51
|
Saas P, Kaminski S, Perruche S. Prospects of apoptotic cell-based therapies for transplantation and inflammatory diseases. Immunotherapy 2014; 5:1055-73. [PMID: 24088076 DOI: 10.2217/imt.13.103] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Apoptotic cell removal or interactions of early-stage apoptotic cells with immune cells are associated with an immunomodulatory microenvironment that can be harnessed to exert therapeutic effects. While the involved immune mechanisms are still being deciphered, apoptotic cell infusion has been tested in different experimental models where inflammation is deregulated. This includes chronic and acute inflammatory disorders such as arthritis, contact hypersensitivity and acute myocardial infarction. Apoptotic cell infusion has also been used in transplantation settings to prevent or treat acute and chronic rejection, as well as to limit acute graft-versus-host disease associated with allogeneic hematopoietic cell transplantation. Here, we review the mechanisms involved in apoptotic cell-induced immunomodulation and data obtained in preclinical models of transplantation and inflammatory diseases.
Collapse
|
52
|
Bekeredjian-Ding I, Greil J, Ammann S, Parcina M. Plasmacytoid Dendritic Cells: Neglected Regulators of the Immune Response to Staphylococcus aureus. Front Immunol 2014; 5:238. [PMID: 24904586 PMCID: PMC4033153 DOI: 10.3389/fimmu.2014.00238] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2014] [Accepted: 05/08/2014] [Indexed: 12/18/2022] Open
Abstract
Plasmacytoid dendritic cells (pDC) are a rare subset of leukocytes equipped with Fcγ and Fcε receptors, which exert contrary effects on sensing of microbial nucleic acids by endosomal Toll-like receptors. In this article, we explain how pDC contribute to the immune response to Staphylococcus aureus. Under normal circumstances the pDC participates in the memory response to the pathogen: pDC activation is initiated by uptake of staphylococcal immune complexes with IgG or IgE. However, protein A-expressing S. aureus strains additionally trigger pDC activation in the absence of immunoglobulin. In this context, staphylococci exploit the pDC to induce antigen-independent differentiation of IL-10 producing plasmablasts, an elegant means to propagate immune evasion. We further discuss the role of type I interferons in infection with S. aureus and the implications of these findings for the development of immune based therapies and vaccination.
Collapse
Affiliation(s)
| | - Johann Greil
- Institute for Microbiology, Immunology and Parasitology, University Hospital Bonn , Bonn , Germany ; Department of Pediatrics, University Hospital Heidelberg , Heidelberg , Germany
| | - Sandra Ammann
- Department of Infectious Diseases, Medical Microbiology and Hygiene, University Hospital Heidelberg , Heidelberg , Germany
| | - Marijo Parcina
- Institute for Microbiology, Immunology and Parasitology, University Hospital Bonn , Bonn , Germany
| |
Collapse
|
53
|
Exosomes from red blood cell units bind to monocytes and induce proinflammatory cytokines, boosting T-cell responses in vitro. Blood 2013; 123:687-96. [PMID: 24335232 DOI: 10.1182/blood-2013-10-530469] [Citation(s) in RCA: 182] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Extracellular vesicles (EVs) are small, double membrane vesicles derived from leukocytes, platelets, and cells of other tissues under physiological or pathological conditions. Generation of EVs in stored blood is thought to be associated with adverse effects and potentially immunosuppression in blood transfusion recipients. We measured the quantity and cells of origin for EVs isolated from stored red blood cell (RBC) units and tested whether they had any effects on T-cell-mediated immune responses. Mixing peripheral blood mononuclear cells (PBMCs) with EVs resulted in secretion of proinflammatory cytokines and chemokines and increased survival of unstimulated PBMCs. EVs augmented mitogen-induced CD4(+) and CD8(+) T-cell proliferation in an antigen-presenting cell (APC)-dependent manner. We demonstrated that EVs interacted primarily with monocytes and induced proinflammatory cytokine secretion. We also showed that the exosome fraction of EVs and not larger microvesicles was responsible for induction of TNF-α production by monocytes. Furthermore, blockade of CD40 or CD40L accessory molecules largely neutralized the EV augmentation of T-cell responses, implying a role for cell-cell interaction between T cells and EV-activated monocytes. Contrary to our hypothesis, the data demonstrate that EVs isolated from RBC units increase the potency of APCs and boost mitogen-driven T-cell proliferative responses.
Collapse
|
54
|
Li H, Gillis J, Johnson RP, Reeves RK. Multi-functional plasmacytoid dendritic cells redistribute to gut tissues during simian immunodeficiency virus infection. Immunology 2013; 140:244-9. [PMID: 23746074 DOI: 10.1111/imm.12132] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2013] [Revised: 05/31/2013] [Accepted: 06/03/2013] [Indexed: 11/29/2022] Open
Abstract
The objective of this study was to determine the systemic effects of chronic simian immunodeficiency virus (SIV) infection on plasmacytoid dendritic cells (pDCs). pDCs play a critical role in antiviral immunity, but current data are conflicting on whether pDCs inhibit HIV/SIV replication, or, alternatively, contribute to chronic immune activation and disease. Furthermore, previous pDC studies have been complicated by incomplete descriptions of generalized depletion during HIV/SIV infection, and the effects of infection on pDCs outside peripheral blood remain unclear. In scheduled-sacrifice studies of naive and chronically SIV-infected rhesus macaques we evaluated the distribution and functionality of pDCs in multiple tissues using surface and intracellular polychromatic flow cytometry. As previously observed, pDCs were reduced in peripheral blood and spleens, but were also depleted in non-lymphoid organs such as the liver. Interestingly, pDCs accumulated up to fourfold in jejunum, colon and gut-draining lymph nodes, but not in peripheral lymph nodes. Most unexpectedly, SIV infection induced a multi-functional interferon-α, tumour necrosis factor-α, and macrophage inflammatory protein-1β cytokine secretion phenotype, whereas in normal animals these were generally distinct and separate functions. Herein we show a systemic redistribution of pDCs to gut tissues and gut-draining lymph nodes during chronic SIV infection, coupled to a novel multi-functional cytokine-producing phenotype. While pDC accumulation in the mucosa could aid in virus control, over-production of cytokines from these cells could also contribute to the increased immune activation in the gut mucosa commonly associated with progressive lentivirus infections.
Collapse
Affiliation(s)
- Haiying Li
- Division of Immunology, New England Primate Research Center, Harvard Medical School, Southborough, MA, USA
| | | | | | | |
Collapse
|
55
|
Spel L, Boelens JJ, Nierkens S, Boes M. Antitumor immune responses mediated by dendritic cells: How signals derived from dying cancer cells drive antigen cross-presentation. Oncoimmunology 2013; 2:e26403. [PMID: 24482744 PMCID: PMC3894247 DOI: 10.4161/onci.26403] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Revised: 09/06/2013] [Accepted: 09/06/2013] [Indexed: 12/20/2022] Open
Abstract
Dendritic cells (DCs) are essential for the induction of adaptive immune responses against malignant cells by virtue of their capacity to effectively cross-present exogenous antigens to T lymphocytes. Dying cancer cells are indeed a rich source of antigens that may be harnessed for the development of DC-based vaccines. In particular, malignant cells succumbing to apoptosis, rather than necrosis, appear to release antigens in a manner that allows for the elicitation of adaptive immune responses. In this review, we describe the processes that mediate the cross-presentation of antigens released by apoptotic cancer cells to CD8+ T lymphocytes, resulting in the activation of protective tumor-specific immune responses.
Collapse
Affiliation(s)
- Lotte Spel
- U-DANCE and Laboratory of Translational Immunology; University Medical Center Utrecht; Utrecht, The Netherlands
| | - Jaap-Jan Boelens
- U-DANCE and Laboratory of Translational Immunology; University Medical Center Utrecht; Utrecht, The Netherlands
| | - Stefan Nierkens
- U-DANCE and Laboratory of Translational Immunology; University Medical Center Utrecht; Utrecht, The Netherlands
| | - Marianne Boes
- U-DANCE and Laboratory of Translational Immunology; University Medical Center Utrecht; Utrecht, The Netherlands
| |
Collapse
|
56
|
Abstract
At least 468 individual genes have been manipulated by molecular methods to study their effects on the initiation, promotion, and progression of atherosclerosis. Most clinicians and many investigators, even in related disciplines, find many of these genes and the related pathways entirely foreign. Medical schools generally do not attempt to incorporate the relevant molecular biology into their curriculum. A number of key signaling pathways are highly relevant to atherogenesis and are presented to provide a context for the gene manipulations summarized herein. The pathways include the following: the insulin receptor (and other receptor tyrosine kinases); Ras and MAPK activation; TNF-α and related family members leading to activation of NF-κB; effects of reactive oxygen species (ROS) on signaling; endothelial adaptations to flow including G protein-coupled receptor (GPCR) and integrin-related signaling; activation of endothelial and other cells by modified lipoproteins; purinergic signaling; control of leukocyte adhesion to endothelium, migration, and further activation; foam cell formation; and macrophage and vascular smooth muscle cell signaling related to proliferation, efferocytosis, and apoptosis. This review is intended primarily as an introduction to these key signaling pathways. They have become the focus of modern atherosclerosis research and will undoubtedly provide a rich resource for future innovation toward intervention and prevention of the number one cause of death in the modern world.
Collapse
Affiliation(s)
- Paul N Hopkins
- Cardiovascular Genetics, Department of Internal Medicine, University of Utah, Salt Lake City, Utah, USA.
| |
Collapse
|
57
|
Schiller M, Heyder P, Ziegler S, Niessen A, Claßen L, Lauffer A, Lorenz HM. During apoptosis HMGB1 is translocated into apoptotic cell-derived membranous vesicles. Autoimmunity 2013. [PMID: 23194089 DOI: 10.3109/08916934.2012.750302] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
High mobility group box protein B1 (HMGB1), a nuclear protein reportedly involved in the structural organisation of DNA, is released from necrotic cells or upon cellular activation. After its release into the extracellular space, HMGB1 serves as a mediator of inflammation. In contrast to necrotic cells, apoptotic ones usually do not release HMGB1. Formation and release of membranous vesicles is a well-known feature of apoptotic cell death. Only recently, subcellular membrane vesicles, such as those released during apoptotic cell death have been identified as immune regulators and as mediators of cell to cell communication. We and others have previously detected nuclear antigens within apoptosis-released membranous vesicles and HMGB1 together with nuclear antigens has been discussed to be a key player in etiology and pathogenesis of autoimmune diseases. On this background, we analysed whether HMGB1 is included in the membranous vesicles generated by apoptosing cells. Employing immune blots we observed abundand amounts of HMGB1 in the fraction of the small membraneous particles isolated from cell culture supernatants and conclude that HMGB1 is translocated into vesicles generated during apoptosis.
Collapse
Affiliation(s)
- Martin Schiller
- Department of Internal Medicine V, Division of Rheumatology, University Hospital Heidelberg, Heidelberg, Germany.
| | | | | | | | | | | | | |
Collapse
|
58
|
Darrah E, Andrade F. NETs: the missing link between cell death and systemic autoimmune diseases? Front Immunol 2013; 3:428. [PMID: 23335928 PMCID: PMC3547286 DOI: 10.3389/fimmu.2012.00428] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Accepted: 12/26/2012] [Indexed: 12/22/2022] Open
Abstract
For almost 20 years, apoptosis and secondary necrosis have been considered the major source of autoantigens and endogenous adjuvants in the pathogenic model of systemic autoimmune diseases. This focus is justified in part because initial evidence in systemic lupus erythematosus (SLE) guided investigators toward the study of apoptosis, but also because other forms of cell death were unknown. To date, it is known that many other forms of cell death occur, and that they vary in their capacity to stimulate as well as inhibit the immune system. Among these, NETosis (an antimicrobial form of death in neutrophils in which nuclear material is extruded from the cell forming extracellular traps), is gaining major interest as a process that may trigger some of the immune features found in SLE, granulomatosis with polyangiitis (formerly Wegener’s granulomatosis) and Felty’s syndrome. Although there have been volumes of very compelling studies published on the role of cell death in autoimmunity, no unifying theory has been adopted nor have any successful therapeutics been developed based on this important pathway. The recent inclusion of NETosis into the pathogenic model of autoimmune diseases certainly adds novel insights into this paradigm, but also reveals a previously unappreciated level of complexity and raises many new questions. This review discusses the role of cell death in systemic autoimmune diseases with a focus on apoptosis and NETosis, highlights the current short comings in our understanding of the vast complexity of cell death, and considers the potential shift in the cell death paradigm in autoimmunity. Understanding this complexity is critical in order to develop tools to clearly define the death pathways that are active in systemic autoimmune diseases, identify drivers of disease propagation, and develop novel therapeutics.
Collapse
Affiliation(s)
- Erika Darrah
- Division of Rheumatology, Department of Medicine, Johns Hopkins University School of Medicine Baltimore, MD, USA
| | | |
Collapse
|
59
|
Fabbri M, Paone A, Calore F, Galli R, Croce CM. A new role for microRNAs, as ligands of Toll-like receptors. RNA Biol 2013; 10:169-74. [PMID: 23296026 DOI: 10.4161/rna.23144] [Citation(s) in RCA: 111] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Tumor microenvironment plays a central role in the development and dissemination of cancer cells. In addition to study each specific cellular component of the microenvironment, it has become clear that it is the type and amount of information that cells exchange that ultimately affects cancer phenotype. Recently, it has been discovered that intercellular communication occurs through the release of microvesicles and exosomes, whose cargo represents the information released by one cell to a recipient cell. A key component of this cargo is represented by microRNAs (miRNAs), small non-coding RNAs with gene regulatory functions. We discovered that miRNAs released by cancer cells within microvesicles can reach and bind to Toll-like receptors (TLRs) in surrounding immune cells, and activate them in a paracrine loop. As a result, immune cells produce cytokines that increase cell proliferation and metastatic potential. This discovery provides the rationale for the development of new drugs that might be used in the treatment of cancer as well as other inflammation-related diseases.
Collapse
Affiliation(s)
- Muller Fabbri
- Department of Pediatrics and Molecular Microbiology and Immunology, Keck School of Medicine, Norris Comprehensive Cancer Center, Children's Center for Cancer and Blood Diseases, Children's Hospital Los Angeles, University of Southern California, Los Angeles, CA, USA.
| | | | | | | | | |
Collapse
|