52
|
Hong C, Schüffler A, Kauhl U, Cao J, Wu CF, Opatz T, Thines E, Efferth T. Identification of NF-κB as Determinant of Posttraumatic Stress Disorder and Its Inhibition by the Chinese Herbal Remedy Free and Easy Wanderer. Front Pharmacol 2017; 8:181. [PMID: 28428751 PMCID: PMC5382210 DOI: 10.3389/fphar.2017.00181] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 03/20/2017] [Indexed: 01/09/2023] Open
Abstract
Posttraumatic stress disorder (PTSD) is a mental disorder developing after exposure to traumatic events. Although psychotherapy reveals some therapeutic effectiveness, clinically sustainable cure is still uncertain. Some Chinese herbal formulae are reported to work well clinically against mental diseases in Asian countries, but the safety and their mode of action are still unclear. In this study, we investigated the mechanisms of Chinese remedy free and easy wanderer (FAEW) on PTSD. We used a reverse pharmacology approach combining clinical data to search for mechanisms of PTSD with subsequent in vitro verification and bioinformatics techniques as follows: (1) by analyzing microarray-based transcriptome-wide mRNA expression profiling of PTSD patients; (2) by investigating the effect of FAEW and the antidepressant control drug fluoxetine on the transcription factor NF-κB using reporter cell assays and western blotting; (3) by performing molecular docking and literature data mining based on phytochemical constituents of FAEW. The results suggest an involvement of inflammatory processes mediated through NF-κB in the progression of PTSD. FAEW was non-cytotoxic in vitro and inhibited NF-κB activity and p65 protein expression. FAEW's anti-inflammatory compounds, i.e., paeoniflorin, isoliquiritin, isoliquiritin apioside and ononin were evaluated for binding to IκK and p65-RelA in a molecular docking approach. Paeoniflorin, albiflorin, baicalin, isoliquiritin and liquiritin have been reported to relieve depression in vivo or in clinical trials, which might be the active ingredients for FAEW against PTSD.
Collapse
Affiliation(s)
- Chunlan Hong
- Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, Johannes Gutenberg UniversityMainz, Germany
| | - Anja Schüffler
- Institut für Biotechnologie und Wirkstoff Forschung gGmbHKaiserslautern, Germany.,Institute of Molecular Physiology, Johannes Gutenberg UniversityMainz, Germany
| | - Ulrich Kauhl
- Institute of Organic Chemistry, Johannes Gutenberg UniversityMainz, Germany
| | - Jingming Cao
- Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, Johannes Gutenberg UniversityMainz, Germany
| | - Ching-Fen Wu
- Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, Johannes Gutenberg UniversityMainz, Germany
| | - Till Opatz
- Institute of Organic Chemistry, Johannes Gutenberg UniversityMainz, Germany
| | - Eckhard Thines
- Institut für Biotechnologie und Wirkstoff Forschung gGmbHKaiserslautern, Germany.,Institute of Molecular Physiology, Johannes Gutenberg UniversityMainz, Germany
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, Johannes Gutenberg UniversityMainz, Germany
| |
Collapse
|
53
|
Chen J, Zhao D, Zhu M, Zhang M, Hou X, Ding W, Sun S, Bu W, Feng L, Ma S, Jia X. Paeoniflorin ameliorates AGEs-induced mesangial cell injury through inhibiting RAGE/mTOR/autophagy pathway. Biomed Pharmacother 2017; 89:1362-1369. [PMID: 28320103 DOI: 10.1016/j.biopha.2017.03.016] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 02/28/2017] [Accepted: 03/07/2017] [Indexed: 01/01/2023] Open
Abstract
Glomerular mesangial cell plays a vital role in diabetic nephropathy (DN). Recent research has demonstrated that autophagy involved in the development of DN. Paeoniflorin (PF), a monoterpene glucoside, has been proved to attenuate advanced glycation end products (AGEs)-induced mesangial cell injury. However, the regulatory mechanism of PF on autophagy in mesangial cell remains unclear. The aim of this study was to explore the effect of PF on autophagy in AGEs-induced mesangial cell dysfunction. In this study, the leakage of the lactic dehydrogenase (LDH) into the extracellular medium was measured by LDH kit. Transmission electron microscopy (TEM) and mRFP-GFP-microtubule-associated protein light chain 3 (LC3) transfection were performed to observe the formation of autophagy in AGEs-induced mesangial cell. The RAGE/mTOR/autophagy pathway was analyzed by western blotting and small-interfering RNA transfection. Our results showed that the expression of LC3II, p62 were changed in a time-dependent manner in AGEs-stimulated mesangial cell. While PF could decrease the expression of LC3II/LC3I and reduce the number of autophagosomes. Knockdown of Atg5 promoted the protective effect of PF on AGEs-induced HBZY-1 injury. Furthermore, we found PF inhibited autophagy at least partly through inhibiting RAGE and upregulating the level of p-mTOR to against AGEs-induced mesangial cell dysfunction. Thus, PF could be a potential agent for the treatment of DN.
Collapse
Affiliation(s)
- Juan Chen
- Key Laboratory of New Drug Delivery Systems of Chinese Materia Medica, Jiangsu Provincial Academy of Chinese Medicine, Jiangsu, Nanjing, 210028, PR China
| | - Di Zhao
- Department of Pharmacology of Chinese Materia Medica, China Pharmaceutical University, Nanjing, 210009, PR China
| | - Maomao Zhu
- Key Laboratory of New Drug Delivery Systems of Chinese Materia Medica, Jiangsu Provincial Academy of Chinese Medicine, Jiangsu, Nanjing, 210028, PR China
| | - Minghua Zhang
- Key Laboratory of New Drug Delivery Systems of Chinese Materia Medica, Jiangsu Provincial Academy of Chinese Medicine, Jiangsu, Nanjing, 210028, PR China
| | - Xuefeng Hou
- Key Laboratory of New Drug Delivery Systems of Chinese Materia Medica, Jiangsu Provincial Academy of Chinese Medicine, Jiangsu, Nanjing, 210028, PR China
| | - Wenbo Ding
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Jiangsu, Nanjing, 210028, PR China
| | - Shuai Sun
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Jiangsu, Nanjing, 210028, PR China
| | - Weiquan Bu
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Jiangsu, Nanjing, 210028, PR China
| | - Liang Feng
- Key Laboratory of New Drug Delivery Systems of Chinese Materia Medica, Jiangsu Provincial Academy of Chinese Medicine, Jiangsu, Nanjing, 210028, PR China; State Key Laboratory Breeding Base of Dao-di Herbs, China Academy of Chinese Medical Sciences, Beijng, 100700, PR China; Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Jiangsu, Nanjing, 210028, PR China.
| | - Shiping Ma
- Department of Pharmacology of Chinese Materia Medica, China Pharmaceutical University, Nanjing, 210009, PR China.
| | - Xiaobin Jia
- Key Laboratory of New Drug Delivery Systems of Chinese Materia Medica, Jiangsu Provincial Academy of Chinese Medicine, Jiangsu, Nanjing, 210028, PR China; Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Jiangsu, Nanjing, 210028, PR China
| |
Collapse
|
54
|
Chen J, Hou XF, Wang G, Zhong QX, Liu Y, Qiu HH, Yang N, Gu JF, Wang CF, Zhang L, Song J, Huang LQ, Jia XB, Zhang MH, Feng L. Terpene glycoside component from Moutan Cortex ameliorates diabetic nephropathy by regulating endoplasmic reticulum stress-related inflammatory responses. JOURNAL OF ETHNOPHARMACOLOGY 2016; 193:433-444. [PMID: 27664441 DOI: 10.1016/j.jep.2016.09.043] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Revised: 09/16/2016] [Accepted: 09/20/2016] [Indexed: 06/06/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Multiple lines of evidences have suggested that endoplasmic reticulum (ER) stress-related inflammatory responses play a critical role in the pathogenesis of diabetic nephropathy (DN). Moutan Cortex (MC), the root bark of Paeonia suffruticosa Andr., is a well-known traditional Chinese medicine (TCM), which has been used clinically for treating inflammatory diseases in China. The findings from our previous research suggested that terpene glycoside (TG) component of MC possessed favorable anti-inflammatory properties in curing DN. However, the underlying mechanisms of MC-TG for treating DN are still unknown. AIM OF THE STUDY To explore the role of ER stress-related inflammatory responses in the progression of DN, and to investigate the underlying protective mechanisms of MC-TG in kidney damage. MATERIALS AND METHODS DN rats and advanced glycation end-products (AGEs) induced HBZY-1 cell dysfunction were established to evaluate the protective effect of MC-TG on ameliorating renal injury. Evaluation of pathological lesions was performed by Masson staining and transmission electron microscopy (TEM). Interleukin-6 (IL-6), monocyte chemoattractant protein-1 (MCP-1), glucose regulated protein 78 (GRP78/Bip), as well as spliced X box binding protein 1(XBP-1(s)) levels in rat serum were detected by an enzyme-linked immunosorbent assay (ELISA). Furthermore, western blotting (WB) was applied to detect the protein expressions including IL-6, MCP-1, intercellular cell adhesion molecule-1 (ICAM-1), GRP78/Bip, XBP-1 (s), phosphorylated inositol-requiring enzyme-1α (p-IRE1α), cleaved activating transcription factor 6 (ATF6), phosphorylated PKR-like endoplasmic reticulum kinase (p-PERK), and phosphorylated nuclear factor κB p65 (p-NF-κB p65) in vivo and in vitro. Immunohistochemistry (IHC) was carried out to determine the phosphorylation of IRE1α and NF-κB p65 in kidney tissues. RESULTS Pretreatment with MC-TG could markedly improve renal insufficiency and pathologic changes. It could down-regulate ER stress-related factors GRP78/Bip, XBP-1(s) levels, and also reduce the pro-inflammatory molecules IL-6, MCP-1, and ICAM-1 expressions. Furthermore, a significant decrease in phosphorylation of IRE1α and NF-κB p65 by the treatment of MC-TG. CONCLUSIONS These findings indicated that MC-TG ameliorated ER stress-related inflammation in the pathogenesis of DN, wherein the protective mechanism might be associated with the inhibition of IRE1/NF-κB activation. Thus, MC-TG might be a potential therapeutic candidate for the prevention and treatment of DN.
Collapse
MESH Headings
- Animals
- Anti-Inflammatory Agents/chemistry
- Anti-Inflammatory Agents/isolation & purification
- Anti-Inflammatory Agents/pharmacology
- Cell Line
- Chromatography, High Pressure Liquid
- Diabetes Mellitus, Experimental/chemically induced
- Diabetes Mellitus, Experimental/drug therapy
- Diabetes Mellitus, Experimental/metabolism
- Diabetic Nephropathies/etiology
- Diabetic Nephropathies/metabolism
- Diabetic Nephropathies/pathology
- Diabetic Nephropathies/prevention & control
- Dose-Response Relationship, Drug
- Drugs, Chinese Herbal/chemistry
- Drugs, Chinese Herbal/isolation & purification
- Drugs, Chinese Herbal/pharmacology
- Endoplasmic Reticulum Stress/drug effects
- Glycation End Products, Advanced/metabolism
- Glycosides/chemistry
- Glycosides/isolation & purification
- Glycosides/pharmacology
- Inflammation Mediators/metabolism
- Male
- Membrane Proteins/metabolism
- Mesangial Cells/drug effects
- Mesangial Cells/metabolism
- Mesangial Cells/ultrastructure
- Paeonia/chemistry
- Phosphorylation
- Phytotherapy
- Plants, Medicinal
- Protein Serine-Threonine Kinases/metabolism
- Rats, Sprague-Dawley
- Renal Insufficiency/etiology
- Renal Insufficiency/metabolism
- Renal Insufficiency/pathology
- Renal Insufficiency/prevention & control
- Signal Transduction/drug effects
- Streptozocin
- Terpenes/chemistry
- Terpenes/isolation & purification
- Terpenes/pharmacology
- Transcription Factor RelA/metabolism
Collapse
Affiliation(s)
- Juan Chen
- Key Laboratory of New Drug Delivery Systems of Chinese Materia Medica, Jiangsu Provincial Academy of Chinese Medicine, Jiangsu, Nanjing 210028, PR China; State Key Laboratory Breeding Base of Dao-di Herbs, China Academy of Chinese Medical Sciences, Beijng 100700, PR China; School of Pharmacy, Nanjing University of Chinese Medicine, Jiangsu, Nanjing 210023, PR China; Third School of Clinical Medical of Nanjing University of Chinese Medicine, Jiangsu, Nanjing 210028, PR China
| | - Xue-Feng Hou
- School of Pharmacy, Anhui University of Chinese Medicine, Anhui, Hefei 230012, PR China
| | - Gang Wang
- Key Laboratory of New Drug Delivery Systems of Chinese Materia Medica, Jiangsu Provincial Academy of Chinese Medicine, Jiangsu, Nanjing 210028, PR China
| | - Qing-Xiang Zhong
- Key Laboratory of New Drug Delivery Systems of Chinese Materia Medica, Jiangsu Provincial Academy of Chinese Medicine, Jiangsu, Nanjing 210028, PR China; School of Pharmacy, Nanjing University of Chinese Medicine, Jiangsu, Nanjing 210023, PR China
| | - Ying Liu
- Key Laboratory of New Drug Delivery Systems of Chinese Materia Medica, Jiangsu Provincial Academy of Chinese Medicine, Jiangsu, Nanjing 210028, PR China
| | - Hui-Hui Qiu
- Key Laboratory of New Drug Delivery Systems of Chinese Materia Medica, Jiangsu Provincial Academy of Chinese Medicine, Jiangsu, Nanjing 210028, PR China; School of Pharmacy, Nanjing University of Chinese Medicine, Jiangsu, Nanjing 210023, PR China
| | - Nan Yang
- Key Laboratory of New Drug Delivery Systems of Chinese Materia Medica, Jiangsu Provincial Academy of Chinese Medicine, Jiangsu, Nanjing 210028, PR China; School of Pharmacy, Nanjing University of Chinese Medicine, Jiangsu, Nanjing 210023, PR China
| | - Jun-Fei Gu
- Key Laboratory of New Drug Delivery Systems of Chinese Materia Medica, Jiangsu Provincial Academy of Chinese Medicine, Jiangsu, Nanjing 210028, PR China; School of Pharmacy, Nanjing University of Chinese Medicine, Jiangsu, Nanjing 210023, PR China
| | - Chun-Fei Wang
- Key Laboratory of New Drug Delivery Systems of Chinese Materia Medica, Jiangsu Provincial Academy of Chinese Medicine, Jiangsu, Nanjing 210028, PR China
| | - Li Zhang
- Key Laboratory of New Drug Delivery Systems of Chinese Materia Medica, Jiangsu Provincial Academy of Chinese Medicine, Jiangsu, Nanjing 210028, PR China
| | - Jie Song
- Key Laboratory of New Drug Delivery Systems of Chinese Materia Medica, Jiangsu Provincial Academy of Chinese Medicine, Jiangsu, Nanjing 210028, PR China; School of Pharmacy, Nanjing University of Chinese Medicine, Jiangsu, Nanjing 210023, PR China
| | - Lu-Qi Huang
- State Key Laboratory Breeding Base of Dao-di Herbs, China Academy of Chinese Medical Sciences, Beijng 100700, PR China
| | - Xiao-Bin Jia
- Key Laboratory of New Drug Delivery Systems of Chinese Materia Medica, Jiangsu Provincial Academy of Chinese Medicine, Jiangsu, Nanjing 210028, PR China; School of Pharmacy, Nanjing University of Chinese Medicine, Jiangsu, Nanjing 210023, PR China; Third School of Clinical Medical of Nanjing University of Chinese Medicine, Jiangsu, Nanjing 210028, PR China.
| | - Ming-Hua Zhang
- Department of Pharmacy, Wuxi Xishan People's Hospital, Jiangsu, Wuxi 214011, PR China.
| | - Liang Feng
- Key Laboratory of New Drug Delivery Systems of Chinese Materia Medica, Jiangsu Provincial Academy of Chinese Medicine, Jiangsu, Nanjing 210028, PR China; Third School of Clinical Medical of Nanjing University of Chinese Medicine, Jiangsu, Nanjing 210028, PR China.
| |
Collapse
|