51
|
Shu Q, Fan H, Li S, Zhou D, Ma W, Zhao X, Yan J, Wu G. Retracted
: Protective effects of Progranulin against focal cerebral ischemia‐reperfusion injury in rats by suppressing endoplasmic reticulum stress and NF‐κB activation in reactive astrocytes. J Cell Biochem 2018; 119:6584-6597. [DOI: 10.1002/jcb.26790] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 02/12/2018] [Indexed: 12/14/2022]
Affiliation(s)
- Qing Shu
- Department of PharmacyThe Ninth Hospital of Xi'anXi'anChina
| | - Hua Fan
- The First Affiliated Hospital of Henan University of Science and TechnologyLuoyangChina
| | - Shi‐Jun Li
- Department of PharmacyWuhan Union HospitalWuhanChina
| | - Dan Zhou
- Department of PharmacyThe Ninth Hospital of Xi'anXi'anChina
| | - Wei Ma
- Department of PharmacyThe Ninth Hospital of Xi'anXi'anChina
| | - Xiao‐Yan Zhao
- Department of PharmacyThe Ninth Hospital of Xi'anXi'anChina
| | - Jun‐Qiang Yan
- The First Affiliated Hospital of Henan University of Science and TechnologyLuoyangChina
| | - Gang Wu
- The Second Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
| |
Collapse
|
52
|
Li RQ, Wan MY, Shi J, Wang HL, Liu FL, Liu CM, Huang J, Liu RC, Ma L, Feng XD. Catgut implantation at acupoints increases the expression of glutamate aspartate transporter and glial glutamate transporter-1 in the brain of rats with spasticity after stroke. Neural Regen Res 2018; 13:1013-1018. [PMID: 29926828 PMCID: PMC6022480 DOI: 10.4103/1673-5374.233444] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Catgut implantation at acupoints has been shown to alleviate spasticity after stroke in rats. However, the underlying mechanisms are poorly understood. In this study, we used the rat middle cerebral artery occlusion model of stroke. Three days after surgery, absorbable surgical catgut sutures were implanted at Dazhui (GV14), Jizhong (GV6), Houhui, Guanyuan (CV4) and Zhongwan (CV12). The Zea Longa score was used to assess neurological function. The Modified Ashworth Scale was used to evaluate muscle tension. The 2,3,5-triphenyl-tetrazolium chloride assay was used to measure infarct volume. Immunohistochemical staining was performed for glutamate aspartate transporter (GLAST) and glial glutamate transporter-1 (GLT-1) expression. Western blot assay was used to analyze the expression of GLAST and GLT-1. Reverse transcription and polymerase chain reaction were carried out to assess the expression of GLAST and GLT-1 mRNAs. After catgut implantation at the acupoints, neurological function was substantially improved, muscle tension was decreased, and infarct volume was reduced in rats with spasticity after stroke. Furthermore, the expression of GLAST and GLT-1 mRNAs was increased on the injured (left) side. Our findings demonstrate that catgut implantation at acupoints alleviates spasticity after stroke, likely by increasing the expression of GLAST and GLT-1.
Collapse
Affiliation(s)
- Rui-Qing Li
- Rehabilitation Center, First Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou, Henan Province, China
| | - Ming-Yue Wan
- Major in Rehabilitation Medicine and Physiotherapy, Henan University of Traditional Chinese Medicine, Zhengzhou, Henan Province, China
| | - Jing Shi
- Major in Rehabilitation Medicine and Physiotherapy, Henan University of Traditional Chinese Medicine, Zhengzhou, Henan Province, China
| | - Hui-Ling Wang
- Major in Rehabilitation Medicine and Physiotherapy, Henan University of Traditional Chinese Medicine, Zhengzhou, Henan Province, China
| | - Fei-Lai Liu
- Rehabilitation Center, First Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou, Henan Province, China
| | - Cheng-Mei Liu
- Rehabilitation Center, First Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou, Henan Province, China
| | - Jin Huang
- Major in Rehabilitation Medicine and Physiotherapy, Henan University of Traditional Chinese Medicine, Zhengzhou, Henan Province, China
| | - Ren-Chao Liu
- Major in Rehabilitation Medicine and Physiotherapy, Henan University of Traditional Chinese Medicine, Zhengzhou, Henan Province, China
| | - Le Ma
- Department of Oncology, Third People's Hospital of Luoyang, Luoyang, Henan Province, China
| | - Xiao-Dong Feng
- Rehabilitation Center, First Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou, Henan Province, China
| |
Collapse
|
53
|
Luo D, Chen R, Liang FX. Modulation of Acupuncture on Cell Apoptosis and Autophagy. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2017; 2017:8268736. [PMID: 29279719 PMCID: PMC5723958 DOI: 10.1155/2017/8268736] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 08/20/2017] [Accepted: 09/14/2017] [Indexed: 11/25/2022]
Abstract
Acupuncture has been historically practiced to treat medical disorders by mechanically stimulating specific acupoints. Despite its well-documented efficacy, its biological basis largely remains elusive. Recent studies suggested that cell apoptosis and autophagy might play key roles in acupuncture therapy. Therefore, we searched PubMed, Embase, Web of Science, and China National Knowledge Infrastructure (CNKI), aiming to find the potential relationship between acupuncture and cell apoptosis and autophagy. To provide readers with objective evidence, some problems regarding the design method, acupoints selection, acupuncture intervention measure, and related diseases existing in 40 related researches were shown in this review. These findings demonstrated that acupuncture has a potential role in modulating cell apoptosis and autophagy in animal models, suggesting it as a candidate mechanism in acupuncture therapy to maintain physiologic homeostasis.
Collapse
Affiliation(s)
- Dan Luo
- Department of Traditional Chinese Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Street, Wuhan, Hubei 430022, China
| | - Rui Chen
- Department of Traditional Chinese Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Street, Wuhan, Hubei 430022, China
| | - Feng-xia Liang
- Department of Acupuncture and Moxibustion, Hubei University of Traditional Chinese Medicine, No. 1 Tanhualin Street, Wuhan, Hubei 430060, China
| |
Collapse
|
54
|
He J, Zhao C, Liu W, Huang J, Liang S, Chen L, Tao J. Neurochemical changes in the hippocampus and prefrontal cortex associated with electroacupuncture for learning and memory impairment. Int J Mol Med 2017; 41:709-716. [PMID: 29207061 PMCID: PMC5752233 DOI: 10.3892/ijmm.2017.3287] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 10/27/2017] [Indexed: 01/19/2023] Open
Abstract
Electroacupuncture (EA) has been widely used to treat cognitive impairment following cerebral ischemia. However, the functional mechanisms of EA have not been fully elucidated. The aim of the present study was to investigate whether EA at the GV 20 and DU 24 acupoints can improve the learning and memory ability via alteration of the neurochemical metabolism in the hippocampus (HPC) and prefrontal cortex (PFC) of rats with ischemia and reperfusion (I/R) injury. Sprague-Dawley male rats were randomly divided into three groups, namely the sham group (n=12), the middle cerebral artery occlusion (MCAO) group (n=12) and the EA treatment (MCAO + EA) group (n=12). MCAO was performed to establish the left focal cerebral I/R injury model, and the GV 20 and DU 24 acupoints were then stimulated with EA for 30 min per time, once daily, for 7 consecutive days. The Morris water maze (MWM) test was used to assess learning and memory ability. T2-weighted imaging was used to assess the cerebral infarct volume. Magnetic resonance spectroscopy was used to assess neurochemical metabolism of HPC and PFC. The neurological scores of the MCAO + EA group were significantly reduced compared with those of the MCAO group 7 days after EA treatment (P<0.01). The escape latency of the MWM test in the MCAO + EA group was found to be shorter compared with that in the MCAO group (P<0.01). The number of rats crossing through the platform area was significantly higher in the MCAO + EA group compared with that in the MCAO group (P<0.01). The cerebral infarct volume was also decreased in the MCAO + EA group compared with the MCAO group (P<0.05). The ratios of N-acetylaspartate (NAA)/creatine (Cr) and choline (Cho)/Cr of left-to-right HPC were increased in the MCAO + EA group compared with the MCAO group; however, the ratio of glutamate (Glu)/Cr did not change significantly (P>0.05). The ratios of NAA/Cr, Cho/Cr and Glu/Cr of left-to-right PFC were elevated (P<0.05). In conclusion, EA at the GV 20 and DU 24 acupoints may ameliorate learning and memory ability, possibly through increasing the levels of NAA and Cho in the HPC and PFC of rats with I/R injury.
Collapse
Affiliation(s)
- Jian He
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Congkuai Zhao
- Fujian Key Laboratory of Rehabilitation Technology, Fuzhou, Fujian 350003, P.R. China
| | - Weilin Liu
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Jia Huang
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Shengxiang Liang
- College of Physical Science and Technology, Zhengzhou University, Zhengzhou, Henan 450001, P.R. China
| | - Lidian Chen
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Jing Tao
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| |
Collapse
|
55
|
Mechanisms of Acupuncture Therapy in Ischemic Stroke Rehabilitation: A Literature Review of Basic Studies. Int J Mol Sci 2017; 18:ijms18112270. [PMID: 29143805 PMCID: PMC5713240 DOI: 10.3390/ijms18112270] [Citation(s) in RCA: 233] [Impact Index Per Article: 29.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 10/08/2017] [Accepted: 10/24/2017] [Indexed: 12/20/2022] Open
Abstract
Acupuncture is recommended by the World Health Organization (WHO) as an alternative and complementary strategy for stroke treatment and for improving stroke care. Clinical trial and meta-analysis findings have demonstrated the efficacy of acupuncture in improving balance function, reducing spasticity, and increasing muscle strength and general well-being post-stroke. The mechanisms underlying the beneficial effects of acupuncture in stroke rehabilitation remain unclear. The aim of this study was to conduct a literature review, summarize the current known mechanisms in ischemic stroke rehabilitation through acupuncture and electroacupuncture (EA) therapy, and to detail the frequently used acupoints implicated in these effects. The evidence in this review indicates that five major different mechanisms are involved in the beneficial effects of acupuncture/EA on ischemic stroke rehabilitation: (1) Promotion of neurogenesis and cell proliferation in the central nervous system (CNS); (2) Regulation of cerebral blood flow in the ischemic area; (3) Anti-apoptosis in the ischemic area; (4) Regulation of neurochemicals; and, (5) Improvement of impaired long-term potentiation (LTP) and memory after stroke. The most frequently used acupoints in basic studies include Baihui (GV20), Zusanli (ST36), Quchi (LI11), Shuigou (GV26), Dazhui (GV14), and Hegu (LI4). Our findings show that acupuncture exerts a beneficial effect on ischemic stroke through modulation of different mechanisms originating in the CNS.
Collapse
|
56
|
Huang J, You X, Liu W, Song C, Lin X, Zhang X, Tao J, Chen L. Electroacupuncture ameliorating post-stroke cognitive impairments via inhibition of peri-infarct astroglial and microglial/macrophage P2 purinoceptors-mediated neuroinflammation and hyperplasia. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017; 17:480. [PMID: 29017492 PMCID: PMC5635586 DOI: 10.1186/s12906-017-1974-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 09/12/2017] [Indexed: 12/21/2022]
Abstract
Background During ischemic stroke (IS), adenosine 5′-triphosphate (ATP) is released from damaged nerve cells of the infract core region to the extracellular space, invoking peri-infarct glial cellular P2 purinoceptors singling, and causing pro-inflammatory cytokine secretion, which is likely to initiate or aggravate motor and cognitive impairment. It has been proved that electroacupuncture (EA) is an effective and safe strategy used in anti-inflammation. However, EA for the role of purine receptors in the central nervous system has not yet been reported. Methods Ischemia-reperfusion injured rat model was induced by middle cerebral artery occlusion and reperfusion (MCAO/R). EA treatment at the DU 20 and DU 24 acupoints treatment were conducted to rats from the 12 h after MCAO/R injury for consecutive 7 days. The neurological outcomes, infarction volumes and the level of astroglial and microglial/macrophage hyperplasia, inflammatory cytokine and P2X7R and P2Y1R expression in the peri-infarct hippocampal CA1and sensorimotor cortex were investigated after IS to evaluate the MCAO/R model and therapeutic mechanism of EA treatment. Results EA effectively reduced the level of pro-inflammatory cytokine interleukin-1β (IL-1β) as evidenced by reduction in astroglial and microglial/macrophage hyperplasia and the levels of P2X7R and ED1, P2X7R and GFAP, P2Y1R and ED1, P2Y1R and GFAP co-expression in peri-infarct hippocampal CA1 and sensorimotor cortex compared with that of MCAO/R model and Non-EA treatment, accompanied by the improved neurological deficit and the motor and memory impairment outcomes. Therefore, our data support the hypothesis that EA could exert its anti-inflammatory effect via inhibiting the astroglial and microglial/macrophage P2 purinoceptors (P2X7R and P2Y1R)-mediated neuroinflammation after MCAO/R injury. Conclusion Astroglial and microglial/macrophage P2 purinoceptors-mediated neuroinflammation and hyperplasia in peri-infarct hippocampal CA1 and sensorimotor cortex were attenuated by EA treatment after ischemic stroke accompanied by the improved motor and memory behavior performance. Electronic supplementary material The online version of this article (10.1186/s12906-017-1974-y) contains supplementary material, which is available to authorized users.
Collapse
|
57
|
Ren Z, Zhang R, Li Y, Li Y, Yang Z, Yang H. Ferulic acid exerts neuroprotective effects against cerebral ischemia/reperfusion-induced injury via antioxidant and anti-apoptotic mechanisms in vitro and in vivo. Int J Mol Med 2017; 40:1444-1456. [PMID: 28901374 PMCID: PMC5627889 DOI: 10.3892/ijmm.2017.3127] [Citation(s) in RCA: 141] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 08/24/2017] [Indexed: 12/21/2022] Open
Abstract
Ferulic acid (FA) is a derivative of cinnamic acid. It is used in the treatment of heart head blood-vessel disease and exerts protective effects against hypoxia/ischemia-induced cell injury in the brain. This study investigated the potential neuroprotective effects of FA against ischemia/reperfusion (I/R)-induced brain injury in vivo and in vitro through hematoxylin and eosin (H&E) and Nissl staining assays, flow cytometry, Hoechst 33258 staining, quantitative PCR, western blot analysis and fluorescence microscopic analysis. In this study, models of cerebral I/R injury were established using rats and pheochromocytoma (PC-12) cells. The results revealed that treatment with FA significantly attenuated memory impairment, and reduced hippocampal neuronal apoptosis and oxidative stress in a dose-dependent manner. The results from in vitro experiments also indicated that FA protected the PC-12 cells against I/R-induced reactive oxygen species (ROS) generation and apoptosis by inhibiting apoptosis, Ca2+ influx, superoxide anion (O2-), malondialdehyde (MDA) and glutathione peroxidase (GSH-Px) production in a concentration-dependent manner. Moreover, FA inactivated the Toll-like receptor (TLR)/myeloid differentiation factor 88 (MyD88) pathway. MyD88 overexpression abolished the neuroprotective effects of FA. On the whole, we found that FA attenuated memory dysfunction and exerted protective effects against oxidative stress and apoptosis induced by I/R injury by inhibiting the TLR4/MyD88 signaling pathway. This study supports the view that FA may be a promising neuroprotective agent for use in the treatment of cerebral ischemia.
Collapse
Affiliation(s)
- Zhongkun Ren
- Department of Neurosurgery, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| | - Rongping Zhang
- Biomedical Engineering Center, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| | - Yuanyuan Li
- Department of Neurosurgery, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| | - Yu Li
- Department of Neurosurgery, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| | - Zhiyong Yang
- Department of Neurosurgery, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| | - Hui Yang
- Biomedical Engineering Center, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| |
Collapse
|
58
|
Guo F, Lou J, Han X, Deng Y, Huang X. Repetitive Transcranial Magnetic Stimulation Ameliorates Cognitive Impairment by Enhancing Neurogenesis and Suppressing Apoptosis in the Hippocampus in Rats with Ischemic Stroke. Front Physiol 2017; 8:559. [PMID: 28824455 PMCID: PMC5539749 DOI: 10.3389/fphys.2017.00559] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 07/17/2017] [Indexed: 01/03/2023] Open
Abstract
Cognitive impairment is a serious mental deficit caused by stroke that can severely affect the quality of a survivor's life. Repetitive transcranial magnetic stimulation (rTMS) is a well-known rehabilitation modality that has been reported to exert neuroprotective effects after cerebral ischemic injury. In the present study, we evaluated the therapeutic efficacy of rTMS against post-stroke cognitive impairment (PSCI) and investigated the mechanisms underlying its effects in a middle cerebral artery occlusion (MCAO) rat model. The results showed that rTMS ameliorated cognitive deficits and tended to reduce the sizes of cerebral lesions. In addition, rTMS significantly improved cognitive function via a mechanism involving increased neurogenesis and decreased apoptosis in the ipsilateral hippocampus. Moreover, brain-derived neurotrophic factor (BDNF) and its receptor, tropomyosin-related kinase B (TrkB), were clearly upregulated in ischemic hippocampi after treatment with rTMS. Additionally, further studies demonstrated that rTMS markedly enhanced the expression of the apoptosis-related B cell lymphoma/leukemia gene 2 (Bcl-2) and decreased the expression of the Bcl-2-associated protein X (Bax) and the number of TUNEL-positive cells in the ischemic hippocampus. Both protein levels and mRNA levels were investigated. Our findings suggest that after ischemic stroke, treatment with rTMS promoted the functional recovery of cognitive impairments by inhibiting apoptosis and enhancing neurogenesis in the hippocampus and that this mechanism might be mediated by the BDNF signaling pathway.
Collapse
Affiliation(s)
- Feng Guo
- Department of Rehabilitation Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan, China
| | - Jicheng Lou
- Department of Obstetrics and Gynecology, The Central Hospital of WuhanWuhan, China
| | - Xiaohua Han
- Department of Rehabilitation Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan, China
| | - Yuguo Deng
- Department of Rehabilitation Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan, China
| | - Xiaolin Huang
- Department of Rehabilitation Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan, China
| |
Collapse
|
59
|
Lin R, Li X, Liu W, Chen W, Yu K, Zhao C, Huang J, Yang S, Peng H, Tao J, Chen L. Electro-acupuncture ameliorates cognitive impairment via improvement of brain-derived neurotropic factor-mediated hippocampal synaptic plasticity in cerebral ischemia-reperfusion injured rats. Exp Ther Med 2017; 14:2373-2379. [PMID: 28962170 DOI: 10.3892/etm.2017.4750] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 02/01/2017] [Indexed: 11/05/2022] Open
Abstract
A previous study by our group found that electro-acupuncture (EA) at the Shenting (DU24) and Baihui (DU20) acupoints ameliorates cognitive impairment in rats with cerebral ischemia-reperfusion (I/R) injury. However, the precise mechanism of action has remained largely unknown. The present study investigated whether brain-derived neurotropic factor (BDNF) mediates hippocampal synaptic plasticity as the underlying mechanism. Rats were randomly divided into three groups: The sham operation control (Sham) group, the focal cerebral ischemia-reperfusion (I/R) group, and the I/R with EA treatment (I/R+EA) group. The I/R+EA group received EA treatment at the Shenting (DU24) and Baihui (DU20) acupoints after the operation. EA treatment was found to ameliorate neurological deficits (P<0.05) and reduce the cerebral infarct volume (P<0.01). In addition, EA improved cognitive function in cerebral I/R-injured rats (P<0.05). Furthermore, EA treatment promoted synaptic plasticity. Simultaneously, EA increased the hippocampal expression of BDNF, its high-affinity tropomyosin receptor kinase B (TrkB) and post-synaptic density protein-95 (PSD-95) in the rats with cerebral I/R injury. Collectively, the findings suggested that BDNF-mediated hippocampal synaptic plasticity may be one mechanism via which EA treatment at the Shenting (DU24) and Baihui (DU20) acupoints improves cognitive function in cerebral I/R injured rats.
Collapse
Affiliation(s)
- Ruhui Lin
- Academy of Integrative Medicine Biomedical Research Center, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Xiaojie Li
- Fujian Rehabilitation Tech Co-innovation Center, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Weilin Liu
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Wenlie Chen
- Academy of Integrative Medicine Biomedical Research Center, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Kunqiang Yu
- Fujian Key Laboratory of Rehabilitation Technology, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Congkuai Zhao
- Fujian Key Laboratory of Rehabilitation Technology, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Jia Huang
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Shanli Yang
- Fujian Key Laboratory of Rehabilitation Technology, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Hongwei Peng
- Fujian Key Laboratory of Rehabilitation Technology, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Jing Tao
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Lidian Chen
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| |
Collapse
|
60
|
Liu J, Li C, Peng H, Yu K, Tao J, Lin R, Chen L. Electroacupuncture attenuates learning and memory impairment via activation of α7nAChR-mediated anti-inflammatory activity in focal cerebral ischemia/reperfusion injured rats. Exp Ther Med 2017; 14:939-946. [PMID: 28810545 PMCID: PMC5526149 DOI: 10.3892/etm.2017.4622] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 02/10/2017] [Indexed: 01/18/2023] Open
Abstract
Studies have reported that electroacupuncture (EA) may reduce learning and memory impairment following cerebral ischemic injury. However, the precise mechanism of action remains unclear. In the present study, the attenuation of focal cerebral ischemia/reperfusion injury by EA in rats was investigated. EA at the Baihui (DU 20) and Shenting (DU 24) acupoints was demonstrated to significantly improve performance in the Morris water maze task, with shortened latency time and increased frequency of passing the platform. Molecular analysis revealed that EA activated the expression of α7 nicotinic acetylcholine receptors (α7nAChR) in the hippocampus. In addition, EA led to a decreased expression of the microglia/macrophage marker Iba1 and the astrocyte marker glial fibrillary acidic protein in the hippocampus. EA treatment also led to decreased production of the inflammatory cytokines tumor necrosis factor-α and interleukin-1β. Treatment with methyllycaconitine, an α7nAChR antagonist, attenuated the improvement of learning and memory following EA treatment and the inhibitory effects of EA on glial cell activation and inflammatory cytokine production. In conclusion, the findings of the present study demonstrate that EA is able to improve learning and memory function following cerebral ischemic injury via activation of α7nAChR, which significantly decreases the neuroinflammatory response.
Collapse
Affiliation(s)
- Jiao Liu
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350108, P.R. China.,Fujian Rehabilitation Tech Co-innovation Center, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Chunyan Li
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350108, P.R. China
| | - Hongwei Peng
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350108, P.R. China
| | - Kunqiang Yu
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350108, P.R. China
| | - Jing Tao
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350108, P.R. China
| | - Ruhui Lin
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350108, P.R. China.,Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Lidian Chen
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350108, P.R. China
| |
Collapse
|
61
|
Mechanisms of Acupuncture Therapy for Cerebral Ischemia: an Evidence-Based Review of Clinical and Animal Studies on Cerebral Ischemia. J Neuroimmune Pharmacol 2017; 12:575-592. [DOI: 10.1007/s11481-017-9747-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2016] [Accepted: 04/13/2017] [Indexed: 12/20/2022]
|
62
|
Zhu XL, Chen X, Wang W, Li X, Huo J, Wang Y, Min YY, Su BX, Pei JM. Electroacupuncture pretreatment attenuates spinal cord ischemia-reperfusion injury via inhibition of high-mobility group box 1 production in a LXA 4 receptor-dependent manner. Brain Res 2017; 1659:113-120. [PMID: 28089662 DOI: 10.1016/j.brainres.2017.01.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 01/01/2017] [Accepted: 01/08/2017] [Indexed: 12/29/2022]
Abstract
Paraplegia caused by spinal cord ischemia is a severe complication following surgeries in the thoracic aneurysm. HMGB1 has been recognized as a key mediator in spinal inflammatory response after spinal cord injury. Electroacupuncture (EA) pretreatment could provide neuroprotection against cerebral ischemic injury through inhibition of HMGB1 release. Therefore, the present study aims to test the hypothesis that EA pretreatment protects against spinal cord ischemia-reperfusion (I/R) injury via inhibition of HMGB1 release. Animals were pre-treated with EA stimulations 30min daily for 4 successive days, followed by 20-min spinal cord ischemia induced by using a balloon catheter placed into the aorta. We found that spinal I/R significantly increased mRNA and cytosolic protein levels of HMGB1 after reperfusion in the spinal cord. The EA-pretreated animals displayed better motor performance after reperfusion along with the decrease of apoptosis, HMGB1, TNF-α and IL-1β expressions in the spinal cord, whereas these effects by EA pretreatment was reversed by rHMGB1 administration. Furthermore, EA pretreatment attenuated the down-regulation of LXA4 receptor (ALX) expression induced by I/R injury, while the decrease of HMGB1 release in EA-pretreated rats was reversed by the combined BOC-2 (an inhibitor of LXA4 receptor) treatment. In conclusion, EA pretreatment may promote spinal I/R injury through the inhibition of HMGB1 release in a LXA4 receptor-dependent manner. Our data may represent a new therapeutic technique for treating spinal cord ischemia-reperfusion injury.
Collapse
Affiliation(s)
- Xiao-Ling Zhu
- Department of Physiology, Fourth Military Medical University, Xi'an 710032, China; Department of Anesthesiology, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Xin Chen
- Department of Anesthesiology, Shaanxi Provincial People's Hospital, Xi'an 710068, China
| | - Wei Wang
- Department of Anesthesiology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Xu Li
- Department of Anesthesiology, Xi'an Hospital of Traditional Chinese Medicine, Xi'an 710021, China
| | - Jia Huo
- Department of Anesthesiology, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Yu Wang
- Department of Anesthesiology, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Yu-Yuan Min
- Department of Anesthesiology, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Bin-Xiao Su
- Department of Anesthesiology, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China.
| | - Jian-Ming Pei
- Department of Physiology, Fourth Military Medical University, Xi'an 710032, China.
| |
Collapse
|
63
|
Electroacupuncture Regulates Hippocampal Synaptic Plasticity via miR-134-Mediated LIMK1 Function in Rats with Ischemic Stroke. Neural Plast 2017; 2017:9545646. [PMID: 28116173 PMCID: PMC5237739 DOI: 10.1155/2017/9545646] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 11/03/2016] [Indexed: 11/17/2022] Open
Abstract
MircoRNAs (miRs) have been implicated in learning and memory, by regulating LIM domain kinase (LIMK1) to induce synaptic-dendritic plasticity. The study aimed to investigate whether miRNAs/LIMK1 signaling was involved in electroacupuncture- (EA-) mediated synaptic-dendritic plasticity in a rat model of middle cerebral artery occlusion induced cognitive deficit (MICD). Compared to untreatment or non-acupoint-EA treatment, EA at DU20 and DU24 acupoints could shorten escape latency and increase the frequency of crossing platform in Morris water maze test. T2-weighted imaging showed that the MICD rat brain lesions were located in cortex, hippocampus, corpus striatum, and thalamus regions and injured volumes were reduced after EA. Furthermore, we found that the density of dendritic spine and the number of synapses in the hippocampal CA1 pyramidal cells were obviously reduced at Day 14 after MICD. However, synaptic-dendritic loss could be rescued after EA. Moreover, the synaptic-dendritic plasticity was associated with increases of the total LIMK1 and phospho-LIMK1 levels in hippocampal CA1 region, wherein EA decreased the expression of miR-134, negatively regulating LIMK1 to enhance synaptic-dendritic plasticity. Therefore, miR-134-mediated LIMK1 was involved in EA-induced hippocampal synaptic plasticity, which served as a contributor to improving learning and memory during the recovery stage of ischemic stroke.
Collapse
|
64
|
Shi P, Sun LL, Lee YS, Tu Y. Electroacupuncture regulates the stress-injury-repair chain of events after cerebral ischemia/reperfusion injury. Neural Regen Res 2017; 12:925-930. [PMID: 28761425 PMCID: PMC5514867 DOI: 10.4103/1673-5374.208574] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Inflammation after stroke is the main cause of cerebral ischemia/reperfusion injury. Cascading events after injury can lead to cell death. Heat shock protein 70 and other endogenous injury-signaling molecules are released by damaged cells, which can lead to systemic stress reactions. Protecting the brain through repair begins with the stress-injury-repair signaling chain. This study aimed to verify whether acupuncture acts through this chain to facilitate effective treatment of ischemic stroke. Rat models of cerebral ischemia/reperfusion injury were established by Zea Longa's method, and injury sites were identified by assessing neurological function, 2,3,5-triphenyltetrazolium chloride staining, and hematoxylin-eosin staining. Electroacupuncture at acupoints Baihui (DU20) and Zusanli (ST36) was performed in the model rats with dilatational waves, delivered for 20 minutes a day at 2–100 Hz and an amplitude of 2 mA. We analyzed the blood serum from the rats and found that inflammatory cytokines affected the levels of adrenotrophin and heat shock protein 70, each of which followed a similar bimodal curve. Specifically, electroacupuncture lowered the peak levels of adrenocorticotrophic hormone and heat shock protein 70. Thus, electroacupuncture was able to inhibit excessive stress, reduce inflammation, and promote the repair of neurons, which facilitated healing of ischemic stroke.
Collapse
Affiliation(s)
- Peng Shi
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| | - Lin-Lin Sun
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| | - Yi-Shuo Lee
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| | - Ya Tu
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
65
|
Lu J, Guo Y, Guo CQ, Shi XM, Du NY, Zhao RL, Du WP, Liang JR, Zhu SP, Chen H. Acupuncture with reinforcing and reducing twirling manipulation inhibits hippocampal neuronal apoptosis in spontaneously hypertensive rats. Neural Regen Res 2017; 12:770-778. [PMID: 28616034 PMCID: PMC5461615 DOI: 10.4103/1673-5374.206648] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
To observe the effects of different acupuncture manipulations on blood pressure and target organ damage in spontaneously hypertensive rats (SHRs), this study used the reinforcing twirling method (1.5–2-mm depth; rotating needle clockwise for 360° and then counter clockwise for 360°, with the thumb moving heavily forward and gently backward, 60 times per minute for 1 minute, and retaining needle for 9 minutes), the reducing twirling method (1.5–2-mm depth; rotating needle counter clockwise for 360° and then clockwise for 360°, with the thumb moving heavily backward and gently forward, 60 times per minute for 1 minute, and retaining needle for 9 minutes), and the needle retaining method (1.5–2-mm depth and retaining the needle for 10 minutes). Bilateral Taichong (LR3) was treated by acupuncture using different manipulations and manual stimulation. Reinforcing twirling, reducing twirling, and needle retaining resulted in a decreased number of apoptotic cells, reduced Bax mRNA and protein expression, and an increased Bcl-2/Bax ratio in the hippocampus compared with the SHR group. Among these groups, the Bcl-2/Bax protein ratio was highest in the reducing twirling group, and the Bcl-2/Bax mRNA ratio was highest in the needle retaining group. These results suggest that reinforcing twirling, reducing twirling, and needle retaining methods all improve blood pressure and prevent target organ damage by increasing the hippocampal Bcl-2/Bax ratio and inhibiting cell apoptosis in the hippocampus in SHR.
Collapse
Affiliation(s)
- Juan Lu
- First Hospital Affiliated to Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yan Guo
- Collage of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| | - Chang-Qing Guo
- First Hospital Affiliated to Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xue-Min Shi
- Collage of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| | - Ning-Yu Du
- First Hospital Affiliated to Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Rui-Li Zhao
- First Hospital Affiliated to Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Wen-Ping Du
- Shijiazhuang Hospital of Traditional Chinese Medicine, Shijiazhuang, Hebei Province, China
| | - Jing-Rong Liang
- First Hospital Affiliated to Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Shi-Peng Zhu
- Second School of Clinical Medicine of Nanjing University of Traditional Chinese Medicine, Nanjing, Jiangsu Province, China
| | - Huan Chen
- Department of Acupuncture and Moxibustion, Jiangsu Province Hospital, Nanjing, Jiangsu Province, China
| |
Collapse
|
66
|
Shu S, Li CM, You YL, Qian XL, Zhou S, Ling CQ. Electroacupuncture Ameliorates Cerebral Ischemia-Reperfusion Injury by Regulation of Autophagy and Apoptosis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2016; 2016:7297425. [PMID: 27800003 PMCID: PMC5075311 DOI: 10.1155/2016/7297425] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 07/20/2016] [Indexed: 01/24/2023]
Abstract
Background. The therapeutic mechanisms of cerebral ischemia treatment by acupuncture are yet not well addressed. Objective. We investigated the effects of electroacupuncture (EA) at GV26 observing the expression of autophagy-related proteins Beclin-1 and LC3B and proportion of apoptotic cells and Bcl-2 positive cells in MCAO/R model rats. Methods. Sprague-Dawley (SD) male rats were randomly assigned to 7 groups: model groups (M6h, M24h, and M72h), EA treatment groups (T6h, T24h, and T72h), and sham operation group (S). Neurological deficit and cerebral infarction volume were measured to assess the improvement effect, while the expression of Beclin-1 and LC3B and proportion of Tunel-positive and Bcl-2 positive cells were examined to explore EA effect on autophagy and apoptosis. Results. EA significantly decreased neurological deficit scores and the volume of cerebral infarction. Beclin-1 was significantly decreased in T24h, while LC3B-II/LC3B-I ratio markedly reduced in 6th hour. EA groups markedly reduced the number of Tunel positive cells, especially in T24h. Meanwhile, the number of Bcl-2 positive cells obviously increased after EA treatment, especially in T6h and T24h. Conclusions. The alleviation of inadequate autophagy and apoptosis may be a key mechanism involved in the reflex regulation of EA at GV26 to treat cerebral ischemia.
Collapse
Affiliation(s)
- Shi Shu
- Changhai Hospital of Traditional Chinese Medicine, Second Military Medical University, No. 168, Changhai Road, Yangpu District, Shanghai 200433, China
| | - Chun-Ming Li
- Changhai Hospital of Traditional Chinese Medicine, Second Military Medical University, No. 168, Changhai Road, Yangpu District, Shanghai 200433, China
| | - Yan-Li You
- Changhai Hospital of Traditional Chinese Medicine, Second Military Medical University, No. 168, Changhai Road, Yangpu District, Shanghai 200433, China
| | - Xiao-Lu Qian
- Changhai Hospital of Traditional Chinese Medicine, Second Military Medical University, No. 168, Changhai Road, Yangpu District, Shanghai 200433, China
| | - Shuang Zhou
- Changhai Hospital of Traditional Chinese Medicine, Second Military Medical University, No. 168, Changhai Road, Yangpu District, Shanghai 200433, China
| | - Chang-quan Ling
- Changhai Hospital of Traditional Chinese Medicine, Second Military Medical University, No. 168, Changhai Road, Yangpu District, Shanghai 200433, China
| |
Collapse
|
67
|
Zhang Y, Lin R, Tao J, Wu Y, Chen B, Yu K, Chen J, Li X, Chen LD. Electroacupuncture improves cognitive ability following cerebral ischemia reperfusion injury via CaM-CaMKIV-CREB signaling in the rat hippocampus. Exp Ther Med 2016; 12:777-782. [PMID: 27446275 DOI: 10.3892/etm.2016.3428] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 05/22/2015] [Indexed: 12/13/2022] Open
Abstract
The aim of the present study was to investigate the effect of electroacupuncture (EA) on cognitive deficits, and the underlying mechanism following cerebral ischemia-reperfusion (I/R) via the calmodulin (CaM)-calmodulin-dependent protein kinase type IV (CaMKIV)-cyclic adenosine monophosphate response elements binding protein (CREB) intracellular signaling pathway in the hippocampus. In total, 45 adult female Sprague-Dawley rats were randomly divided into three groups, namely the sham group, the middle cerebral artery occlusion (MCAO) group and the MCAO + EA group. Rats in the MCAO and MCAO + EA groups were modeled for post-stroke cognitive impairment. EA was performed at the Baihui and Shenting acupuncture points for 30 min/day for one week in the MCAO + EA group. Behavioral testing was analyzed using a step-down apparatus, while 2,3,5-triphenyl tetrazolium chloride was used to detect the infarct volume and lesion size. In addition, CaM activity was assessed by cyclic nucleotide-dependent phosphodiesterase analysis, and the protein expression levels of CaM, CaMKIV, phosphorylated (p)-CaMKIV, CREB and p-CREB were analyzed by western blot analysis. The cerebral I/R injured rat model in the MCAO group was established successfully with regard to the infarct volume and neuronal lesion size, as compared with the sham group. EA was demonstrated to effectively improve the cognitive ability, as measured by the step-down apparatus test, and decrease the infarct volume when compared with the MCAO group (P<0.05). The step-down apparatus test for the EA-treated rats revealed improved learning and reduced memory impairment when compared with the MCAO group. Furthermore, CaM activity and CaM protein expression levels in the MCAO + EA group were lower compared with those in the MCAO group (P<0.05). By contrast, the protein expression levels of CaMKIV, p-CaMKIV, CREB and p-CREB were significantly reduced in the MCAO group when compared with the sham group (P<0.05), although the expression levels increased following EA treatment when compared with the MCAO group (P<0.05). Therefore, cognitive repair benefited from EA, and the main intracellular signaling pathway in the hippocampus was mediated by CaM-CaMKIV-CREB. EA effectively inhibited the expression and activity of CaM, while further enhancing the expression of CaMKIV and CREB, and their associated phosphorylated functions.
Collapse
Affiliation(s)
- Yun Zhang
- College of Rehabilitation Medicine, Fujian University of Traditional Medicine, Fuzhou, Fujian 350122, P.R. China; The Clinical Medicine Department, Fujian Health College, Fuzhou, Fujian 350101, P.R. China
| | - Ruhui Lin
- College of Rehabilitation Medicine, Fujian University of Traditional Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Jing Tao
- College of Rehabilitation Medicine, Fujian University of Traditional Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Yunan Wu
- Fujian Key Laboratory of Exercise Rehabilitation, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Bin Chen
- Traditional Chinese Medicine Rehabilitation Research Center, State Administration of Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Kunqiang Yu
- Traditional Chinese Medicine Rehabilitation Research Center, State Administration of Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Jixiang Chen
- Traditional Chinese Medicine Rehabilitation Research Center, State Administration of Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Xiaojie Li
- Fujian Key Laboratory of Exercise Rehabilitation, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Li-Dian Chen
- Fujian Key Laboratory of Exercise Rehabilitation, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| |
Collapse
|
68
|
A review of inflammatory signaling pathway regulated by acupuncture. WORLD JOURNAL OF ACUPUNCTURE-MOXIBUSTION 2016. [DOI: 10.1016/s1003-5257(17)30013-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
69
|
Lin R, Yu K, Li X, Tao J, Lin Y, Zhao C, Li C, Chen LD. Electroacupuncture ameliorates post-stroke learning and memory through minimizing ultrastructural brain damage and inhibiting the expression of MMP-2 and MMP-9 in cerebral ischemia-reperfusion injured rats. Mol Med Rep 2016; 14:225-33. [PMID: 27177163 PMCID: PMC4918523 DOI: 10.3892/mmr.2016.5227] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 04/19/2016] [Indexed: 12/15/2022] Open
Abstract
The aim of the present study was to investigate the potential neuroprotective effects of electroacupuncture (EA) in the treatment of cerebral ischemia/reperfusion (I/R) injury, and to elucidate the association between this neuroprotective effect and brain ultrastructure and expression of matrix metalloproteinase (MMP)-2 and 9. Rats underwent focal cerebral I/R injury by arterial ligation and received in vivo therapeutic EA at the Baihui (DU20) and Shenting (DU24) acupoints. The therapeutic efficacy was then evaluated following the surgery. The results of the current study demonstrated that EA treatment significantly ameliorated neurological deficits and reduced cerebral infarct volume compared with I/R injured rats. Furthermore, EA improved the learning and memory ability of rats following I/R injury, inhibited blood brain barrier breakdown and reduced neuronal damage in the ischemic penumbra. Furthermore, EA attenuated ultrastructural changes in the brain tissue following ischemia and inhibited MMP-2/MMP-9 expression in cerebral I/R injured rats. The results suggest that EA ameliorates anatomical deterioration, and learning and memory deficits in rats with cerebral I/R injury.
Collapse
Affiliation(s)
- Ruhui Lin
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Kunqiang Yu
- TCM Rehabilitation Research Center of SATCM, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Xiaojie Li
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Jing Tao
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Yukun Lin
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Congkuai Zhao
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Chunyan Li
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Li-Dian Chen
- Fujian Key Laboratory of Exercise Rehabilitation, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| |
Collapse
|
70
|
LIN RUHUI, WU YUNAN, TAO JING, CHEN BIN, CHEN JIXIANG, ZHAO CONGKUAI, YU KUNQIANG, LI XIAOJIE, CHEN LIDIAN. Electroacupuncture improves cognitive function through Rho GTPases and enhances dendritic spine plasticity in rats with cerebral ischemia-reperfusion. Mol Med Rep 2016; 13:2655-60. [DOI: 10.3892/mmr.2016.4870] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Accepted: 12/23/2015] [Indexed: 11/05/2022] Open
|
71
|
LIN RUHUI, CHEN JIXIANG, LI XIAOJIE, MAO JINGJIE, WU YUNAN, ZHUO PEIYUAN, ZHANG YINZHENG, LIU WEILIN, HUANG JIA, TAO JING, CHEN LIDIAN. Electroacupuncture at the Baihui acupoint alleviates cognitive impairment and exerts neuroprotective effects by modulating the expression and processing of brain-derived neurotrophic factor in APP/PS1 transgenic mice. Mol Med Rep 2016; 13:1611-7. [PMID: 26739187 PMCID: PMC4732857 DOI: 10.3892/mmr.2015.4751] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 12/02/2015] [Indexed: 01/01/2023] Open
Abstract
Alzheimer's disease (AD) is a common human neurodegenerative disorder characterized by progressive deterioration of cognition and memory. Acupuncture at the Baihui (DU20) acupoint has long been used in China to clinically treat cognitive impairment. However, the precise mechanism underlying its neuroprotective effects remains to be elucidated. In the present study, electroacupuncture (EA) at the Baihui (DU20) acupoint was observed to markedly ameliorate cognitive impairments, reduce the aberrant overexpression of β-amyloid(1-42), and inhibit neuronal apoptosis in APP/PS1 mice. As brain-derived neurotrophic factor (BDNF) has been implicated in the pathogenesis of AD, the expression and processing of BDNF in APP/PS1 mice was investigated. EA at the Baihui (DU20) acupoint was indicated to significantly enhance the expression levels of mature BDNF and proBDNF in APP/PS1 mice. Furthermore, an increase in the BDNF/proBDNF ratio, upregulation of the expression levels of phosphorylated tropomyosin receptor kinase B and a decrease in the expression level of p75 neurotrophin receptor were also observed in the APP/PS1 mice. The present study demonstrates the efficacy of EA at the Baihui (DU20) acupoint in the treatment of cognitive impairments in APP/PS1 transgenic mice. The present study hypothesized that modulation of BDNF expression and processing may be the underlying mechanism by which stimulation of the Baihui (DU20) acupoint exerts its neuroprotective effect.
Collapse
Affiliation(s)
- RUHUI LIN
- College of Rehabilitation Medicine, Fujian University of Traditional Medicine, Fuzhou, Fujian 350122, P.R. China
- Academy of Integrative Medicine Biomedical Research Center, Fuzhou, Fujian 350122, P.R. China
| | - JIXIANG CHEN
- College of Rehabilitation Medicine, Fujian University of Traditional Medicine, Fuzhou, Fujian 350122, P.R. China
- Department of Rehabilitation Medicine, Guangzhou First People's Hospital, Guangzhou, Guangdong 510180, P.R. China
| | - XIAOJIE LI
- College of Rehabilitation Medicine, Fujian University of Traditional Medicine, Fuzhou, Fujian 350122, P.R. China
| | - JINGJIE MAO
- Academy of Integrative Medicine Biomedical Research Center, Fuzhou, Fujian 350122, P.R. China
| | - YUNAN WU
- College of Rehabilitation Medicine, Fujian University of Traditional Medicine, Fuzhou, Fujian 350122, P.R. China
| | - PEIYUAN ZHUO
- College of Rehabilitation Medicine, Fujian University of Traditional Medicine, Fuzhou, Fujian 350122, P.R. China
| | - YINZHENG ZHANG
- College of Rehabilitation Medicine, Fujian University of Traditional Medicine, Fuzhou, Fujian 350122, P.R. China
| | - WEILIN LIU
- College of Rehabilitation Medicine, Fujian University of Traditional Medicine, Fuzhou, Fujian 350122, P.R. China
- Fujian Key Laboratory of Exercise Rehabilitation, Fuzhou, Fujian 350122, P.R. China
| | - JIA HUANG
- College of Rehabilitation Medicine, Fujian University of Traditional Medicine, Fuzhou, Fujian 350122, P.R. China
- Fujian Key Laboratory of Exercise Rehabilitation, Fuzhou, Fujian 350122, P.R. China
| | - JING TAO
- College of Rehabilitation Medicine, Fujian University of Traditional Medicine, Fuzhou, Fujian 350122, P.R. China
- TCM Rehabilitation Research Center of SATCM, Fuzhou, Fujian 350122, P.R. China
| | - LI-DIAN CHEN
- College of Rehabilitation Medicine, Fujian University of Traditional Medicine, Fuzhou, Fujian 350122, P.R. China
- Fujian Rehabilitation Tech Co-innovation Center, Fujian University of Traditional Medicine, Fuzhou, Fujian 350122, P.R. China
| |
Collapse
|
72
|
Liu W, Wang X, Zheng Y, Shang G, Huang J, Tao J, Chen L. Electroacupuncture inhibits inflammatory injury by targeting the miR-9-mediated NF-κB signaling pathway following ischemic stroke. Mol Med Rep 2015; 13:1618-26. [PMID: 26718002 PMCID: PMC4732826 DOI: 10.3892/mmr.2015.4745] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2015] [Accepted: 12/08/2015] [Indexed: 11/30/2022] Open
Abstract
The aim of the present study was to investigate the neuroprotective mechanism of the miR-9-mediated activation of the nuclear factor (NF)-κB signaling pathway by electroacupuncture (EA) stimulation of the Quchi (LI11) and Zusanli (ST36) acupoints in a rat model of middle cerebral artery occlusion (MCAO). The present study demonstrated that EA alleviated the symptoms of neurological deficits and reduced the infarct volume in the rat brains. The expression of miR-9 in the peri-infarct cortex was increased in the EA group compared with the MCAO group, and the expression of NF-κB signaling pathway-associated factors, NF-κB p65, tumor necrosis factor (TNF)-α and interleukin (IL)-1β were reduced. Notably, miR-9 inhibitors were revealed to have the ability to suppress EA-alleviated cerebral inflammation and the expression of NF-κB downstream-related factors, NF-κB p65, TNF-α and IL-1β, and caused no alteration on the level of NF-κB upstream-related protein inhibitor of κBα, suggesting that the cerebral protective efficacy of EA targets miR-9-mediated NF-κB downstream pathway following ischemic stroke.
Collapse
Affiliation(s)
- Weilin Liu
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Xian Wang
- Fujian Rehabilitation Tech Co‑innovation Center, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Yi Zheng
- Fujian Rehabilitation Engineering Research Center & Fujian Key Lab of Motor Function Rehabilitation, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Guanhao Shang
- Fujian Rehabilitation Tech Co‑innovation Center, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Jia Huang
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Jing Tao
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Lidian Chen
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| |
Collapse
|
73
|
Liu W, Shang G, Yang S, Huang J, Xue X, Lin Y, Zheng Y, Wang X, Wang L, Lin R, Tao J, Chen L. Electroacupuncture protects against ischemic stroke by reducing autophagosome formation and inhibiting autophagy through the mTORC1-ULK1 complex-Beclin1 pathway. Int J Mol Med 2015; 37:309-18. [PMID: 26647915 PMCID: PMC4716798 DOI: 10.3892/ijmm.2015.2425] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 11/12/2015] [Indexed: 11/06/2022] Open
Abstract
In a previous study by our group, we demonstrated that electroacupuncture (EA) activates the class I phosphoinositide 3-kinase (PI3K)/Akt signaling pathway. There is considerable evidence that the downstream mammalian target of rapamycin complex 1 (mTORC1) plays an important role in autophagy following ischemic stroke. The aim of the present study was to determine whether EA exerts a neuroprotective effect through mTORC1-mediated autophagy following ischemia/reperfusion injury. Our results revealed that EA at the LI11 and ST36 acupoints attenuated motor dysfunction, improved neurological deficit outcomes and decreased the infarct volumes. The number of autophagosomes, autolysosomes and lysosomes was decreased following treatment with EA. Simultaneously, the levels of the autophagosome membrane maker, microtubule-associated protein 1 light chain 3 beta (LC3B)II/I, Unc-51-like kinase 1 (ULK1), autophagy related gene 13 Atg13) and Beclin1 (ser14) were decreased, whereas mTORC1 expression was increased in the peri-infarct cortex. These results suggest that EA protects against ischemic stroke through the inhibition of autophagosome formation and autophagy, which is mediated through the mTORC1-ULK complex-Beclin1 pathway.
Collapse
Affiliation(s)
- Weilin Liu
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Guanhao Shang
- The Fujian Province Key Laboratory of Motor Functional Rehabilitation, Fuzhou, Fujian 350001, P.R. China
| | - Shanli Yang
- Rehabilitation Hospital Affiliated to Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350001, P.R. China
| | - Jia Huang
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Xiehua Xue
- Rehabilitation Hospital Affiliated to Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350001, P.R. China
| | - Yunjiao Lin
- The Fujian Province Key Laboratory of Motor Functional Rehabilitation, Fuzhou, Fujian 350001, P.R. China
| | - Yi Zheng
- The Fujian Province Key Laboratory of Motor Functional Rehabilitation, Fuzhou, Fujian 350001, P.R. China
| | - Xian Wang
- The Fujian Province Key Laboratory of Motor Functional Rehabilitation, Fuzhou, Fujian 350001, P.R. China
| | - Lulu Wang
- The Fujian Province Key Laboratory of Motor Functional Rehabilitation, Fuzhou, Fujian 350001, P.R. China
| | - Ruhui Lin
- The Fujian Province Key Laboratory of Motor Functional Rehabilitation, Fuzhou, Fujian 350001, P.R. China
| | - Jing Tao
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Lidian Chen
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| |
Collapse
|
74
|
Huang J, McCaskey MA, Yang S, Ye H, Tao J, Jiang C, Schuster-Amft C, Balzer C, Ettlin T, Schupp W, Kulke H, Chen L. Effects of acupuncture and computer-assisted cognitive training for post-stroke attention deficits: study protocol for a randomized controlled trial. Trials 2015; 16:546. [PMID: 26631161 PMCID: PMC4667410 DOI: 10.1186/s13063-015-1054-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 11/12/2015] [Indexed: 11/20/2022] Open
Abstract
Background A majority of stroke survivors present with cognitive impairments. Attention disturbance, which leads to impaired concentration and overall reduced cognitive functions, is strongly associated with stroke. The clinical efficacy of acupuncture with Baihui (GV20) and Shenting (GV24) as well as computer-assisted cognitive training in stroke and post-stroke cognitive impairment have both been demonstrated in previous studies. To date, no systematic comparison of these exists and the potential beneficial effects of a combined application are yet to be examined. The main objective of this pilot study is to evaluate the effects of computer-assisted cognitive training compared to acupuncture on the outcomes of attention assessments. The second objective is to test the effects of a combined cognitive intervention that incorporates computer-assisted cognitive training and acupuncture (ACoTrain). Methods/Design An international multicentre, single-blinded, randomised controlled pilot trial will be conducted. In a 1:1:1 ratio, 60 inpatients with post-stroke cognitive dysfunction will be randomly allocated into either the acupuncture group, the computer-assisted cognitive training group, or the ACoTrain group in addition to their individual rehabilitation programme. The intervention period of this pilot trial will last 4 weeks (30 minutes per day, 5 days per week, Monday to Friday). The primary outcome is the test battery for attentional performance. The secondary outcomes include the Trail Making Test, Test des Deux Barrages, National Institute of Health Stroke Scale, and Modified Barthel Index for assessment of daily life competence, and the EuroQol Questionnaire for health-related quality of life. Discussion This trial mainly focuses on evaluating the effects of computer-assisted cognitive training compared to acupuncture on the outcomes of attention assessments. The results of this pilot trial are expected to provide new insights on how Eastern and Western medicine can complement one another and improve the treatment of cognitive impairments in early stroke rehabilitation. Including patients with different cultural backgrounds allows a more generalisable interpretation of the results but also poses risks of performance bias. Using standardised and well-described assessments, validated for each region, is pivotal to allow pooling of the data. Trial registration Clinical Trails.gov ID: NCT02324959 (8 December 2014)
Collapse
Affiliation(s)
- Jia Huang
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, No.1 Huatuo Road, Minhou District, Fuzhou, 350122, Fujian Province, China.
| | - Michael A McCaskey
- Research Department, Reha Rheinfelden, Salinenstrasse 98, 4310, Rheinfelden, Switzerland.
| | - Shanli Yang
- Fujian University of Traditional Chinese Medicine Affiliated Rehabilitation Hospital, No. 282 Wusi Road, Fuzhou, 350003, Fujian Province, China.
| | - Haicheng Ye
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, No.1 Huatuo Road, Minhou District, Fuzhou, 350122, Fujian Province, China.
| | - Jing Tao
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, No.1 Huatuo Road, Minhou District, Fuzhou, 350122, Fujian Province, China. .,Fujian University of Traditional Chinese Medicine Affiliated Rehabilitation Hospital, No. 282 Wusi Road, Fuzhou, 350003, Fujian Province, China.
| | - Cai Jiang
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, No.1 Huatuo Road, Minhou District, Fuzhou, 350122, Fujian Province, China.
| | - Corina Schuster-Amft
- Research Department, Reha Rheinfelden, Salinenstrasse 98, 4310, Rheinfelden, Switzerland.
| | - Christian Balzer
- Research Department, Reha Rheinfelden, Salinenstrasse 98, 4310, Rheinfelden, Switzerland.
| | - Thierry Ettlin
- Research Department, Reha Rheinfelden, Salinenstrasse 98, 4310, Rheinfelden, Switzerland.
| | - Wilfried Schupp
- m&i-Fachklinik Herzogenaurach, In der Reuth 1, 91074, Herzogenaurach, Germany.
| | - Hartwig Kulke
- m&i-Fachklinik Herzogenaurach, In der Reuth 1, 91074, Herzogenaurach, Germany.
| | - Lidian Chen
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, No.1 Huatuo Road, Minhou District, Fuzhou, 350122, Fujian Province, China.
| |
Collapse
|
75
|
Zhou ZG, Zhang CY, Fei HX, Zhong LL, Bai Y. Phenolic alkaloids from Menispermum dauricum inhibits BxPC-3 pancreatic cancer cells by blocking of Hedgehog signaling pathway. Pharmacogn Mag 2015; 11:690-7. [PMID: 26600712 PMCID: PMC4621636 DOI: 10.4103/0973-1296.165548] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Background: The Hedgehog (Hh) signaling pathway plays an important role in pancreatic cancer (PC) cells. Phenolic alkaloids from Menispermum dauricum (PAMD), a traditional Chinese medicine used for the treatment of immune disorders, have been reported to have antitumor activity recently. Objective: To investigate the efficacy and mechanism of PAMD against PC cell BxPC-3. Materials and Methods: F assay was used to assess cell proliferation inhibition of PAMD; the apoptotic induction and cell cycle arrest was detected by flow cytometry; the BxPC-3 xenograft was established to evaluate the tumor growth inhibition of PAMD; hematoxylin-eosin staining was applied to analyze the pathological morphology of tumor tissues; immunohistochemistry (IHC) and Western blot was adopted to detect the protein levels; quantitative real-time polymerase chain reaction was used to determine the mRNA expressions. Results: PAMD shows time-and dose-dependent proliferation inhibition on the BxPC-3 cell, induced G0/G1 phase arrest and cell apoptosis in vitro. PAMD also showed better inhibition of tumor growth and a preferable safety profile compared with chemotherapeutic regimen 5-fluoro-2, 4 (1 H, 3 H) pyrimidinedione in BxPC-3 xenograft in vivo. Furthermore, PAMD directly decreases the protein and mRNA levels of Sonic Hedgehog (Shh) and its downstream transcription factor Gli-1 in the BxPC-3 tumor tissues. Conclusion: The treatment of PAMD displayed Hh signaling pathway blockade through decreasing the protein and mRNA levels of Shh and its downstream transcription factor Gli-1, suggesting a promising strategy in treating human PC.
Collapse
Affiliation(s)
- Zhong-Guang Zhou
- Research Institute of Traditional Chinese Medicine, Heilongjiang, China
| | - Chao-Ying Zhang
- The Fourth Affiliated Hospital, Harbin Medical University, Heilongjiang, China
| | - Hong-Xin Fei
- Research Institute of Traditional Chinese Medicine, Heilongjiang, China ; Department of Qiqihar Medical University, Basic Medicine, Heilongjiang, China
| | - Li-Li Zhong
- Department of Pathology, The First Affiliated Hospital, Heilongjiang, China
| | - Yun Bai
- Basic Medical College, Heilongjiang University of Chinese Medicine, Heilongjiang, China
| |
Collapse
|
76
|
Electro-acupuncture at LI11 and ST36 acupoints exerts neuroprotective effects via reactive astrocyte proliferation after ischemia and reperfusion injury in rats. Brain Res Bull 2015; 120:14-24. [PMID: 26524137 DOI: 10.1016/j.brainresbull.2015.10.011] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2015] [Revised: 10/22/2015] [Accepted: 10/26/2015] [Indexed: 11/23/2022]
Abstract
Reactive astrogliosis is a common phenomenon in central nervous system (CNS) injuries such as ischemic stroke. The present study aimed to deeply investigate the relationships between the neuroprotective effect of electro-acupuncture (EA) and reactive astrocytes following cerebral ischemia. EA treatment at the Quchi (LI11) and Zusanli (ST36) acupoints at Day 3 attenuated neurological deficits and cerebral infarct volume in ischemia and reperfusion (I/R) injured rats. Animal behavior assessments found that the speed of Catwalk gait, equilibrium and coordination of Rotarod test were improved. Furthermore, EA treatment exerted neuroprotective effects via activation of glial fibrillary acidic protein (GFAP), vimentin and nestin positive cells. Simultaneously, an obvious increase in GFAP/vimentin, GFAP/nestin and GFAP/BrdU co-labeling appeared in the peri-infract cortex and striatum, suggesting EA can promote the proliferation of GFAP/vimentin/nestin-positive reactive astrocytes. The expression of cell cycle-associated proteins Cyclin Dl, CDK4 and phospho-Rb were increased in the peri-infract cortex and striatum, indicating proliferated reactive astrocytes-mediated CyclinDl/CDK4 regulation of the transition of the G1-to-S cell cycle phases. In addition, EA enhanced the localized expression of brain-derived neurotrophic factor (BDNF) in the peri-infract cortex and striatum. These results demonstrated that EA treatment at the LI11 and ST36 acupoints on Day 3 exerted neuroprotection via proliferation of GFAP/vimentin/nestin-positive reactive astrocytes and, potentially, secretion of reactive astrocytes-derived BDNF in I/R injured rats.
Collapse
|
77
|
Liu F, Jiang YJ, Zhao HJ, Yao LQ, Chen LD. Electroacupuncture ameliorates cognitive impairment and regulates the expression of apoptosis-related genes Bcl-2 and Bax in rats with cerebral ischaemia-reperfusion injury. Acupunct Med 2015; 33:478-84. [PMID: 26376847 DOI: 10.1136/acupmed-2014-010728] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/23/2015] [Indexed: 11/04/2022]
Abstract
BACKGROUND Post-stroke cognitive impairment seriously affects the quality of life and functional rehabilitation of patients with stroke. OBJECTIVE To examine the effects of electroacupuncture (EA) at GV20 and GV24 on cognitive impairment and apoptosis including expression of apoptosis-related genes Bcl-2 and Bax in a rat model of cerebral ischaemia-reperfusion (IR) induced by middle cerebral artery occlusion (MCAO). METHODS Thirty-five Sprague-Dawley rats were allocated to a sham operation control group (SC group, n=10) or underwent surgery and MCAO (n=25). Postoperatively the latter group was randomly subdivided into EA or untreated (IR) groups. Cognitive impairment was assessed using the Morris water maze (MWM). Apoptosis was examined by detection of Bcl-2 and Bax expression in the cerebral cortex. RESULTS The EA group had significantly decreased neurological deficit scores compared to the IR group (p<0.05). In the MWM test, significant differences in escape latency and route were observed between the EA and IR groups (p<0.05). Rats in the EA group performed better in the probe trial than those in the IR group (p<0.05). EA treatment markedly reduced the number of TUNEL-positive cells compared to the IR group (20.13±4.30% vs 38.40±3.38%; p<0.001). Reverse transcription-polymerase chain reaction (RT-PCR) results showed the Bcl-2/Bax ratio was significantly increased in the EA group compared to the IR group (1.61±0.19 vs 0.50±0.05, p<0.01). CONCLUSIONS These findings suggest that EA ameliorates cognitive impairment of rats with IR injury by modulating Bcl-2 and Bax expression.
Collapse
Affiliation(s)
- Fang Liu
- Fujian University of Traditional Chinese Medicine, Fuzhou, P. R. China
| | - Yi-Jing Jiang
- Fujian University of Traditional Chinese Medicine, Fuzhou, P. R. China
| | - Hong-Jia Zhao
- School of Nursing, Fujian University of Traditional Chinese Medicine, Fuzhou, P. R. China
| | - Li-Qun Yao
- School of Nursing, Fujian University of Traditional Chinese Medicine, Fuzhou, P. R. China
| | - Li-Dian Chen
- Fujian University of Traditional Chinese Medicine, Fuzhou, P. R. China
| |
Collapse
|
78
|
Lin R, Lin Y, Tao J, Chen B, Yu K, Chen J, Li X, Chen LD. Electroacupuncture ameliorates learning and memory in rats with cerebral ischemia-reperfusion injury by inhibiting oxidative stress and promoting p-CREB expression in the hippocampus. Mol Med Rep 2015; 12:6807-14. [PMID: 26397995 DOI: 10.3892/mmr.2015.4321] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Accepted: 04/17/2015] [Indexed: 11/06/2022] Open
Abstract
The present study aimed to investigate the mechanisms by which electroacupuncture (EA) ameliorates learning and memory in rats with cerebral ischemic‑reperfusion (I/R) injury. Focal cerebral ischemia was induced in adult male Sprague‑Dawley (SD) rats by transient middle cerebral artery occlusion (MCAO). Following MCAO surgery, the rats received EA at the Shenting (DU24) and Baihui (DU20) acupoints. The results of the present study demonstrated that treatment with EA significantly ameliorated neurological deficits and reduced cerebral infarct volume (P<0.05). In addition, EA improved the learning and memory ability of the rats, and markedly activated the cyclic adenosine monophosphate (cAMP) response element‑binding protein (CREB) signaling pathway, resulting in the inhibition of cerebral cell apoptosis in the ischemic penumbra. Furthermore, EA increased the activity of superoxide dismutase and glutathione peroxidase, the protein expression levels of phosphorylated‑CREB and B‑cell lymphoma 2 (Bcl‑2), and the mRNA expression levels of Bcl‑2. Conversely, EA decreased the levels of malondialdehyde and inhibited the expression levels of Bcl2‑associated X protein. The results of the present study suggest that treatment with EA may result in the amelioration of learning and memory ability in rats with cerebral I/R injury.
Collapse
Affiliation(s)
- Ruhui Lin
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Yukun Lin
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Jing Tao
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Bin Chen
- TCM Rehabilitation Research Center of SATCM, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Kunqiang Yu
- Fujian Key Laboratory of Exercise Rehabilitation, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Jixiang Chen
- Fujian Key Laboratory of Exercise Rehabilitation, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Xiaojie Li
- Fujian Rehabilitation Tech Co‑innovation Center, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Li-Dian Chen
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| |
Collapse
|
79
|
Huang J, Lin Z, Wang Q, Liu F, Liu J, Fang Y, Chen S, Zhou X, Hong W, Wu J, Madrigal-Mora N, Zheng G, Yang S, Tao J, Chen L. The effect of a therapeutic regimen of Traditional Chinese Medicine rehabilitation for post-stroke cognitive impairment: study protocol for a randomized controlled trial. Trials 2015; 16:272. [PMID: 26077459 PMCID: PMC4485558 DOI: 10.1186/s13063-015-0795-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2015] [Accepted: 06/05/2015] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Post-stroke cognitive impairment (PSCI) lessens quality of life, restricts the rehabilitation of stroke, and increases the social and economic burden stroke imposes on patients and their families. Therefore effective treatment is of paramount importance. However, the treatment of PSCI is very limited. The primary aim of this protocol is to propose a lower cost and more effective therapy, and to confirm the long-term effectiveness of a therapeutic regimen of Traditional Chinese Medicine (TCM) rehabilitation for PSCI. METHODS/DESIGN A prospective, multicenter, large sample, randomized controlled trial will be conducted. A total of 416 eligible patients will be recruited from seven inpatient and outpatient stroke rehabilitation units and randomly allocated into a therapeutic regimen of TCM rehabilitation group or cognitive training (CT) control group. The intervention period of both groups will last 12 weeks (30 minutes per day, five days per week). Primary and secondary outcomes will be measured at baseline, 12 weeks (at the end of the intervention), and 36 weeks (after the 24-week follow-up period). DISCUSSION This protocol presents an objective design of a multicenter, large sample, randomized controlled trial that aims to put forward a lower cost and more effective therapy, and confirm the long-term effectiveness of a therapeutic regimen of TCM rehabilitation for PSCI through subjective and objective assessments, as well as highlight its economic advantages. TRIAL REGISTRATION This trial was registered with the Chinese Clinical Trial Registry (identifier: ChiCTR-TRC-14004872 ) on 23 June 2014.
Collapse
Affiliation(s)
- Jia Huang
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, No. 1 Huatuo Road Shangjie Minhou, Fuzhou, 350122, China. .,Fujian Key Laboratory of Exercise Rehabilitation, No. 282 WUSI Road, Gulou, Fuzhou, 350003, China. .,National Rehabilitation Research Center of Traditional Chinese Medicine, No. 1 Huatuo Road Shangjie Minhou, Fuzhou, 350122, China.
| | - Zhengkun Lin
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, No. 1 Huatuo Road Shangjie Minhou, Fuzhou, 350122, China.
| | - Qin Wang
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, No. 1 Huatuo Road Shangjie Minhou, Fuzhou, 350122, China.
| | - Feiwen Liu
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, No. 1 Huatuo Road Shangjie Minhou, Fuzhou, 350122, China.
| | - Jiao Liu
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, No. 1 Huatuo Road Shangjie Minhou, Fuzhou, 350122, China.
| | - Yunhua Fang
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, No. 1 Huatuo Road Shangjie Minhou, Fuzhou, 350122, China.
| | - Shanjia Chen
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, No. 1 Huatuo Road Shangjie Minhou, Fuzhou, 350122, China.
| | - Xiaoxuan Zhou
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, No. 1 Huatuo Road Shangjie Minhou, Fuzhou, 350122, China.
| | - Wenjun Hong
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, No. 1 Huatuo Road Shangjie Minhou, Fuzhou, 350122, China.
| | - Jinsong Wu
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, No. 1 Huatuo Road Shangjie Minhou, Fuzhou, 350122, China.
| | - Natalia Madrigal-Mora
- Friedrich-Alexander University Erlangen-Nuremberg, Schlossplatz 4, 91054, Erlangen, Germany.
| | - Guohua Zheng
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, No. 1 Huatuo Road Shangjie Minhou, Fuzhou, 350122, China.
| | - Shanli Yang
- Fujian University of Traditional Chinese Medicine Subsidiary Rehabilitation Hospital, No. 282 WUSI Road, Gulou, Fuzhou, 350003, China.
| | - Jing Tao
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, No. 1 Huatuo Road Shangjie Minhou, Fuzhou, 350122, China. .,Fujian Key Laboratory of Exercise Rehabilitation, No. 282 WUSI Road, Gulou, Fuzhou, 350003, China. .,National Rehabilitation Research Center of Traditional Chinese Medicine, No. 1 Huatuo Road Shangjie Minhou, Fuzhou, 350122, China.
| | - Lidian Chen
- Fujian Key Laboratory of Exercise Rehabilitation, No. 282 WUSI Road, Gulou, Fuzhou, 350003, China. .,National Rehabilitation Research Center of Traditional Chinese Medicine, No. 1 Huatuo Road Shangjie Minhou, Fuzhou, 350122, China. .,Fujian University of Traditional Chinese Medicine, No. 1 Huatuo Road Shangjie Minhou, Fuzhou, 350122, China.
| |
Collapse
|
80
|
Zou W, Chen QX, Sun XW, Chi QB, Kuang HY, Yu XP, Dai XH. Acupuncture inhibits Notch1 and Hes1 protein expression in the basal ganglia of rats with cerebral hemorrhage. Neural Regen Res 2015; 10:457-62. [PMID: 25878596 PMCID: PMC4396110 DOI: 10.4103/1673-5374.153696] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/12/2014] [Indexed: 12/28/2022] Open
Abstract
Notch pathway activation maintains neural stem cells in a proliferating state and increases nerve repair capacity. To date, studies have rarely focused on changes or damage to signal transduction pathways during cerebral hemorrhage. Here, we examined the effect of acupuncture in a rat model of cerebral hemorrhage. We examined four groups: in the control group, rats received no treatment. In the model group, cerebral hemorrhage models were established by infusing non-heparinized blood into the brain. In the acupuncture group, modeled rats had Baihui (DU20) and Qubin (GB7) acupoints treated once a day for 30 minutes. In the DAPT group, modeled rats had 0.15 μg/mL DAPT solution (10 mL) infused into the brain. Immunohistochemistry and western blot results showed that acupuncture effectively inhibits Notch1 and Hes1 protein expression in rat basal ganglia. These inhibitory effects were identical to DAPT, a Notch signaling pathway inhibitor. Our results suggest that acupuncture has a neuroprotective effect on cerebral hemorrhage by inhibiting Notch-Hes signaling pathway transduction in rat basal ganglia after cerebral hemorrhage.
Collapse
Affiliation(s)
- Wei Zou
- Third Department of Acupuncture, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang Province, China
| | - Qiu-Xin Chen
- Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang Province, China
| | - Xiao-Wei Sun
- Third Department of Acupuncture, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang Province, China
| | - Qing-Bin Chi
- Third Department of Acupuncture, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang Province, China
| | - Hong-Yu Kuang
- Department of Endocrinology, First Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Xue-Ping Yu
- Third Department of Acupuncture, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang Province, China
| | - Xiao-Hong Dai
- Third Department of Acupuncture, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang Province, China
| |
Collapse
|
81
|
Zhao Y, Xiao M, He W, Cai Z. Minocycline upregulates cyclic AMP response element binding protein and brain-derived neurotrophic factor in the hippocampus of cerebral ischemia rats and improves behavioral deficits. Neuropsychiatr Dis Treat 2015; 11:507-16. [PMID: 25750531 PMCID: PMC4348135 DOI: 10.2147/ndt.s73836] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND AND PURPOSE The cAMP response element binding protein (CREB) plays an important role in the mechanism of cognitive impairment and is also pivotal in the switch from short-term to long-term memory. Brain-derived neurotrophic factor (BDNF) seems a promising avenue in the treatment of cerebral ischemia injury since this neurotrophin could stimulate structural plasticity and repair cognitive impairment. Several findings have displayed that the dysregulation of the CREB-BDNF cascade has been involved in cognitive impairment. The aim of this study was to investigate the effect of cerebral ischemia on learning and memory as well as on the levels of CREB, phosphorylated CREB (pCREB), and BDNF, and to determine the effect of minocycline on CREB, pCREB, BDNF, and behavioral functional recovery after cerebral ischemia. METHODS The animal model was established by permanent bilateral occlusion of both common carotid arteries. Behavior was evaluated 5 days before decapitation with Morris water maze and open-field task. Four days after permanent bilateral occlusion of both common carotid arteries, minocycline was administered by douche via the stomach for 4 weeks. CREB and pCREB were examined by Western blotting, reverse transcription polymerase chain reaction, and immunohistochemistry. BDNF was measured by immunohistochemistry and Western blotting. RESULTS The model rats after minocycline treatment swam shorter distances than control rats before finding the platform (P=0.0007). The number of times the platform position was crossed for sham-operation rats was more than that of the model groups in the corresponding platform location (P=0.0021). The number of times the platform position was crossed for minocycline treatment animals was significantly increased compared to the model groups in the corresponding platform position (P=0.0016). CREB, pCREB, and BDNF were downregulated after permanent bilateral occlusion of both common carotid arteries in the model group. Minocycline increased the expression of CREB, pCREB, and BDNF, and improved cognitive suffered from impairment of permanent bilateral occlusion of both common carotid arteries. CONCLUSION Minocycline improved cognitive impairment from cerebral ischemia via enhancing CREB, pCREB, and BDNF activity in the hippocampus.
Collapse
Affiliation(s)
- Yu Zhao
- Department of Neurology, the Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, People's Republic of China
| | - Ming Xiao
- Department of Anatomy, Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China
| | - Wenbo He
- Department of Neurology, Renmin Hospital, Hubei University of Medicine, Shiyan Renmin Hospital, Shiyan, Hubei Province, People's Republic of China
| | - Zhiyou Cai
- Department of Neurology, Renmin Hospital, Hubei University of Medicine, Shiyan Renmin Hospital, Shiyan, Hubei Province, People's Republic of China
| |
Collapse
|
82
|
Huang S, Tang C, Sun S, Cao W, Qi W, Xu J, Huang J, Lu W, Liu Q, Gong B, Zhang Y, Jiang J. Protective Effect of Electroacupuncture on Neural Myelin Sheaths is Mediated via Promotion of Oligodendrocyte Proliferation and Inhibition of Oligodendrocyte Death After Compressed Spinal Cord Injury. Mol Neurobiol 2014; 52:1870-1881. [PMID: 25465241 DOI: 10.1007/s12035-014-9022-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Accepted: 10/24/2014] [Indexed: 01/05/2023]
Abstract
Electroacupuncture (EA) has been used worldwide to treat demyelinating diseases, but its therapeutic mechanism is poorly understood. In this study, a custom-designed model of compressed spinal cord injury (CSCI) was used to induce demyelination. Zusanli (ST36) and Taixi (KI3) acupoints of adult rats were stimulated by EA to demonstrate its protective effect. At 14 days after EA, both locomotor skills and ultrastructural features of myelin sheath were significantly improved. Phenotypes of proliferating cells were identified by double immunolabeling of 5-ethynyl-2'-deoxyuridine with antibodies to cell markers: NG2 [oligodendrocyte precursor cell (OPC) marker], 2',3'-cyclic-nucleotide 3'-phosphodiesterase (CNPase) (oligodendrocyte marker), and glial fibrillary acidic protein (GFAP) (astrocyte marker). EA enhanced the proliferation of OPCs and CNPase, as well as the differentiation of OPCs by promoting Olig2 (the basic helix-loop-helix protein) and attenuating Id2 (the inhibitor of DNA binding 2). EA could also improve myelin basic protein (MBP) and protect existing oligodendrocytes from apoptosis by inhibiting caspase-12 (a representative of endoplasmic reticulum stress) and cytochrome c (an apoptotic factor and hallmark of mitochondria). Therefore, our results indicate that the protective effect of EA on neural myelin sheaths is mediated via promotion of oligodendrocyte proliferation and inhibition of oligodendrocyte death after CSCI.
Collapse
Affiliation(s)
- Siqin Huang
- Traditional Chinese Medicine College, Chongqing Medical University, No.1 Medical College Road, Yuzhong District, Chongqing, 400016, China.,Institute of Neuroscience, Chongqing Medical University, No.1 Medical College Road, Yuzhong District, Chongqing, 400016, China
| | - Chenglin Tang
- Traditional Chinese Medicine College, Chongqing Medical University, No.1 Medical College Road, Yuzhong District, Chongqing, 400016, China
| | - Shanquan Sun
- Institute of Neuroscience, Chongqing Medical University, No.1 Medical College Road, Yuzhong District, Chongqing, 400016, China.
| | - Wenfu Cao
- Traditional Chinese Medicine College, Chongqing Medical University, No.1 Medical College Road, Yuzhong District, Chongqing, 400016, China
| | - Wei Qi
- Chongqing Three Gorgers Central Hospital, No.165 Xin Cheng Road, Wanzhou District, Chongqing, 400000, China
| | - Jin Xu
- Institute of Neuroscience, Chongqing Medical University, No.1 Medical College Road, Yuzhong District, Chongqing, 400016, China
| | - Juan Huang
- Institute of Neuroscience, Chongqing Medical University, No.1 Medical College Road, Yuzhong District, Chongqing, 400016, China
| | - Weitian Lu
- Institute of Neuroscience, Chongqing Medical University, No.1 Medical College Road, Yuzhong District, Chongqing, 400016, China
| | - Qian Liu
- Institute of Neuroscience, Chongqing Medical University, No.1 Medical College Road, Yuzhong District, Chongqing, 400016, China
| | - Biao Gong
- Traditional Chinese Medicine College, Chongqing Medical University, No.1 Medical College Road, Yuzhong District, Chongqing, 400016, China
| | - Yi Zhang
- Traditional Chinese Medicine College, Chongqing Medical University, No.1 Medical College Road, Yuzhong District, Chongqing, 400016, China
| | - Jin Jiang
- Institute of Neuroscience, Chongqing Medical University, No.1 Medical College Road, Yuzhong District, Chongqing, 400016, China
| |
Collapse
|
83
|
Yang S, Ye H, Huang J, Tao J, Jiang C, Lin Z, Zheng G, Chen L. The synergistic effect of acupuncture and computer-based cognitive training on post-stroke cognitive dysfunction: a study protocol for a randomized controlled trial of 2 × 2 factorial design. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2014; 14:290. [PMID: 25099775 PMCID: PMC4133058 DOI: 10.1186/1472-6882-14-290] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2014] [Accepted: 07/30/2014] [Indexed: 11/28/2022]
Abstract
Background Stroke is one of the most common causes of cognitive impairment. Up to 75% of stroke survivors may be considered to have cognitive impairment, which severely limit individual autonomy for successful reintegration into family, work and social life. The clinical efficacy of acupuncture with Baihui (DU20) and Shenting (DU24) in stroke and post-stroke cognitive impairment has been previously demonstrated. Computer-assisted cognitive training is part of conventional cognitive rehabilitation and has also shown to be effective in improvement of cognitive function of affected patients. However, the cognitive impairment after stroke is so complexity that one single treatment cannot resolve effectively. Besides, the effects of acupuncture and RehaCom cognitive training have not been systematically compared, nor has the possibility of a synergistic effect of combination of the two therapeutic modalities been evaluated. Our primary aim of this trial is to evaluate the synergistic effect of acupuncture and RehaCom cognitive training on cognitive dysfunction after stroke. Method/Design A randomized controlled trial of 2 × 2 factorial design will be conducted in the Rehabilitation Hospital Affiliated to Fujian University of Traditional Chinese Medicine. A total of 240 patients with cognitive dysfunction after stroke who meet the eligibility criteria will be recruited and randomized into RehaCom training group, acupuncture group, a combination of both or control group in a 1:1:1:1 ratio. All patients will receive conventional treatment. The interventions will last for 12 weeks (30 min per day, Monday to Friday every week). Evaluations will be conducted by blinded assessors at baseline and again at 4, 8 and 12 weeks. Outcome measurements include mini–mental state examination (MMSE), Montreal cognitive assessments (MoCA), functional independence measure scale (FIM) and adverse events. Discussion The results of this trial are expected to clarify the synergistic effect of acupuncture and RehaCom cognitive training on cognitive dysfunction after stroke. Furthermore, to confirm whether combined or alone of acupuncture and RehaCom cognitive training, is more effective than conventional treatment in the management of post-stroke cognitive dysfunction. Trial registration Chinese Clinical Trial Registry: ChiCTR-TRC-13003704. Registration date: 4 September, 2013.
Collapse
|
84
|
TAN FENG, CHEN JIE, LIANG YANGUI, GU MINHUA, LI YANPING, WANG XUEWEN, MENG DI. Electroacupuncture attenuates cervical spinal cord injury following cerebral ischemia/reperfusion in stroke-prone renovascular hypertensive rats. Exp Ther Med 2014; 7:1529-1534. [PMID: 24926338 PMCID: PMC4043606 DOI: 10.3892/etm.2014.1619] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2013] [Accepted: 03/06/2014] [Indexed: 02/01/2023] Open
Abstract
Cerebral ischemia induces injury, not only in the ischemic core and surrounding penumbra tissues, but also in remote areas such as the cervical spinal cord. The aim of the present study was to determine the effects of electroacupuncture (EA) on cervical spinal cord injury following cerebral ischemia/reperfusion in stroke-prone renovascular hypertensive (RHRSP) rats. The results demonstrated that neuronal loss, which was assayed by Nissl staining in the cervical spinal cords of RHRSP rats subjected to transient middle cerebral artery occlusion (MCAO), was markedly decreased by EA stimulation at the GV20 (Baihui) and GV14 (Dazhui) acupoints compared with that in rats undergoing sham stimulation. Quantitative polymerase chain reaction and western blot analysis demonstrated that EA stimulation blocked the MCAO-induced elevated protein expression levels of glial fibrillary acidic protein and amyloid precursor protein in the cervical spinal cord at days 24 and 48. To further investigate the mechanism underlying the neuroprotective role of EA stimulation, the protein expression levels of Nogo-A and Nogo-66 receptor-1 (NgR1), two key regulatory molecules for neurite growth, were recorded in each group. The results revealed that EA stimulation reduced the MCAO-induced elevation of Nogo-A and NgR1 protein levels at day 14 and 28 in RHRSP rats. Therefore, the results demonstrated that EA reduced cervical spinal cord injury following cerebral ischemia in RHRSP rats, indicating that EA has the potential to be developed as a therapeutic treatment agent for cervical spinal cord injury following stroke.
Collapse
Affiliation(s)
- FENG TAN
- Department of Neurology, Foshan Hospital of Traditional Chinese Medicine, Guangzhou University of Chinese Medicine, Foshan, Guangdong 528000, P.R. China
| | - JIE CHEN
- Department of Neurology, Foshan Hospital of Traditional Chinese Medicine, Guangzhou University of Chinese Medicine, Foshan, Guangdong 528000, P.R. China
| | - YANGUI LIANG
- Department of Neurology, Foshan Hospital of Traditional Chinese Medicine, Guangzhou University of Chinese Medicine, Foshan, Guangdong 528000, P.R. China
| | - MINHUA GU
- Department of Chinese Medicine, Dongsheng Hospital, Guangzhou, Guangdong 510120, P.R. China
| | - YANPING LI
- Department of Neurology, Foshan Hospital of Traditional Chinese Medicine, Guangzhou University of Chinese Medicine, Foshan, Guangdong 528000, P.R. China
| | - XUEWEN WANG
- Department of Neurology, Foshan Hospital of Traditional Chinese Medicine, Guangzhou University of Chinese Medicine, Foshan, Guangdong 528000, P.R. China
| | - DI MENG
- Department of Neurology, Foshan Hospital of Traditional Chinese Medicine, Guangzhou University of Chinese Medicine, Foshan, Guangdong 528000, P.R. China
| |
Collapse
|
85
|
Reducing Effect of IL-32α in the Development of Stroke Through Blocking of NF-κB, but Enhancement of STAT3 Pathways. Mol Neurobiol 2014; 51:648-60. [DOI: 10.1007/s12035-014-8739-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Accepted: 05/05/2014] [Indexed: 02/04/2023]
|
86
|
Liang J, Luan Y, Lu B, Zhang H, Luo YN, Ge P. Protection of ischemic postconditioning against neuronal apoptosis induced by transient focal ischemia is associated with attenuation of NF-κB/p65 activation. PLoS One 2014; 9:e96734. [PMID: 24800741 PMCID: PMC4011781 DOI: 10.1371/journal.pone.0096734] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2013] [Accepted: 04/10/2014] [Indexed: 11/19/2022] Open
Abstract
Background and Purpose Accumulating evidences have demonstrated that nuclear factor κB/p65 plays a protective role in the protection of ischemic preconditioning and detrimental role in lethal ischemia-induced programmed cell death including apoptosis and autophagic death. However, its role in the protection of ischemic postconditioning is still unclear. Methods Rat MCAO model was used to produce transient focal ischemia. The procedure of ischemic postconditioning consisted of three cycles of 30 seconds reperfusion/reocclusion of MCA. The volume of cerebral infarction was measured by TTC staining and neuronal apoptosis was detected by TUNEL staining. Western blotting was used to analyze the changes in protein levels of Caspase-3, NF-κB/p65, phosphor- NF-κB/p65, IκBα, phosphor- IκBα, Noxa, Bim and Bax between rats treated with and without ischemic postconditioning. Laser scanning confocal microscopy was used to examine the distribution of NF-κB/p65 and Noxa. Results Ischemic postconditioning made transient focal ischemia-induced infarct volume decrease obviously from 38.6%±5.8% to 23.5%±4.3%, and apoptosis rate reduce significantly from 46.5%±6.2 to 29.6%±5.3% at reperfusion 24 h following 2 h focal cerebral ischemia. Western blotting analysis showed that ischemic postconditioning suppressed markedly the reduction of NF-κB/p65 in cytoplasm, but elevated its content in nucleus either at reperfusion 6 h or 24 h. Moreover, the decrease of IκBα and the increase of phosphorylated IκBα and phosphorylated NF-κB/p65 at indicated reperfusion time were reversed by ischemic postconditioning. Correspondingly, proapoptotic proteins Caspase-3, cleaved Caspase-3, Noxa, Bim and Bax were all mitigated significantly by ischemic postconditioning. Confocal microscopy revealed that ischemic postconditioning not only attenuated ischemia-induced translocation of NF-κB/p65 from neuronal cytoplasm to nucleus, but also inhibited the abnormal expression of proapoptotic protein Noxa within neurons. Conclusions We demonstrated in this study that the protection of ischemic postconditioning on neuronal apoptosis caused by transient focal ischemia is associated with attenuation of the activation of NF-κB/p65 in neurons.
Collapse
Affiliation(s)
- Jianmin Liang
- Department of Pediatrics, First hospital of Jilin University, Changchun, China
- Neuroscience Research Center, First hospital of Jilin University, Changchun, China
| | - Yongxin Luan
- Department of Neurosurgery, First hospital of Jilin University, Changchun, China
| | - Bin Lu
- Department of Neurosurgery, First hospital of Jilin University, Changchun, China
| | - Hongbo Zhang
- Department of Pediatrics, First hospital of Jilin University, Changchun, China
| | - Yi-nan Luo
- Department of Neurosurgery, First hospital of Jilin University, Changchun, China
- Neuroscience Research Center, First hospital of Jilin University, Changchun, China
| | - Pengfei Ge
- Department of Neurosurgery, First hospital of Jilin University, Changchun, China
- Neuroscience Research Center, First hospital of Jilin University, Changchun, China
- * E-mail:
| |
Collapse
|
87
|
Chuang CH, Hsu YC, Wang CC, Hu C, Kuo JR. Cerebral blood flow and apoptosis-associated factor with electroacupuncture in a traumatic brain injury rat model. Acupunct Med 2013; 31:395-403. [PMID: 24055977 DOI: 10.1136/acupmed-2013-010406] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
OBJECTIVE Electroacupuncture (EA) has been widely used for treatment of stroke, but there is little information on the effect of EA on the neuroprotective function in traumatic brain injury (TBI). The aim of the present study was to investigate the protective effects and mechanisms of EA treatment in a TBI rat model. METHODS Male Sprague-Dawley rats were randomly divided into four groups: sham operation, TBI control, TBI+EA treated for 30 min or TBI+EA treated for 60 min. The animals were treated with EA immediately after TBI. The EA was applied at acupuncture points GV20, GV26, LI4 and KI1 with a dense-dispersed wave, frequencies of 0.2 and 1 Hz, and amplitude of 1 mA for 30 or 60 min. Regional blood flow, cell infarction volume, extent of neuronal apoptosis, expression of cell apoptosis-associated factor transforming growth-interacting factor (TGIF) were studied, and functional outcome was assessed by running speed test. All tests except regional blood flow were performed 72 h after TBI onset. RESULTS Immediately after TBI, compared with the TBI control groups, the regional blood flow was significantly increased by EA treatment for 60 min. Compared with the TBI controls 72 h after TBI, the TBI-induced run speed impairment, infarction volume, neuronal apoptosis and apoptosis-associated TGIF expression were significantly improved by EA treatment. CONCLUSIONS The treatment of TBI in the acute stage with EA for 60 min could increase the regional blood flow and attenuate the levels of TGIF in the injured cortex, might lead to a decrease in neuronal apoptosis and cell infarction volume, and might represent one mechanism by which functional recovery may occur.
Collapse
Affiliation(s)
- Chih Hsiang Chuang
- Department of Chinese Medicine, Chi-Mei Medical Center, , Tainan, Taiwan
| | | | | | | | | |
Collapse
|
88
|
Abstract
Acupuncture is one of the most important parts of Traditional Chinese Medicine, has been used for more than 3000 years as prevention and treatment for various diseases in China as well as in adjacent regions, and is widely accepted in western countries in recent years. More and more clinical trials revealed that acupuncture shows positive effect in stroke, not only as a complementary and alternative medicine for poststroke rehabilitation but also as a preventive strategy which could induce cerebral ischemic tolerance, especially when combined with modern electrotherapy. Acupuncture has some unique characteristics, which include acupoint specificity and parameter-dependent effect. It also involves complicated mechanism to exert the beneficial effect on stroke. Series of clinical trials have shown that acupuncture primarily regulates the release of neurochemicals, hemorheology, cerebral microcirculation, metabolism, neuronal activity, and the function of specific brain region. Animal studies showed that the effects of acupuncture therapy on stroke were possibly via inhibition of postischemic inflammatory reaction, stimulation of neurogenesis and angiogenesis, and influence on neural plasticity. Mechanisms for its preconditioning effect include activity enhancement of antioxidant, regulation of the endocannabinoid system, and inhibition of apoptosis. Although being controversial, acupuncture is a promising preventive and treatment strategy for stroke, but further high-quality clinical trials would be needed to provide more confirmative evidence.
Collapse
Affiliation(s)
- Xin Li
- Department of Anesthesiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | | |
Collapse
|