53
|
Li P, Huang Z, Wang J, Chen W, Huang J. Ubiquitin-specific peptidase 28 enhances STAT3 signaling and promotes cell growth in non-small-cell lung cancer. Onco Targets Ther 2019; 12:1603-1611. [PMID: 30881015 PMCID: PMC6396656 DOI: 10.2147/ott.s194917] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND AND OBJECTIVES Ubiquitin-specific peptidase 28 (USP28) has been reported to play significant roles in several tumors, but its roles in non-small-cell lung cancer (NSCLC) is still unknown. In this study, we aimed to investigate the biological function and molecular mechanisms of USP28 in NSCLC. MATERIALS AND METHODS Immunoblotting analysis was used to detect relative proteins' expression. Luciferase assay was performed to explore the activation of signal transducer and activator of transcription 3 (STAT3). Immunoprecipitation was performed to assess whether USP28 interacted with STAT3 or deubiquitinated STAT3. Quantitative real-time PCR was performed to evaluate the relative mRNA levels of STAT3 and USP28. Cycloheximide chase assay was carried out to examine whether USP28 affected the half-life of STAT3 protein. Cell Counting Kit-8 assay and xenograft model were used to assess whether USP28 regulated NSCLC cell growth. RESULTS In this study, the deubiquitinating enzyme USP28 was found to mediate STAT3 signaling in NSCLC cells. USP28 interacted with STAT3, and increased the stability of STAT3 by inducing its deubiquitination. Further studies showed that USP28 was upregulated in both the primary tissues and cell lines of NSCLC. The Kaplan-Meier plotter also indicated that USP28 predicted a poor prognosis of NSCLC patients. Moreover, knockdown of USP28 inhibited cell growth of NSCLC cells in vitro and delayed NSCLC tumor growth in vivo. CONCLUSION These results demonstrated that USP28 was functional in NSCLC cells, and promoted NSCLC cell growth by inducing STAT3 signaling. This suggests that USP28 could be a novel target for NSCLC therapy.
Collapse
Affiliation(s)
- Pengling Li
- Department of Respiratory Medicine, The First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu, China,
- Department of Respiratory Medicine, The Affiliated Huai'an No 1. People's Hospital, Nanjing Medical University, Huai'an 223300, Jiangsu, China
| | - Ziming Huang
- Department of Emergency Surgery, The Affiliated Huai'an No 1. People's Hospital, Nanjing Medical University, Huai'an 223300, Jiangsu, China
| | - Jipeng Wang
- Department of Respiratory Medicine, The Affiliated Huai'an No 1. People's Hospital, Nanjing Medical University, Huai'an 223300, Jiangsu, China
| | - Wei Chen
- Department of Respiratory Medicine, The Affiliated Huai'an No 1. People's Hospital, Nanjing Medical University, Huai'an 223300, Jiangsu, China
| | - Jianan Huang
- Department of Respiratory Medicine, The First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu, China,
| |
Collapse
|
55
|
Tang H, Liu Y, Wang C, Zheng H, Chen Y, Liu W, Chen X, Zhang J, Chen H, Yang Y, Yang J. Inhibition of COX-2 and EGFR by Melafolone Improves Anti-PD-1 Therapy through Vascular Normalization and PD-L1 Downregulation in Lung Cancer. J Pharmacol Exp Ther 2018; 368:401-413. [PMID: 30591531 DOI: 10.1124/jpet.118.254359] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 12/19/2018] [Indexed: 12/13/2022] Open
Abstract
Checkpoint blockade therapy has been proven efficacious in lung cancer patients. However, primary/acquired resistance hampers its efficacy. Therefore, there is an urgent need to develop novel strategies to improve checkpoint blockade therapy. Here we tested whether dual inhibition of cyclooxygenase-2 (COX-2) and epidermal growth factor receptor (EGFR) by flavonoid melafolone improves program death 1 (PD-1) checkpoint blockade therapy through normalizing tumor vasculature and PD-1 ligand (PD-L1) downregulation. Virtual screening assay, cellular thermal shift assay, and enzyme inhibition assay identified melafolone as a potential inhibitor of COX-2 and EGFR. In Lewis lung carcinoma (LLC) and CMT167 models, dual inhibition of COX-2 and EGFR by melafolone promoted survival, tumor growth inhibition, and vascular normalization, and ameliorated CD8+ T-cell suppression, accompanied by the downregulation of transforming growth factor-β (TGF-β), vascular endothelial growth factor (VEGF), and PD-L1 in the tumor cells. Mechanistically, dual inhibition of COX-2 and EGFR in lung cancer cells by melafolone increased the migration of pericyte, decreased the proliferation and migration of endothelial cells, and enhanced the proliferation and effector function of CD8+ T cells through VEGF, TGF-β, or PD-L1 downregulation and PI3K/AKT inactivation. Notably, melafolone improved PD-1 immunotherapy against LLC and CMT167 tumors. Together, dual inhibition of COX-2 and EGFR by melafolone improves checkpoint blockade therapy through vascular normalization and PD-L1 downregulation and, by affecting vessels and immune cells, may be a promising combination strategy for the treatment of human lung cancer.
Collapse
Affiliation(s)
- Honglin Tang
- Department of Pharmacology and Hubei Province Key Laboratory of Allergy and Immune-Related Diseases (H.T., Y.L., C.W., H.Z., Y.C., W.L., X.C., J.Z., J.Y.) and Department of Pathology and Pathophysiology (H.C.), School of Basic Medical Sciences, Wuhan University, Wuhan, China; and Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey (Y.Y.)
| | - Yanzhuo Liu
- Department of Pharmacology and Hubei Province Key Laboratory of Allergy and Immune-Related Diseases (H.T., Y.L., C.W., H.Z., Y.C., W.L., X.C., J.Z., J.Y.) and Department of Pathology and Pathophysiology (H.C.), School of Basic Medical Sciences, Wuhan University, Wuhan, China; and Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey (Y.Y.)
| | - Chenlong Wang
- Department of Pharmacology and Hubei Province Key Laboratory of Allergy and Immune-Related Diseases (H.T., Y.L., C.W., H.Z., Y.C., W.L., X.C., J.Z., J.Y.) and Department of Pathology and Pathophysiology (H.C.), School of Basic Medical Sciences, Wuhan University, Wuhan, China; and Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey (Y.Y.)
| | - Hao Zheng
- Department of Pharmacology and Hubei Province Key Laboratory of Allergy and Immune-Related Diseases (H.T., Y.L., C.W., H.Z., Y.C., W.L., X.C., J.Z., J.Y.) and Department of Pathology and Pathophysiology (H.C.), School of Basic Medical Sciences, Wuhan University, Wuhan, China; and Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey (Y.Y.)
| | - Yaxin Chen
- Department of Pharmacology and Hubei Province Key Laboratory of Allergy and Immune-Related Diseases (H.T., Y.L., C.W., H.Z., Y.C., W.L., X.C., J.Z., J.Y.) and Department of Pathology and Pathophysiology (H.C.), School of Basic Medical Sciences, Wuhan University, Wuhan, China; and Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey (Y.Y.)
| | - Wen Liu
- Department of Pharmacology and Hubei Province Key Laboratory of Allergy and Immune-Related Diseases (H.T., Y.L., C.W., H.Z., Y.C., W.L., X.C., J.Z., J.Y.) and Department of Pathology and Pathophysiology (H.C.), School of Basic Medical Sciences, Wuhan University, Wuhan, China; and Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey (Y.Y.)
| | - Xuewei Chen
- Department of Pharmacology and Hubei Province Key Laboratory of Allergy and Immune-Related Diseases (H.T., Y.L., C.W., H.Z., Y.C., W.L., X.C., J.Z., J.Y.) and Department of Pathology and Pathophysiology (H.C.), School of Basic Medical Sciences, Wuhan University, Wuhan, China; and Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey (Y.Y.)
| | - Jing Zhang
- Department of Pharmacology and Hubei Province Key Laboratory of Allergy and Immune-Related Diseases (H.T., Y.L., C.W., H.Z., Y.C., W.L., X.C., J.Z., J.Y.) and Department of Pathology and Pathophysiology (H.C.), School of Basic Medical Sciences, Wuhan University, Wuhan, China; and Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey (Y.Y.)
| | - Honglei Chen
- Department of Pharmacology and Hubei Province Key Laboratory of Allergy and Immune-Related Diseases (H.T., Y.L., C.W., H.Z., Y.C., W.L., X.C., J.Z., J.Y.) and Department of Pathology and Pathophysiology (H.C.), School of Basic Medical Sciences, Wuhan University, Wuhan, China; and Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey (Y.Y.)
| | - Yuqing Yang
- Department of Pharmacology and Hubei Province Key Laboratory of Allergy and Immune-Related Diseases (H.T., Y.L., C.W., H.Z., Y.C., W.L., X.C., J.Z., J.Y.) and Department of Pathology and Pathophysiology (H.C.), School of Basic Medical Sciences, Wuhan University, Wuhan, China; and Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey (Y.Y.)
| | - Jing Yang
- Department of Pharmacology and Hubei Province Key Laboratory of Allergy and Immune-Related Diseases (H.T., Y.L., C.W., H.Z., Y.C., W.L., X.C., J.Z., J.Y.) and Department of Pathology and Pathophysiology (H.C.), School of Basic Medical Sciences, Wuhan University, Wuhan, China; and Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey (Y.Y.)
| |
Collapse
|
56
|
Wirsdörfer F, de Leve S, Jendrossek V. Combining Radiotherapy and Immunotherapy in Lung Cancer: Can We Expect Limitations Due to Altered Normal Tissue Toxicity? Int J Mol Sci 2018; 20:ijms20010024. [PMID: 30577587 PMCID: PMC6337556 DOI: 10.3390/ijms20010024] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 12/18/2018] [Accepted: 12/19/2018] [Indexed: 02/08/2023] Open
Abstract
In recent decades, technical advances in surgery and radiotherapy, as well as breakthroughs in the knowledge on cancer biology, have helped to substantially improve the standard of cancer care with respect to overall response rates, progression-free survival, and the quality of life of cancer patients. In this context, immunotherapy is thought to have revolutionized the standard of care for cancer patients in the long term. For example, immunotherapy approaches such as immune checkpoint blockade are currently increasingly being used in cancer treatment, either alone or in combination with chemotherapy or radiotherapy, and there is hope from the first clinical trials that the appropriate integration of immunotherapy into standard care will raise the success rates of cancer therapy to a new level. Nevertheless, successful cancer therapy remains a major challenge, particularly in tumors with either pronounced resistance to chemotherapy and radiation treatment, a high risk of normal tissue complications, or both, as in lung cancer. Chemotherapy, radiotherapy and immunotherapy have the capacity to evoke adverse effects in normal tissues when administered alone. However, therapy concepts are usually highly complex, and it is still not clear if combining immunotherapy with radio(chemo)therapy will increase the risk of normal tissue complications, in particular since normal tissue toxicity induced by chemotherapy and radiotherapy can involve immunologic processes. Unfortunately, no reliable biomarkers are available so far that are suited to predict the unique normal tissue sensitivity of a given patient to a given treatment. Consequently, clinical trials combining radiotherapy and immunotherapy are attracting major attention, not only regarding efficacy, but also with regard to safety. In the present review, we summarize the current knowledge of radiation-induced and immunotherapy-induced effects in tumor and normal tissue of the lung, and discuss the potential limitations of combined radio-immunotherapy in lung cancer with a focus on the suspected risk for enhanced acute and chronic normal tissue toxicity.
Collapse
Affiliation(s)
- Florian Wirsdörfer
- Institute of Cell Biology (Cancer Research), University Hospital Essen, 45147 Essen, Germany.
| | - Simone de Leve
- Institute of Cell Biology (Cancer Research), University Hospital Essen, 45147 Essen, Germany.
| | - Verena Jendrossek
- Institute of Cell Biology (Cancer Research), University Hospital Essen, 45147 Essen, Germany.
| |
Collapse
|
57
|
Shen K, Cui J, Wei Y, Chen X, Liu G, Gao X, Li W, Lu H, Zhan P, Lv T, Lin D. Effectiveness and safety of PD-1/PD-L1 or CTLA4 inhibitors combined with chemotherapy as a first-line treatment for lung cancer: A meta-analysis. J Thorac Dis 2018; 10:6636-6652. [PMID: 30746209 DOI: 10.21037/jtd.2018.11.72] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Background Immune checkpoint inhibitors (ICIs) combined with chemotherapy have been applied as a first-line treatment for lung cancer, but consistent beneficial results have not been documented. Therefore, our meta-analysis aimed to evaluate the effectiveness and safety of combination therapy to promote its application. Methods We searched electronic databases for studies that estimated the safety and efficacy of combined therapy. The objective response rate (ORR) and disease control response (DCR) parameters were evaluated with odds ratio (OR) values of the combination arm over the non-combination arm. Hazard ratios (HR) and its 95% confidence intervals (95% CI) were used to calculate progression-free survival (PFS) and overall survival (OS) in the combination and non-combination arms. All treatment-related adverse events (TRAEs) and 3 to 5 TRAEs were expressed as relative risk (RR) values of the combination arm over the non-combination arm. Results Ten eligible studies involving 4,887 patients were identified. The pooled ORs for ORR and DCR were 1.85 (95% CI: 1.30-2.63, P<0.01) and 1.14 (95% CI: 0.70-1.86, P<0.01), respectively. The pooled HRs for PFS and OS were 0.67 (95% CI: 0.58-0.79, P<0.001) and 0.76 (95% CI: 0.65-0.88, P<0.001), respectively. In subgroup analysis, ORR and DCR were significantly improved in the programmed cell death-1/L1 (PD-1/L1) blockade for non-small cell lung cancer (NSCLC) group (subgroup A), with a combined OR values of 2.36 (95% CI: 1.79-3.13, P<0.001) and 1.92 (95% CI: 1.10-3.35, P<0.001), respectively. However, no significant benefits were observed in the cytotoxic T lymphocyte antigen-4 (CTLA-4) blockade for small cell lung cancer (SCLC) (subgroup B) and CTLA-4 blockade for NSCLC groups (subgroup C). In addition, a significant improvement in PFS was observed in subgroup A, subgroup B and subgroup C, with pooled HR values of 0.58 (95% CI: 0.52-0.63, P<0.001), 0.86 (95% CI: 0.76-0.97, P<0.05) and 0.83 (95% CI: 0.68-1.00, P<0.05), respectively. Only subgroup A exhibited an OS benefit, with a combined HR value of 0.67 (95% CI: 0.55-0.81, P<0.001). Moreover, as the expression of PD-L1 increased, the PFS and OS benefits were more significantly. Furthermore, patients without central nervous system (CNS) metastasis who were treated with PD-1/L1 inhibitors had a longer OS than patients with CNS metastasis (HR: 0.67, 95% CI: 0.55-0.80, P<0.001). Finally, combined therapy was associated with 3 to 5 TRAEs (RR: 1.26, 95% CI: 1.08-1.47; P<0.01). Conclusions Patients treated with immunotherapy and chemotherapy in combination exhibited superior in ORR, DCR, PFS and OS as well as slightly increased TRAE levels compared with those of patients treated with either monotherapy.
Collapse
Affiliation(s)
| | - Jinggang Cui
- Department of Respiratory Medicine, Suzhou Hospital Affiliated Nanjing Medical University, 16 West BAITA Road, Suzhou 215001, China
| | - Yuqing Wei
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, China
| | - Xiaojun Chen
- Department of Respiratory Medicine, Suzhou Hospital Affiliated Nanjing Medical University, 16 West BAITA Road, Suzhou 215001, China
| | - Guohua Liu
- Department of Respiratory Medicine, Suzhou Hospital Affiliated Nanjing Medical University, 16 West BAITA Road, Suzhou 215001, China
| | - Xiaolai Gao
- Department of Respiratory Medicine, Suzhou Hospital Affiliated Nanjing Medical University, 16 West BAITA Road, Suzhou 215001, China
| | - Wei Li
- Department of Respiratory Medicine, Suzhou Hospital Affiliated Nanjing Medical University, 16 West BAITA Road, Suzhou 215001, China
| | - Huiling Lu
- Department of Respiratory Medicine, Suzhou Hospital Affiliated Nanjing Medical University, 16 West BAITA Road, Suzhou 215001, China
| | - Ping Zhan
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, China
| | - Tangfeng Lv
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, China
| | - Dang Lin
- Department of Respiratory Medicine, Suzhou Hospital Affiliated Nanjing Medical University, 16 West BAITA Road, Suzhou 215001, China
| |
Collapse
|