clade of narnaviruses, where they frequently occupy >95 per cent of the genome. The reverse-frame ORFs correspond to a specific avoidance of CUA, UUA, and UCA codons (i.e. stop codon reverse complements) in the forward-frame RNA-dependent RNA polymerase ORF. However, absence of these codons cannot be explained by other factors such as inability to decode these codons or GC3 bias. Together with other analyses, we provide the strongest evidence yet of coding capacity on the negative strand of a positive-sense RNA virus. As these ORFs comprise some of the longest known overlapping genes, their study may be of broad relevance to understanding overlapping gene evolution and de novo origin of genes.
Collapse
Affiliation(s)
- Adam M Dinan
- Division of Virology, Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QP, UK
| | - Nina I Lukhovitskaya
- Division of Virology, Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QP, UK
| | - Ingrida Olendraite
- Division of Virology, Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QP, UK
| | - Andrew E Firth
- Division of Virology, Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QP, UK
| |
Collapse
|
52
|
A novel narnavirus from a Saccharomyces cerevisiae flor strain. Arch Virol 2020; 165:789-791. [PMID: 32002667 DOI: 10.1007/s00705-020-04539-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 12/31/2019] [Indexed: 12/17/2022]
Abstract
A novel virus of the genus Narnavirus, designated "Saccharomyces narnavirus I329" (ScNV-I329), was discovered in Saccharomyces cerevisiae strain I-329, which is used for industrial production of sherry-like wines. The genome of ScNV-I329 is 2509 nt in length with short terminal inverted repeats and a single open reading frame capable of encoding an RNA-dependent RNA polymerase most closely related to that of Saccharomyces 20S RNA narnavirus. This is the third known member of the genus Narnavirus from yeasts.
Collapse
|
53
|
DeRisi JL, Huber G, Kistler A, Retallack H, Wilkinson M, Yllanes D. An exploration of ambigrammatic sequences in narnaviruses. Sci Rep 2019; 9:17982. [PMID: 31784609 PMCID: PMC6884476 DOI: 10.1038/s41598-019-54181-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 11/11/2019] [Indexed: 11/09/2022] Open
Abstract
Narnaviruses have been described as positive-sense RNA viruses with a remarkably simple genome of ~3 kb, encoding only a highly conserved RNA-dependent RNA polymerase (RdRp). Many narnaviruses, however, are 'ambigrammatic' and harbour an additional uninterrupted open reading frame (ORF) covering almost the entire length of the reverse complement strand. No function has been described for this ORF, yet the absence of stops is conserved across diverse narnaviruses, and in every case the codons in the reverse ORF and the RdRp are aligned. The >3 kb ORF overlap on opposite strands, unprecedented among RNA viruses, motivates an exploration of the constraints imposed or alleviated by the codon alignment. Here, we show that only when the codon frames are aligned can all stop codons be eliminated from the reverse strand by synonymous single-nucleotide substitutions in the RdRp gene, suggesting a mechanism for de novo gene creation within a strongly conserved amino-acid sequence. It will be fascinating to explore what implications this coding strategy has for other aspects of narnavirus biology. Beyond narnaviruses, our rapidly expanding catalogue of viral diversity may yet reveal additional examples of this broadly-extensible principle for ambigrammatic-sequence development.
Collapse
Affiliation(s)
- Joseph L DeRisi
- Chan Zuckerberg Biohub, 499 Illinois Street, San Francisco, CA, 94158, USA
- Department of Biochemistry and Biophysics, University of California, San Francisco, California, USA
| | - Greg Huber
- Chan Zuckerberg Biohub, 499 Illinois Street, San Francisco, CA, 94158, USA
| | - Amy Kistler
- Chan Zuckerberg Biohub, 499 Illinois Street, San Francisco, CA, 94158, USA
| | - Hanna Retallack
- Department of Biochemistry and Biophysics, University of California, San Francisco, California, USA
| | - Michael Wilkinson
- Chan Zuckerberg Biohub, 499 Illinois Street, San Francisco, CA, 94158, USA
- School of Mathematics and Statistics, The Open University, Walton Hall, Milton Keynes, MK7 6AA, England
| | - David Yllanes
- Chan Zuckerberg Biohub, 499 Illinois Street, San Francisco, CA, 94158, USA.
| |
Collapse
|
54
|
Blair CD. Deducing the Role of Virus Genome-Derived PIWI-Associated RNAs in the Mosquito-Arbovirus Arms Race. Front Genet 2019; 10:1114. [PMID: 31850054 PMCID: PMC6901949 DOI: 10.3389/fgene.2019.01114] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 10/16/2019] [Indexed: 01/26/2023] Open
Abstract
The P-element-induced wimpy testis (PIWI)-associated RNA (piRNA) pathway is known for its role in the protection of genome integrity in the germline of Drosophila melanogaster by silencing transposable elements. The piRNAs that target transposons originate from piRNA clusters in transposon-rich regions of the Drosophila genome and are processed by three PIWI family proteins. In Aedes aegypti and Aedes albopictus mosquitoes, which are two of the most important vectors of arthropod-borne viruses (arboviruses), the number of PIWI family genes has expanded and some are expressed in somatic, as well as germline, tissues. These discoveries have led to active research to explore the possible expanded functional roles of the piRNA pathway in vector mosquitoes. Virus genome-derived piRNAs (which will be referred to as (virus name) vpiRNAs) have been demonstrated in Aedes spp. cultured cells and mosquitoes after infection by arthropod-borne alpha-, bunya-, and flaviviruses. However, although Culex quinquefasciatus also is an important arbovirus vector and has an expansion of PIWI family genes, vpiRNAs have seldom been documented in this genus after arbovirus infection. Generation of complementary DNA (cDNA) fragments from RNA genomes of alpha-, bunya-, and flaviviruses (viral-derived cDNAs, vDNAs) has been demonstrated in cultured Aedes spp. cells and mosquitoes, and endogenous viral elements (EVEs), cDNA fragments of non-retroviral RNA virus genomes, are found more abundantly in genomes of Ae. aegypti and Ae. albopictus than other vector mosquitoes. These observations have led to speculation that vDNAs are integrated into vector genomes to form EVEs, which serve as templates for the transcription of antiviral vpiRNA precursors. However, no EVEs derived from alphavirus genomes have been demonstrated in genomes of any vector mosquito. In addition, although EVEs have been shown to be a source of piRNAs, the preponderance of EVEs described in Aedes spp. vectors are more closely related to the genomes of persistently infecting insect-specific viruses than to acutely infecting arboviruses. Furthermore, the signature patterns of the “ping-pong” amplification cycle that maintains transposon-targeting piRNAs in Drosophila are also evident in alphavirus and bunyavirus vpiRNAs, but not in vpiRNAs of flaviviruses. These divergent observations have rendered deciphering the mechanism(s) of biogenesis and potential role of vpiRNAs in the mosquito–arbovirus arms race difficult, and the focus of this review will be to assemble major findings regarding vpiRNAs and antiviral immunity in the important arbovirus vectors from Aedes and Culex genera.
Collapse
Affiliation(s)
- Carol D Blair
- Arthropod-borne and Infectious Diseases Laboratory, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, United States
| |
Collapse
|
55
|
Fredericks AC, Russell TA, Wallace LE, Davidson AD, Fernandez-Sesma A, Maringer K. Aedes aegypti (Aag2)-derived clonal mosquito cell lines reveal the effects of pre-existing persistent infection with the insect-specific bunyavirus Phasi Charoen-like virus on arbovirus replication. PLoS Negl Trop Dis 2019; 13:e0007346. [PMID: 31693659 PMCID: PMC6860454 DOI: 10.1371/journal.pntd.0007346] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 11/18/2019] [Accepted: 10/24/2019] [Indexed: 01/12/2023] Open
Abstract
Background Aedes aegypti is a vector mosquito of major public health importance, transmitting arthropod-borne viruses (arboviruses) such as chikungunya, dengue, yellow fever and Zika viruses. Wild mosquito populations are persistently infected at high prevalence with insect-specific viruses that do not replicate in vertebrate hosts. In experimental settings, acute infections with insect-specific viruses have been shown to modulate arbovirus infection and transmission in Ae. aegypti and other vector mosquitoes. However, the impact of persistent insect-specific virus infections, which arboviruses encounter more commonly in nature, has not been investigated extensively. Cell lines are useful models for studying virus-host interactions, however the available Ae. aegypti cell lines are poorly defined and heterogenous cultures. Methodology/Principle findings We generated single cell-derived clonal cell lines from the commonly used Ae. aegypti cell line Aag2. Two of the fourteen Aag2-derived clonal cell lines generated harboured markedly and consistently reduced levels of the insect-specific bunyavirus Phasi Charoen-like virus (PCLV) known to persistently infect Aag2 cells. In contrast to studies with acute insect-specific virus infections in cell culture and in vivo, we found that pre-existing persistent PCLV infection had no major impact on the replication of the flaviviruses dengue virus and Zika virus, the alphavirus Sindbis virus, or the rhabdovirus vesicular stomatitis virus. We also performed a detailed characterisation of the morphology, transfection efficiency and immune status of our Aag2-derived clonal cell lines, and have made a clone that we term Aag2-AF5 available to the research community as a well-defined cell culture model for arbovirus-vector interaction studies. Conclusions/Significance Our findings highlight the need for further in vivo studies that more closely recapitulate natural arbovirus transmission settings in which arboviruses encounter mosquitoes harbouring persistent rather than acute insect-specific virus infections. Furthermore, we provide the well-characterised Aag2-derived clonal cell line as a valuable resource to the arbovirus research community. Mosquito-borne viruses usually only infect humans through the bite of a mosquito that carries the virus. Viruses transmitted by the ‘yellow fever mosquito’ Aedes aegypti, including dengue virus, Zika virus, yellow fever virus and chikungunya virus, are causing an ever-increasing number of human disease cases globally. Mosquito-borne viruses have to infect and replicate inside the mosquito before they are transmitted to humans, and the presence of other infectious agents can change the efficiency of virus transmission. Mosquitoes are known to be infected with ‘insect-specific viruses’ that only infect mosquitoes and cannot cause human disease. We have shown here that in laboratory cell cultures derived from the Aedes aegypti mosquito, pre-existing infection with an insect-specific virus called Phasi Charoen-like virus does not affect the infection and growth of the mosquito-borne viruses dengue virus, Zika virus, Sindbis virus or vesicular stomatitis virus. Our research provides important new insights into whether and how insect-specific viruses may affect mosquito-borne virus replication. Ultimately, this information could inform ongoing research into whether insect-specific viruses could be used to prevent the transmission of mosquito-borne viruses to reduce global disease burdens.
Collapse
Affiliation(s)
- Anthony C. Fredericks
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Tiffany A. Russell
- Department of Microbial Sciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| | - Louisa E. Wallace
- Department of Microbial Sciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| | - Andrew D. Davidson
- School of Cellular and Molecular Medicine, Faculty of Life Sciences, University of Bristol, Bristol, United Kingdom
| | - Ana Fernandez-Sesma
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- * E-mail: (AF-S); (KM)
| | - Kevin Maringer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- Department of Microbial Sciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
- School of Cellular and Molecular Medicine, Faculty of Life Sciences, University of Bristol, Bristol, United Kingdom
- * E-mail: (AF-S); (KM)
| |
Collapse
|
56
|
Fredericks AC, Russell TA, Wallace LE, Davidson AD, Fernandez-Sesma A, Maringer K. Aedes aegypti (Aag2)-derived clonal mosquito cell lines reveal the effects of pre-existing persistent infection with the insect-specific bunyavirus Phasi Charoen-like virus on arbovirus replication. PLoS Negl Trop Dis 2019; 13:e0007346. [PMID: 31693659 DOI: 10.1101/596205] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 11/18/2019] [Accepted: 10/24/2019] [Indexed: 05/20/2023] Open
Abstract
BACKGROUND Aedes aegypti is a vector mosquito of major public health importance, transmitting arthropod-borne viruses (arboviruses) such as chikungunya, dengue, yellow fever and Zika viruses. Wild mosquito populations are persistently infected at high prevalence with insect-specific viruses that do not replicate in vertebrate hosts. In experimental settings, acute infections with insect-specific viruses have been shown to modulate arbovirus infection and transmission in Ae. aegypti and other vector mosquitoes. However, the impact of persistent insect-specific virus infections, which arboviruses encounter more commonly in nature, has not been investigated extensively. Cell lines are useful models for studying virus-host interactions, however the available Ae. aegypti cell lines are poorly defined and heterogenous cultures. METHODOLOGY/PRINCIPLE FINDINGS We generated single cell-derived clonal cell lines from the commonly used Ae. aegypti cell line Aag2. Two of the fourteen Aag2-derived clonal cell lines generated harboured markedly and consistently reduced levels of the insect-specific bunyavirus Phasi Charoen-like virus (PCLV) known to persistently infect Aag2 cells. In contrast to studies with acute insect-specific virus infections in cell culture and in vivo, we found that pre-existing persistent PCLV infection had no major impact on the replication of the flaviviruses dengue virus and Zika virus, the alphavirus Sindbis virus, or the rhabdovirus vesicular stomatitis virus. We also performed a detailed characterisation of the morphology, transfection efficiency and immune status of our Aag2-derived clonal cell lines, and have made a clone that we term Aag2-AF5 available to the research community as a well-defined cell culture model for arbovirus-vector interaction studies. CONCLUSIONS/SIGNIFICANCE Our findings highlight the need for further in vivo studies that more closely recapitulate natural arbovirus transmission settings in which arboviruses encounter mosquitoes harbouring persistent rather than acute insect-specific virus infections. Furthermore, we provide the well-characterised Aag2-derived clonal cell line as a valuable resource to the arbovirus research community.
Collapse
Affiliation(s)
- Anthony C Fredericks
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Tiffany A Russell
- Department of Microbial Sciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| | - Louisa E Wallace
- Department of Microbial Sciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| | - Andrew D Davidson
- School of Cellular and Molecular Medicine, Faculty of Life Sciences, University of Bristol, Bristol, United Kingdom
| | - Ana Fernandez-Sesma
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Kevin Maringer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- Department of Microbial Sciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
- School of Cellular and Molecular Medicine, Faculty of Life Sciences, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
57
|
Göertz GP, van Bree JWM, Hiralal A, Fernhout BM, Steffens C, Boeren S, Visser TM, Vogels CBF, Abbo SR, Fros JJ, Koenraadt CJM, van Oers MM, Pijlman GP. Subgenomic flavivirus RNA binds the mosquito DEAD/H-box helicase ME31B and determines Zika virus transmission by Aedes aegypti. Proc Natl Acad Sci U S A 2019; 116:19136-19144. [PMID: 31488709 PMCID: PMC6754610 DOI: 10.1073/pnas.1905617116] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Zika virus (ZIKV) is an arthropod-borne flavivirus predominantly transmitted by Aedes aegypti mosquitoes and poses a global human health threat. All flaviviruses, including those that exclusively replicate in mosquitoes, produce a highly abundant, noncoding subgenomic flavivirus RNA (sfRNA) in infected cells, which implies an important function of sfRNA during mosquito infection. Currently, the role of sfRNA in flavivirus transmission by mosquitoes is not well understood. Here, we demonstrate that an sfRNA-deficient ZIKV (ZIKVΔSF1) replicates similar to wild-type ZIKV in mosquito cell culture but is severely attenuated in transmission by Ae. aegypti after an infectious blood meal, with 5% saliva-positive mosquitoes for ZIKVΔSF1 vs. 31% for ZIKV. Furthermore, viral titers in the mosquito saliva were lower for ZIKVΔSF1 as compared to ZIKV. Comparison of mosquito infection via infectious blood meals and intrathoracic injections showed that sfRNA is important for ZIKV to overcome the mosquito midgut barrier and to promote virus accumulation in the saliva. Next-generation sequencing of infected mosquitoes showed that viral small-interfering RNAs were elevated upon ZIKVΔSF1 as compared to ZIKV infection. RNA-affinity purification followed by mass spectrometry analysis uncovered that sfRNA specifically interacts with a specific set of Ae. aegypti proteins that are normally associated with RNA turnover and protein translation. The DEAD/H-box helicase ME31B showed the highest affinity for sfRNA and displayed antiviral activity against ZIKV in Ae. aegypti cells. Based on these results, we present a mechanistic model in which sfRNA sequesters ME31B to promote flavivirus replication and virion production to facilitate transmission by mosquitoes.
Collapse
Affiliation(s)
- Giel P Göertz
- Laboratory of Virology, Wageningen University & Research, 6708 PB, Wageningen, The Netherlands
| | - Joyce W M van Bree
- Laboratory of Virology, Wageningen University & Research, 6708 PB, Wageningen, The Netherlands
| | - Anwar Hiralal
- Laboratory of Virology, Wageningen University & Research, 6708 PB, Wageningen, The Netherlands
| | - Bas M Fernhout
- Laboratory of Virology, Wageningen University & Research, 6708 PB, Wageningen, The Netherlands
| | - Carmen Steffens
- Laboratory of Virology, Wageningen University & Research, 6708 PB, Wageningen, The Netherlands
| | - Sjef Boeren
- Laboratory of Biochemistry, Wageningen University & Research, 6708 WE, Wageningen, The Netherlands
| | - Tessa M Visser
- Laboratory of Entomology, Wageningen University & Research, 6708 PB, Wageningen, The Netherlands
| | - Chantal B F Vogels
- Laboratory of Entomology, Wageningen University & Research, 6708 PB, Wageningen, The Netherlands
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT 06510
| | - Sandra R Abbo
- Laboratory of Virology, Wageningen University & Research, 6708 PB, Wageningen, The Netherlands
| | - Jelke J Fros
- Laboratory of Virology, Wageningen University & Research, 6708 PB, Wageningen, The Netherlands
| | | | - Monique M van Oers
- Laboratory of Virology, Wageningen University & Research, 6708 PB, Wageningen, The Netherlands
| | - Gorben P Pijlman
- Laboratory of Virology, Wageningen University & Research, 6708 PB, Wageningen, The Netherlands;
| |
Collapse
|
58
|
Agboli E, Leggewie M, Altinli M, Schnettler E. Mosquito-Specific Viruses-Transmission and Interaction. Viruses 2019; 11:v11090873. [PMID: 31533367 PMCID: PMC6784079 DOI: 10.3390/v11090873] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 09/10/2019] [Accepted: 09/12/2019] [Indexed: 02/06/2023] Open
Abstract
Mosquito-specific viruses (MSVs) are a subset of insect-specific viruses that are found to infect mosquitoes or mosquito derived cells. There has been an increase in discoveries of novel MSVs in recent years. This has expanded our understanding of viral diversity and evolution but has also sparked questions concerning the transmission of these viruses and interactions with their hosts and its microbiome. In fact, there is already evidence that MSVs interact with the immune system of their host. This is especially interesting, since mosquitoes can be infected with both MSVs and arthropod-borne (arbo) viruses of public health concern. In this review, we give an update on the different MSVs discovered so far and describe current data on their transmission and interaction with the mosquito immune system as well as the effect MSVs could have on an arboviruses-co-infection. Lastly, we discuss potential uses of these viruses, including vector and transmission control.
Collapse
Affiliation(s)
- Eric Agboli
- Molecular Entomology, Molecular Biology and Immunology Department, Bernhard Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany.
- Department of Epidemiology and Biostatistics, School of Public Health, University of Health and Allied Sciences, Ho PMB 31, Ghana.
| | - Mayke Leggewie
- Molecular Entomology, Molecular Biology and Immunology Department, Bernhard Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany.
- German Centre for Infection research (DZIF), partner site Hamburg-Lübeck-Borstel-Riems, 20359 Hamburg, Germany.
| | - Mine Altinli
- Molecular Entomology, Molecular Biology and Immunology Department, Bernhard Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany.
- German Centre for Infection research (DZIF), partner site Hamburg-Lübeck-Borstel-Riems, 20359 Hamburg, Germany.
| | - Esther Schnettler
- Molecular Entomology, Molecular Biology and Immunology Department, Bernhard Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany.
- German Centre for Infection research (DZIF), partner site Hamburg-Lübeck-Borstel-Riems, 20359 Hamburg, Germany.
| |
Collapse
|
59
|
Cell-Fusing Agent Virus Reduces Arbovirus Dissemination in Aedes aegypti Mosquitoes In Vivo. J Virol 2019; 93:JVI.00705-19. [PMID: 31243123 PMCID: PMC6714787 DOI: 10.1128/jvi.00705-19] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Accepted: 04/29/2019] [Indexed: 01/22/2023] Open
Abstract
The mosquito Aedes aegypti carries several arthropod-borne viruses (arboviruses) that are pathogenic to humans, including dengue and Zika viruses. Interestingly, A. aegypti is also naturally infected with insect-only viruses, such as cell-fusing agent virus. Although interactions between cell-fusing agent virus and dengue virus have been documented in mosquito cells in culture, whether wild strains of cell-fusing agent virus interfere with arbovirus transmission by live mosquitoes was unknown. We used an experimental approach to demonstrate that cell-fusing agent virus infection reduces the propagation of dengue and Zika viruses in A. aegypti mosquitoes. These results support the idea that insect-only viruses in nature can modulate the ability of mosquitoes to carry arboviruses of medical significance and that they could possibly be manipulated to reduce arbovirus transmission. Aedes aegypti mosquitoes are the main vectors of arthropod-borne viruses (arboviruses) of public health significance, such as the flaviviruses dengue virus (DENV) and Zika virus (ZIKV). Mosquitoes are also the natural hosts of a wide range of viruses that are insect specific, raising the question of their influence on arbovirus transmission in nature. Cell-fusing agent virus (CFAV) was the first described insect-specific flavivirus, initially discovered in an A. aegypti cell line and subsequently detected in natural A. aegypti populations. It was recently shown that DENV and the CFAV strain isolated from the A. aegypti cell line have mutually beneficial interactions in mosquito cells in culture. However, whether natural strains of CFAV and DENV interact in live mosquitoes is unknown. Using a wild-type CFAV isolate recently derived from Thai A. aegypti mosquitoes, we found that CFAV negatively interferes with both DENV type 1 and ZIKV in vitro and in vivo. For both arboviruses, prior infection by CFAV reduced the dissemination titer in mosquito head tissues. Our results indicate that the interactions observed between arboviruses and the CFAV strain derived from the cell line might not be a relevant model of the viral interference that we observed in vivo. Overall, our study supports the hypothesis that insect-specific flaviviruses may contribute to reduce the transmission of human-pathogenic flaviviruses. IMPORTANCE The mosquito Aedes aegypti carries several arthropod-borne viruses (arboviruses) that are pathogenic to humans, including dengue and Zika viruses. Interestingly, A. aegypti is also naturally infected with insect-only viruses, such as cell-fusing agent virus. Although interactions between cell-fusing agent virus and dengue virus have been documented in mosquito cells in culture, whether wild strains of cell-fusing agent virus interfere with arbovirus transmission by live mosquitoes was unknown. We used an experimental approach to demonstrate that cell-fusing agent virus infection reduces the propagation of dengue and Zika viruses in A. aegypti mosquitoes. These results support the idea that insect-only viruses in nature can modulate the ability of mosquitoes to carry arboviruses of medical significance and that they could possibly be manipulated to reduce arbovirus transmission.
Collapse
|
60
|
Zhao L, Mwaliko C, Atoni E, Wang Y, Zhang Y, Zhan J, Hu X, Xia H, Yuan Z. Characterization of a Novel Tanay Virus Isolated From Anopheles sinensis Mosquitoes in Yunnan, China. Front Microbiol 2019; 10:1963. [PMID: 31507570 PMCID: PMC6714596 DOI: 10.3389/fmicb.2019.01963] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 08/09/2019] [Indexed: 12/13/2022] Open
Abstract
Globally, mosquitoes are known to be competent vectors to various arboviruses that cause serious and debilitating diseases to humans and animals. Conversely, mosquitoes harbor a wide array of insect specific viruses (ISVs) that are generally neglected. Extensive characterization of these ISVs is important in understanding their persistence infection effect on host behavior and arbovirus transmission. Herein, we report first time isolation of Tanay virus (TANAV) isolate YN15_103_01 in Anopheles sinensis mosquitoes from Yunnan Province, China. Phylogenetically, the isolate’s nucleotide identity had more than 14.47% variance compared to previous TANAV isolates, and it clustered into an independent branch within the genus Sandewavirus in the newly proposed taxon Negevirus. TANAV growth and high titers was attained in Aag2 cells (107 PFU/mL) but with no CPE observed up to 7 days.p.i. compared to C6/36 cells that exhibited extensive CPE at 48 h.p.i. with titers of 107 PFU/mL. Contrarywise, the viral isolate did not replicate in vertebrate cell lines. Electron microscopy analyses showed that its final maturation process takes place in the cell cytoplasm. Notably, the predicted viral proteins were verified to be corresponding to the obtained SDS-PAGE protein bands. Our findings advance forth new and vital knowledge important in understanding insect specific viruses, especially TANAV.
Collapse
Affiliation(s)
- Lu Zhao
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Caroline Mwaliko
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Evans Atoni
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yujuan Wang
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yunzhi Zhang
- Yunnan Institute of Endemic Disease Control and Prevention, Dali, China
| | - Jianbo Zhan
- Division for Viral Disease with Detection, Hubei Provincial Center for Disease Control and Prevention, Wuhan, China
| | - Xiaomin Hu
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Han Xia
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Zhiming Yuan
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| |
Collapse
|
61
|
Kolliopoulou A, Santos D, Taning CNT, Wynant N, Vanden Broeck J, Smagghe G, Swevers L. PIWI pathway against viruses in insects. WILEY INTERDISCIPLINARY REVIEWS-RNA 2019; 10:e1555. [PMID: 31183996 DOI: 10.1002/wrna.1555] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 05/06/2019] [Accepted: 05/07/2019] [Indexed: 12/26/2022]
Abstract
Piwi-interacting RNAs (piRNAs) are an animal-specific class of small non-coding RNAs that are generated via a biogenesis pathway distinct from small interfering RNAs (siRNAs) and microRNAs (miRNAs). There are variations in piRNA biogenesis that depend on several factors, such as the cell type (germline or soma), the organism, and the purpose for which they are being produced, such as transposon-targeting, viral-targeting, or gene-derived piRNAs. Interestingly, the genes involved in the PIWI/piRNA pathway are more rapidly evolving compared with other RNA interference (RNAi) genes. In this review, the role of the piRNA pathway in the antiviral response is reviewed based on recent findings in insect models such as Drosophila, mosquitoes, midges and the silkworm, Bombyx mori. We extensively discuss the special features that characterize host-virus piRNA responses with respect to the proteins and the genes involved, the viral piRNAs' sequence characteristics, the target strand orientation biases as well as the viral piRNA target hotspots across the viral genomes. This article is categorized under: Regulatory RNAs/RNAi/Riboswitches > RNAi: Mechanisms of Action Regulatory RNAs/RNAi/Riboswitches > Biogenesis of Effector Small RNAs.
Collapse
Affiliation(s)
- Anna Kolliopoulou
- Insect Molecular Genetics and Biotechnology, Institute of Biosciences and Applications, National Centre for Scientific Research "Demokritos", Athens, Greece
| | - Dulce Santos
- Molecular Developmental Physiology and Signal Transduction Research Group, Animal Physiology and Neurobiology Division, Department of Biology, KU Leuven, Leuven, Belgium
| | - Clauvis Nji Tizi Taning
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Niels Wynant
- Molecular Developmental Physiology and Signal Transduction Research Group, Animal Physiology and Neurobiology Division, Department of Biology, KU Leuven, Leuven, Belgium
| | - Jozef Vanden Broeck
- Molecular Developmental Physiology and Signal Transduction Research Group, Animal Physiology and Neurobiology Division, Department of Biology, KU Leuven, Leuven, Belgium
| | - Guy Smagghe
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Luc Swevers
- Insect Molecular Genetics and Biotechnology, Institute of Biosciences and Applications, National Centre for Scientific Research "Demokritos", Athens, Greece
| |
Collapse
|