51
|
Zhang SL, Liu L. microRNA-148a inhibits hepatocellular carcinoma cell invasion by targeting sphingosine-1-phosphate receptor 1. Exp Ther Med 2014; 9:579-584. [PMID: 25574238 PMCID: PMC4280928 DOI: 10.3892/etm.2014.2137] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Accepted: 11/18/2014] [Indexed: 12/26/2022] Open
Abstract
microRNA (miR)-148a has been shown to act as an important suppressor in numerous human malignancies and is markedly downregulated in hepatocellular carcinoma; however, the role of miR-148a in the regulation of hepatocellular carcinoma cell invasion, as well as the underlying mechanism, has never been studied. In the present study, the expression level of miR-148a was found to be significantly decreased in hepatocellular carcinoma tissues and HepG2 cells when compared with that in the normal adjacent tissues. Furthermore, a novel target of miR-148a was found, sphingosine-1-phosphate receptor 1 (S1PR1), whose expression was negatively regulated by miR-148a at a post-transcriptional level in hepatocellular carcinoma HepG2 cells. Upregulation of miR-148a by transfection with miR-148a mimics notably suppressed HepG2 cell invasion, similar to the effect of the SIPR1 downregulation induced by SIPR1-specific small interfering RNA, while the restoration of S1PR1 expression reversed the inhibitory effect of miR-148a upregulation on HepG2 cell invasion. Accordingly, the current study suggests that miR-148a plays an inhibitory role in the regulation of hepatocellular carcinoma cell invasion by directly targeting S1PR1.
Collapse
Affiliation(s)
- Shu-Liang Zhang
- Department of Hepatobiliary Surgery, Linzi District People's Hospital, Zibo, Shandong 255400, P.R. China
| | - Ling Liu
- National Hepatobiliary and Enteric Surgery Research Center, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| |
Collapse
|
52
|
Yuan R, Zhi Q, Zhao H, Han Y, Gao L, Wang B, Kou Z, Guo Z, He S, Xue X, Hu H. Upregulated expression of miR-106a by DNA hypomethylation plays an oncogenic role in hepatocellular carcinoma. Tumour Biol 2014; 36:3093-100. [PMID: 25510666 DOI: 10.1007/s13277-014-2945-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Accepted: 12/04/2014] [Indexed: 02/07/2023] Open
Abstract
Aberrant microRNA (miRNA) expression has been widely recognized to play an extremely important role in several cancers, including hepatocellular carcinoma (HCC). According to the previous studies, abnormal miR-106a expression was closely related to various cancer occurrences. However, the miR-106a expression in HCC remains unclear. In our study, we firstly detected the miR-106a expression levels in 36 pairs of HCC tissues. The results showed that miR-106a expression in HCC tissues was apparently higher than the level in the adjacent tissues. Then, we used quantitative real-time PCR (qPCR) and BSP to analyze miR-106a expression and promoter methylation in HCC cell lines. There came to a conclusion that the methylation status of the miR-106a promoter region was inversely correlated with the expression of miR-106a. After prediction with online software, we further used dual-luciferase reporter gene assay to ensure that TP53INP1 and CDKN1A might be the direct targets of miR-106a. At last, we explored the functions of miR-106a in HCC cells in vitro. Our results manifested that high-miR-106a cell line had stronger invasiveness, faster cell cycle progression, and more resistance to apoptosis compared with the low-miR-106a cell line. Therefore, our study suggested that upregulated expression of miR-106a by its promoter hypomethylation might contribute to the progression of HCC, which might be considered as a potentially effective biomarker and therapeutic approach in the future.
Collapse
Affiliation(s)
- Renshun Yuan
- Department of General Surgery, The First Affiliated Hospital of Soochow University, 188# Shizi Road, Suzhou, 215006, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
53
|
Kanda M, Sugimoto H, Nomoto S, Oya H, Hibino S, Shimizu D, Takami H, Hashimoto R, Okamura Y, Yamada S, Fujii T, Nakayama G, Koike M, Fujiwara M, Kodera Y. B‑cell translocation gene 1 serves as a novel prognostic indicator of hepatocellular carcinoma. Int J Oncol 2014; 46:641-8. [PMID: 25405901 DOI: 10.3892/ijo.2014.2762] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Accepted: 10/30/2014] [Indexed: 12/29/2022] Open
Abstract
Although the B‑cell translocation gene 1 (BTG1) plays an important role in apoptosis and negatively regulates cell proliferation, BTG1 expression in hepatocellular carcinoma (HCC) has not been evaluated. In this study expression analysis of BTG1 was conducted to clarify the role of BTG1 in the initiation of HCC carcinogenesis and progression. BTG1 mRNA expression levels were determined for HCC cell lines and 151 surgical specimen pairs using quantitative real‑time reverse transcription polymerase chain reaction (RT‑qPCR) assay. The mutational and methylation status of HCC cell lines were analyzed via high resolution melting (HRM) analysis and direct sequencing analysis to elucidate the regulatory mechanisms of BTG1 expression. The expression and distribution of the BTG1 protein in liver tissues were evaluated using immunohistochemistry (IHC). Decreased expression of BTG1 mRNA was confirmed in the majority of HCC cell lines (89%) and clinical HCC tissues (85%) compared with non‑cancerous liver tissues. Mutations or promoter hypermethylation were not identified in HCC cell lines. BTG1 mRNA expression levels were not influenced by background liver status. The pattern of BTG1 protein expression was consistent with that of BTG1 mRNA. Downregulation of BTG1 mRNA in HCC was significantly associated with shorter disease‑specific and recurrence‑free survival rates. Multivariate analysis of disease‑specific survival rates identified BTG1 mRNA downregulation as an independent prognostic factor for HCC (hazard ratio 2.12, 95% confidence interval 1.12‑4.04, P=0.022). Our results indicate that altered BTG1 expression might affect hepatocarcinogenesis and may represent a novel biomarker for HCC carcinogenesis and progression.
Collapse
Affiliation(s)
- Mitsuro Kanda
- Department of Gastroenterological Surgery (Surgery Ⅱ), Nagoya University Graduate School of Medicine, Nagoya, Aichi 466‑8550, Japan
| | - Hiroyuki Sugimoto
- Department of Gastroenterological Surgery (Surgery Ⅱ), Nagoya University Graduate School of Medicine, Nagoya, Aichi 466‑8550, Japan
| | - Shuji Nomoto
- Department of Gastroenterological Surgery (Surgery Ⅱ), Nagoya University Graduate School of Medicine, Nagoya, Aichi 466‑8550, Japan
| | - Hisaharu Oya
- Department of Gastroenterological Surgery (Surgery Ⅱ), Nagoya University Graduate School of Medicine, Nagoya, Aichi 466‑8550, Japan
| | - Soki Hibino
- Department of Gastroenterological Surgery (Surgery Ⅱ), Nagoya University Graduate School of Medicine, Nagoya, Aichi 466‑8550, Japan
| | - Dai Shimizu
- Department of Gastroenterological Surgery (Surgery Ⅱ), Nagoya University Graduate School of Medicine, Nagoya, Aichi 466‑8550, Japan
| | - Hideki Takami
- Department of Gastroenterological Surgery (Surgery Ⅱ), Nagoya University Graduate School of Medicine, Nagoya, Aichi 466‑8550, Japan
| | - Ryoji Hashimoto
- Department of Gastroenterological Surgery (Surgery Ⅱ), Nagoya University Graduate School of Medicine, Nagoya, Aichi 466‑8550, Japan
| | - Yukiyasu Okamura
- Division of Hepato‑Biliary‑Pancreatic Surgery, Shizuoka Cancer Center, Shizuoka 411‑8777, Japan
| | - Suguru Yamada
- Department of Gastroenterological Surgery (Surgery Ⅱ), Nagoya University Graduate School of Medicine, Nagoya, Aichi 466‑8550, Japan
| | - Tsutomu Fujii
- Department of Gastroenterological Surgery (Surgery Ⅱ), Nagoya University Graduate School of Medicine, Nagoya, Aichi 466‑8550, Japan
| | - Goro Nakayama
- Department of Gastroenterological Surgery (Surgery Ⅱ), Nagoya University Graduate School of Medicine, Nagoya, Aichi 466‑8550, Japan
| | - Masahiko Koike
- Department of Gastroenterological Surgery (Surgery Ⅱ), Nagoya University Graduate School of Medicine, Nagoya, Aichi 466‑8550, Japan
| | - Michitaka Fujiwara
- Department of Gastroenterological Surgery (Surgery Ⅱ), Nagoya University Graduate School of Medicine, Nagoya, Aichi 466‑8550, Japan
| | - Yasuhiro Kodera
- Department of Gastroenterological Surgery (Surgery Ⅱ), Nagoya University Graduate School of Medicine, Nagoya, Aichi 466‑8550, Japan
| |
Collapse
|
54
|
Lv S, Sun B, Dai C, Shi R, Zhou X, Lv W, Zhong X, Wang R, Ma W. The Downregulation of MicroRNA-146a Modulates TGF-β Signaling Pathways Activity in Glioblastoma. Mol Neurobiol 2014; 52:1257-1262. [PMID: 25326894 DOI: 10.1007/s12035-014-8938-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2014] [Accepted: 09/28/2014] [Indexed: 01/24/2023]
Abstract
Transforming growth factor-β (TGF-β) is considered to be one of the main factors responsible for glioblastoma tumorigenesis. MicroRNAs have recently been shown to regulate cell proliferation, differentiation, and apoptosis. However, the involvement of miRNA-146a in TGF-β1-induced glioblastoma development remains largely unknown. Here, miRNA-164a transfection was used to overexpress miRNA-164a in U87, and then real-time quantitative PCR and Western blot were applied to detect the gene transcription and protein expression. In addition, MTT and wound healing assay were also used to observe cell proliferation and migration. Our data revealed that miRNA-146a was downregulated by TGF-β1 treatment, but upregulated by miRNA-164a transfection. MiRNA-146a overexpression significantly reduced SMAD4 protein expression instead of p-SMAD2. Besides, miRNA-146a overexpression also decreased the messenger RNA (mRNA) and protein expression of epidermal growth factor receptor (EGFR) and MMP9 as well as the p-ERK1/2 level. Furthermore, the upregulation of miRNA-146a suppressed TGF-β1-mediated U87 proliferation and migration. These results demonstrate that miRNA-146a acts as a novel regulator to modulate the activity and transduction of TGF-β signaling pathways in glioblastoma, and the downregulation of miRNA-146a is required for overexpression of EGFR and MMP9, which can be considered an efficiently therapeutic target and a better understanding of glioblastoma pathogenesis.
Collapse
Affiliation(s)
- Shunzeng Lv
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 100730, Beijing, China.,School of Medicine, Shandong University, Jinan, Shandong, China
| | - Bowen Sun
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 100730, Beijing, China
| | - Congxin Dai
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 100730, Beijing, China
| | - Ranran Shi
- School of Medicine, Shandong University, Jinan, Shandong, China
| | - Xingtong Zhou
- Department of Breast Surgery, Peking Union Medical College Hospital, Beijing, China
| | - Wenyuan Lv
- School of Medicine, Shandong University, Jinan, Shandong, China.,Department of Breast Surgery, Qilu Hospital, Shandong University, Jinan, Shandong, China
| | - Xiao Zhong
- Department of Paediatrics, Xiaolan People's Hospital Affiliated to Southern Medical University, Zhongshan, Guangdong, China
| | - Renzhi Wang
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 100730, Beijing, China
| | - Wenbin Ma
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 100730, Beijing, China.
| |
Collapse
|
55
|
MiR-181a-5p is downregulated in hepatocellular carcinoma and suppresses motility, invasion and branching-morphogenesis by directly targeting c-Met. Biochem Biophys Res Commun 2014; 450:1304-12. [PMID: 25058462 DOI: 10.1016/j.bbrc.2014.06.142] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Accepted: 06/26/2014] [Indexed: 12/20/2022]
Abstract
c-Met receptor tyrosine kinase has been regarded as a promising therapeutic target for hepatocellular carcinoma (HCC). Recently, microRNAs (miRNAs) have been shown as a novel mechanism to control c-Met expression in cancer. In this study, we investigate the potential contribution of miR-181a-5p dysregulation to the biology of c-Met overexpression in HCC. Herein, we found an inverse expression pattern between miR-181a-5p and c-Met expression in normal, cirrhotic and HCC liver tissues. Luciferase assay confirmed that miR-181a-5p binding to the 3'-UTR of c-Met downregulated the expression of c-Met in HCC cells. Overexpression of miR-181a-5p suppressed both HGF-independent and -dependent activation of c-Met and consequently diminished branching-morphogenesis and invasion. Combined treatment with miR-181a-5p and c-Met inhibitor led to a further inhibition of c-Met-driven cellular activities. Knockdown of miR-181a-5p promoted HGF-independent/-dependent signaling of c-Met and accelerated migration, invasion and branching-morphogenesis. In conclusion, our results demonstrated for the first time that c-Met is a functional target gene of miR-181a-5p and the loss of miR-181a-5p expression led to the activation of c-Met-mediated oncogenic signaling in hepatocarcinogenesis. These findings display a novel molecular mechanism of c-Met regulation in HCC and strategies to increase miR-181a5p level might be an alternative approach for the enhancement of the inhibitory effects of c-Met inhibitors.
Collapse
|
56
|
Yang YF, Wang F, Xiao JJ, Song Y, Zhao YY, Cao Y, Bei YH, Yang CQ. MiR-222 overexpression promotes proliferation of human hepatocellular carcinoma HepG2 cells by downregulating p27. Int J Clin Exp Med 2014; 7:893-902. [PMID: 24955159 PMCID: PMC4057838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Accepted: 03/25/2014] [Indexed: 06/03/2023]
Abstract
OBJECTIVE Hepatocellular carcinoma (HCC) represents the third leading cause of cancer-related death worldwide. Increasing evidence suggests that microRNAs, a novel class of non-coding RNAs that function as endogenous suppressors of gene expression, are deregulated in HCC. Although microRNA-222 (miR-222) overexpression has been described in HCC, the role of miR-222 and its target genes in the proliferation of hepatocellular carcinoma cells remain poorly elucidated. METHODS HepG2 cells were transfected with miR-222 mimic, inhibitor or their negative controls. Cell proliferation was assessed by Cell Counting Kit-8 (CCK-8) and EdU incorporation assay. Flow cytometry was performed to assess the effects of miR-222 on HepG2 cell cycle progression. MiR-222 and putative targets genes (p27 and p57) expression levels were determined using qRT-PCR and/or Western blot. RESULTS MiR-222 overexpression induced an enhancement of HepG2 cell proliferation in vitro, paralleling with an altered cell cycle progression via increased cell population in S phase. P27 expression, other than p57, was negatively regulated by miR-222 overexpression at post-transcriptional level in HepG2 cells. Transfection of either small interfering RNA (siRNA) for p27 or miR-222 mimic increased HepG2 cell proliferation rate, whereas co-transfection of p27 siRNA and miR-222 mimic did not further enhance HepG2 cell proliferation in comparison with the cells transfected with p27 siRNA or miR-222 mimic alone, validating that p27 is a target gene of miR-222 during HepG2 cell proliferation. CONCLUSION This study suggests that miR-222 overexpression promotes HepG2 cell proliferation by downregulating p27.
Collapse
Affiliation(s)
- Yue-Feng Yang
- Division of Gastroenterology and Hepatology, Digestive Disease Institute, Tongji Hospital, Tongji University School of MedicineShanghai 200065, China
| | - Fei Wang
- Division of Gastroenterology and Hepatology, Digestive Disease Institute, Tongji Hospital, Tongji University School of MedicineShanghai 200065, China
| | - Jun-Jie Xiao
- Regeneration Laboratory, School of Life Science, Shanghai UniversityShanghai 200444, China
- Experimental Center of Life Sciences, Shanghai UniversityShanghai 200444, China
| | - Yang Song
- Division of Gastroenterology and Hepatology, Digestive Disease Institute, Tongji Hospital, Tongji University School of MedicineShanghai 200065, China
| | - Ying-Ying Zhao
- Division of Gastroenterology and Hepatology, Digestive Disease Institute, Tongji Hospital, Tongji University School of MedicineShanghai 200065, China
| | - Yan Cao
- Division of Gastroenterology and Hepatology, Digestive Disease Institute, Tongji Hospital, Tongji University School of MedicineShanghai 200065, China
| | - Yi-Hua Bei
- Regeneration Laboratory, School of Life Science, Shanghai UniversityShanghai 200444, China
- Experimental Center of Life Sciences, Shanghai UniversityShanghai 200444, China
| | - Chang-Qing Yang
- Division of Gastroenterology and Hepatology, Digestive Disease Institute, Tongji Hospital, Tongji University School of MedicineShanghai 200065, China
| |
Collapse
|
57
|
Gu DL, Chen YH, Shih JH, Lin CH, Jou YS, Chen CF. Target genes discovery through copy number alteration analysis in human hepatocellular carcinoma. World J Gastroenterol 2013; 19:8873-8879. [PMID: 24379610 PMCID: PMC3870538 DOI: 10.3748/wjg.v19.i47.8873] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2013] [Accepted: 12/06/2013] [Indexed: 02/06/2023] Open
Abstract
High-throughput short-read sequencing of exomes and whole cancer genomes in multiple human hepatocellular carcinoma (HCC) cohorts confirmed previously identified frequently mutated somatic genes, such as TP53, CTNNB1 and AXIN1, and identified several novel genes with moderate mutation frequencies, including ARID1A, ARID2, MLL, MLL2, MLL3, MLL4, IRF2, ATM, CDKN2A, FGF19, PIK3CA, RPS6KA3, JAK1, KEAP1, NFE2L2, C16orf62, LEPR, RAC2, and IL6ST. Functional classification of these mutated genes suggested that alterations in pathways participating in chromatin remodeling, Wnt/β-catenin signaling, JAK/STAT signaling, and oxidative stress play critical roles in HCC tumorigenesis. Nevertheless, because there are few druggable genes used in HCC therapy, the identification of new therapeutic targets through integrated genomic approaches remains an important task. Because a large amount of HCC genomic data genotyped by high density single nucleotide polymorphism arrays is deposited in the public domain, copy number alteration (CNA) analyses of these arrays is a cost-effective way to reveal target genes through profiling of recurrent and overlapping amplicons, homozygous deletions and potentially unbalanced chromosomal translocations accumulated during HCC progression. Moreover, integration of CNAs with other high-throughput genomic data, such as aberrantly coding transcriptomes and non-coding gene expression in human HCC tissues and rodent HCC models, provides lines of evidence that can be used to facilitate the identification of novel HCC target genes with the potential of improving the survival of HCC patients.
Collapse
|
58
|
Shimizu D, Kanda M, Nomoto S, Oya H, Takami H, Hibino S, Suenaga M, Inokawa Y, Hishida M, Takano N, Nishikawa Y, Yamada S, Fujii T, Nakayama G, Sugimoto H, Koike M, Fujiwara M, Kodera Y. Identification of intragenic methylation in the TUSC1 gene as a novel prognostic marker of hepatocellular carcinoma. Oncol Rep 2013; 31:1305-13. [PMID: 24366000 DOI: 10.3892/or.2013.2939] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Accepted: 11/20/2013] [Indexed: 12/16/2022] Open
Abstract
Patients with hepatocellular carcinoma (HCC) have a poor prognosis, and novel molecular targets for treating recurrence and progression of the disease along with associated biomarkers are urgently required. In the present study, expression and the regulatory mechanism of TUSC1 (tumor suppressor candidate 1) were investigated to determine if it is a candidate tumor suppressor gene for HCC, which shows repressed transcription that involves aberrant DNA methylation. TUSC1 mRNA expression levels in HCC cell lines and 94 pairs of surgical specimens were determined using quantitative real-time reverse transcription polymerase chain reaction assay. Methylation status of HCC cell lines and clinical samples were analyzed to investigate the regulatory mechanism of TUSC1 transcription and the relationship between the methylation status of the TUSC1 gene and clinicopathological factors. The expression and distribution of the TUSC1 protein in liver tissues were determined using immunohistochemistry. A majority of HCC cell lines (89%) and surgical specimens (84%) demonstrated reduced expression levels of TUSC1 mRNA compared with paired non-cancerous liver tissues. The mean mRNA expression level in HCC was significantly lower than in corresponding non-cancerous liver. In contrast, no significant difference was found in TUSC1 mRNA expression level between adjacent normal and cirrhotic liver tissue from HCC patients. The TUSC1 protein expression pattern in HCC and liver tissues was consistent with TUSC1 mRNA expression. Twenty-nine (31%) of 94 patients showed intragenic hypermethylation of the TUSC1 gene in HCC, and hypermethylation was significantly associated with advanced pathological stage. Subsequently, patients with hypermethylation of the TUSC1 gene had a significantly poorer prognosis than patients without hypermethylation. Our results suggest that TUSC1 is a candidate tumor suppressor gene and intragenic hypermethylation is one of the suppressive mechanisms that regulate TUSC1 transcription in HCC. Intragenic methylation of the TUSC1 gene may serve as a novel prognostic marker of HCC.
Collapse
Affiliation(s)
- Dai Shimizu
- Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Mitsuro Kanda
- Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Shuji Nomoto
- Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hisaharu Oya
- Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hideki Takami
- Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Soki Hibino
- Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Masaya Suenaga
- Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yoshikuni Inokawa
- Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Mitsuhiro Hishida
- Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Nao Takano
- Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yoko Nishikawa
- Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Suguru Yamada
- Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Tsutomu Fujii
- Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Goro Nakayama
- Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hiroyuki Sugimoto
- Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Masahiko Koike
- Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Michitaka Fujiwara
- Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yasuhiro Kodera
- Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
59
|
Anti-hepatoma cells function of luteolin through inducing apoptosis and cell cycle arrest. Tumour Biol 2013; 35:3053-60. [DOI: 10.1007/s13277-013-1396-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Accepted: 11/05/2013] [Indexed: 12/24/2022] Open
|