51
|
Astort F, Sittner M, Ferraro SA, Orona NS, Maglione GA, De la Hoz A, Tasat DR. Pulmonary inflammation and cell death in mice after acute exposure to air particulate matter from an industrial region of Buenos Aires. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2014; 67:87-96. [PMID: 24327098 DOI: 10.1007/s00244-013-9975-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Accepted: 11/18/2013] [Indexed: 06/03/2023]
Abstract
Epidemiological studies have shown that air particulate matter (PM) can increase respiratory morbidity and mortality being the lungs the main target organ to PM body entrance. Even more, several in vivo and in vitro studies have shown that air PM has a wide toxicity spectra depending among other parameters, on its size, morphology, and chemical composition. The Reconquista River is the second most polluted river from Buenos Aires, and people living around its basin are constantly exposed to its contaminated water, soil and air. However, the air PM from the Reconquista River (RR-PMa) has not been characterized, and its biological impact on lung has yet not been assessed. Therefore, the present investigation was undertaken to study (1) RR-PMa morphochemical characteristic and (2) RR-PMa lung acute effects after intranasal instillation exposure through the analysis of three end points: oxidative stress, inflammation, and apoptosis. A single acute exposure of RR-PMa (1 mg/kg body weight) after 24 h caused significant (p < 0.05) enrichment in bronchoalveolar total cell number and polymorphonuclear (PNM) fraction, superoxide anion generation, production of pro-inflammatory cytokines TNF-α and IL-6, and induction of apoptosis. It was also observed that in lung homogenates, none of the antioxidant enzymes assayed showed differences between exposed RR-PMa and control mice. These data demonstrate that air PM from the Reconquista River induce lung oxidative stress, inflammation, and cell death therefore represents a potential hazard to human health.
Collapse
Affiliation(s)
- F Astort
- School of Science and Technology, National University of General San Martín, Martín de Irigoyen 3100 (1653), San Martín, Buenos Aires, Argentina,
| | | | | | | | | | | | | |
Collapse
|
52
|
Chao XJ, Chen ZW, Liu AM, He XX, Wang SG, Wang YT, Liu PQ, Ramassamy C, Mak SH, Cui W, Kong AN, Yu ZL, Han YF, Pi RB. Effect of tacrine-3-caffeic acid, a novel multifunctional anti-Alzheimer's dimer, against oxidative-stress-induced cell death in HT22 hippocampal neurons: involvement of Nrf2/HO-1 pathway. CNS Neurosci Ther 2014; 20:840-50. [PMID: 24922524 DOI: 10.1111/cns.12286] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2014] [Revised: 04/23/2014] [Accepted: 04/24/2014] [Indexed: 12/27/2022] Open
Abstract
AIMS Oxidative stress (OS) plays an important role in the pathogenesis of neurodegenerative diseases, including Alzheimer's disease (AD). This study was designed to uncover the cellular and biochemical mechanisms underlying the neuroprotective effects of tacrine-3-caffeic acid (T3CA), a novel promising multifunctional anti-Alzheimer's dimer, against OS-induced neuronal death. METHODS AND RESULTS T3CA protected HT22 cells against high-concentration-glutamate-induced cell death in time- and concentration-dependent manners and potently attenuated glutamate-induced intracellular reactive oxygen species (ROS) production as well as mitochondrial membrane-potential (ΔΨ) disruption. Besides, T3CA significantly induced nuclear factor erythroid 2-related factor 2 (Nrf2) nuclear translocation and increased its transcriptional activity, which were demonstrated by Western blotting, immunofluorescence, and antioxidant response element (ARE)-luciferase reporter gene assay. Further studies showed that T3CA potently up-regulated heme oxygenase-1 (HO-1), an endogenous antioxidative enzyme and a downstream effector of Nrf2, at both mRNA and protein levels. The neuroprotective effects of T3CA were partially reversed by brusatol, which reduced protein level of Nrf2, or by inhibiting HO-1 with siRNA or ZnPP-IX, a specific inhibitor of HO-1. CONCLUSIONS Taken together, these results clearly demonstrate that T3CA protects neurons against OS-induced cell death partially through Nrf2/ARE/HO-1 signaling pathway, which further supports that T3CA might be a promising novel therapeutic agent for OS-associated diseases.
Collapse
Affiliation(s)
- Xiao-Juan Chao
- Department of Pharmacology & Toxicology, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
53
|
Grahame TJ, Klemm R, Schlesinger RB. Public health and components of particulate matter: the changing assessment of black carbon. JOURNAL OF THE AIR & WASTE MANAGEMENT ASSOCIATION (1995) 2014; 64:620-60. [PMID: 25039199 DOI: 10.1080/10962247.2014.912692] [Citation(s) in RCA: 131] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
UNLABELLED In 2012, the WHO classified diesel emissions as carcinogenic, and its European branch suggested creating a public health standard for airborne black carbon (BC). In 2011, EU researchers found that life expectancy could be extended four to nine times by reducing a unit of BC, vs reducing a unit of PM2.5. Only recently could such determinations be made. Steady improvements in research methodologies now enable such judgments. In this Critical Review, we survey epidemiological and toxicological literature regarding carbonaceous combustion emissions, as research methodologies improved over time. Initially, we focus on studies of BC, diesel, and traffic emissions in the Western countries (where daily urban BC emissions are mainly from diesels). We examine effects of other carbonaceous emissions, e.g., residential burning of biomass and coal without controls, mainly in developing countries. Throughout the 1990s, air pollution epidemiology studies rarely included species not routinely monitored. As additional PM2.5. chemical species, including carbonaceous species, became more widely available after 1999, they were gradually included in epidemiological studies. Pollutant species concentrations which more accurately reflected subject exposure also improved models. Natural "interventions"--reductions in emissions concurrent with fuel changes or increased combustion efficiency; introduction of ventilation in highway tunnels; implementation of electronic toll payment systems--demonstrated health benefits of reducing specific carbon emissions. Toxicology studies provided plausible biological mechanisms by which different PM species, e.g, carbonaceous species, may cause harm, aiding interpretation of epidemiological studies. Our review finds that BC from various sources appears to be causally involved in all-cause, lung cancer and cardiovascular mortality, morbidity, and perhaps adverse birth and nervous system effects. We recommend that the US. EPA rubric for judging possible causality of PM25. mass concentrations, be used to assess which PM2.5. species are most harmful to public health. IMPLICATIONS Black carbon (BC) and correlated co-emissions appear causally related with all-cause, cardiovascular, and lung cancer mortality, and perhaps with adverse birth outcomes and central nervous system effects. Such findings are recent, since widespread monitoring for BC is also recent. Helpful epidemiological advances (using many health relevant PM2.5 species in models; using better measurements of subject exposure) have also occurred. "Natural intervention" studies also demonstrate harm from partly combusted carbonaceous emissions. Toxicology studies consistently find biological mechanisms explaining how such emissions can cause these adverse outcomes. A consistent mechanism for judging causality for different PM2.5 species is suggested.
Collapse
|
54
|
Westman O, Larsson M, Venizelos N, Hollert H, Engwall M. An oxygenated metabolite of benzo[a]pyrene increases hepatic β-oxidation of fatty acids in chick embryos. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2014; 21:6243-6251. [PMID: 24385188 DOI: 10.1007/s11356-013-2471-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Accepted: 12/16/2013] [Indexed: 06/03/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are well-known carcinogens to humans and ecotoxicological effects have been shown in several studies. However, PAHs can also be oxidized into more water soluble-oxygenated metabolites (Oxy-PAHs). The first purpose of the present project was to (1) assess the effects of a mixture containing three parent PAHs: anthracene, benz[a]anthracene, and benzo[a]pyrene versus a mixture of their oxygenated metabolites, namely: anthracene-9,10-dione, benz[a]anthracene-7,12-dione, and 9,10-dihydrobenzo[a]pyrene-7-(8H)-one on the hepatic fatty acid β-oxidation in chicken embryos (Gallus gallus domesticus) exposed in ovo. The second and also main purpose of the project was to (2) assess the effects of the parent PAHs versus their oxy-PAHs analogues when injected individually, followed by (3) additional testing of the individual oxy-PAHs. The hepatic β-oxidation was measured using a tritium release assay with [9,10-(3)H]-palmitic acid (16:0) as substrate. The result from the first part (1) showed reduced hepatic β-oxidation after exposure in ovo to a mixture of three PAHs, however, increased after exposure to the mixture of three oxy-PAHs compared to control. The result from the second part (2) and also the follow-up experiment (3) showed that 9,10-dihydrobenzo[a]pyrene-7-(8H)-one was the causative oxy-PAH. The implication of this finding on the risk assessment of PAH metabolite exposure in avian wildlife remains to be determined. To the best of our knowledge, no similar studies have been reported.
Collapse
Affiliation(s)
- Ola Westman
- MTM Research Centre, School of Science and Technology, Örebro University, Örebro, SE-70182, Sweden,
| | | | | | | | | |
Collapse
|
55
|
Seo K, Yang JH, Kim SC, Ku SK, Ki SH, Shin SM. The Antioxidant Effects of Isorhamnetin Contribute to Inhibit COX-2 Expression in Response to Inflammation: A Potential Role of HO-1. Inflammation 2013; 37:712-22. [DOI: 10.1007/s10753-013-9789-6] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
56
|
Zhong W, Lü M, Liu L, Sun J, Zhong Z, Zhao Y, Song H. Autophagy as new emerging cellular effect of nanomaterials. ACTA ACUST UNITED AC 2013. [DOI: 10.1007/s11434-013-6058-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
57
|
Nrf2 is a protective factor against oxidative stresses induced by diesel exhaust particle in allergic asthma. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2013; 2013:323607. [PMID: 23738037 PMCID: PMC3655666 DOI: 10.1155/2013/323607] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Revised: 03/18/2013] [Accepted: 04/08/2013] [Indexed: 11/18/2022]
Abstract
Epidemiological studies have shown that air pollutants, such as diesel exhaust particle (DEP), are implicated in the increased incidence of allergic airway disorders. In vitro studies of molecular mechanisms have focused on the role of reactive oxygen species generated directly and indirectly by the exposure to DEP. Antioxidants effectively reduce the allergic inflammatory effects induced by DEP both in vitro and in vivo. On the other hand, Nrf2 is a transcription factor essential for the inducible and/or constitutive expression of phase II and antioxidant enzymes. Disruption of Nrf2 enhances susceptibility to airway inflammatory responses and exacerbation of allergic inflammation induced by DEP in mice. Host responses to DEP are regulated by a balance between antioxidants and proinflammatory responses. Nrf2 may be an important protective factor against oxidative stresses induced by DEP in airway inflammation and allergic asthma and is expected to contribute to chemoprevention against DEP health effects in susceptible individuals.
Collapse
|
58
|
Xiong XQ, Lin LN, Wang LR, Jin LD. Sevoflurane attenuates pulmonary inflammation and ventilator-induced lung injury by upregulation of HO-1 mRNA expression in mice. Int J Nanomedicine 2013; 6:1075-81. [PMID: 23515704 PMCID: PMC3601644 DOI: 10.2147/ijn.s41625] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Background Mechanical ventilation has been documented to paradoxically cause lung injury. As a commonly used
volatile anesthetic, sevoflurane has been proven to possess antiinflammatory and antioxidative
properties. This study aims to investigate the protective effects of sevoflurane on inflammation and
ventilator-induced lung injury during mechanical ventilation in healthy mice. Methods The adult healthy mice were divided into four groups, each consisting of ten subjects: mice in
group Con-LVT and group Sev-LVT were ventilated with tidal volumes of 8 mL/kg
for 4 hours, while those in group Con-HVT and group Sev-HVT were ventilated
with tidal volumes of 16 mL/kg instead. Control mice (group Con-LVT and
Con-HVT) were subjected to fresh air, while sevoflurane-treated mice (groups Sev-
LVT and Sev-HVT) were subjected to air mixed with 1 vol% sevoflurane.
After 4 hours of ventilation, the bronchoalveolar lavage (BAL) fluid was collected and analyzed for
the levels of tumor necrosis factor (TNF)-α, interleukin (IL)-1β, IL-6, and IL-10.
Lung homogenates were harvested to detect the expression of nuclear factor-kappa B (NF-κB)
and heme oxygenase (HO)-1 mRNA by reverse transcription-polymerase chain reaction method. Lung
damage was evaluated using the modified Ventilator-Induced Lung Injury histological scoring
system. Results Compared to group Con-LVT, the levels of TNF-α, IL-1β, IL-6, and IL-10
in BAL fluid, mRNA expressions of NF-κB and HO-1 in lung tissue, and lung injury scores were
significantly increased in group Con-HVT; compared to group Con-HVT, group
Sev-HVT BAL samples showed decreased levels of TNF-α, IL-1β, and IL-6;
they also showed increased levels of IL-10, the downregulation of NF-κB mRNA, and HO-1 mRNA
upregulation; the lung injury scores were significantly lower in group Sev-HVT than group
Con-HVT. Conclusion Mechanical ventilation with high tidal volume might lead to lung injury, which could be
significantly, but not completely, attenuated by sevoflurane inhalation by inhibiting the
NF-κB-mediated proinflammatory cytokine generation and upregulating HO-1 expression.
Collapse
Affiliation(s)
- Xiang-qing Xiong
- Department of Anesthesiology, the First Affiliated Hospital of Wenzhou Medical College, Wenzhou, People's Republic of China
| | | | | | | |
Collapse
|
59
|
Corbacioglu SK, Kilicaslan I, Bildik F, Guleryuz A, Bekgoz B, Ozel A, Keles A, Demircan A. Endogenous carboxyhemoglobin concentrations in the assessment of severity in patients with community-acquired pneumonia. Am J Emerg Med 2013; 31:520-3. [PMID: 23219346 DOI: 10.1016/j.ajem.2012.10.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2012] [Revised: 10/08/2012] [Accepted: 10/10/2012] [Indexed: 11/18/2022] Open
|
60
|
Yin F, Ramanathan G, Zhang M, Araujo JA. Prooxidative Effects of Ambient Pollutant Chemicals Are Inhibited by HDL. J Biochem Mol Toxicol 2013; 27:172-83. [DOI: 10.1002/jbt.21475] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Revised: 12/26/2012] [Accepted: 01/11/2013] [Indexed: 12/25/2022]
Affiliation(s)
- Fen Yin
- Department of Medicine, Division of Cardiology; David Geffen School of Medicine, University of California; Los Angeles, CA; 90095; USA
| | - Gajalakshmi Ramanathan
- Department of Medicine, Division of Cardiology; David Geffen School of Medicine, University of California; Los Angeles, CA; 90095; USA
| | - Min Zhang
- Department of Medicine, Division of Cardiology; David Geffen School of Medicine, University of California; Los Angeles, CA; 90095; USA
| | | |
Collapse
|
61
|
Inflammation-related effects of diesel engine exhaust particles: studies on lung cells in vitro. BIOMED RESEARCH INTERNATIONAL 2013; 2013:685142. [PMID: 23509760 PMCID: PMC3586454 DOI: 10.1155/2013/685142] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Revised: 01/04/2013] [Accepted: 01/15/2013] [Indexed: 01/17/2023]
Abstract
Diesel exhaust and its particles (DEP) have been under scrutiny for health effects in humans. In the development of these effects inflammation is regarded as a key process. Overall, in vitro studies report similar DEP-induced changes in markers of inflammation, including cytokines and chemokines, as studies in vivo. In vitro studies suggest that soluble extracts of DEP have the greatest impact on the expression and release of proinflammatory markers. Main DEP mediators of effects have still not been identified and are difficult to find, as fuel and engine technology developments lead to continuously altered characteristics of emissions. Involved mechanisms remain somewhat unclear. DEP extracts appear to comprise components that are able to activate various membrane and cytosolic receptors. Through interactions with receptors, ion channels, and phosphorylation enzymes, molecules in the particle extract will trigger various cell signaling pathways that may lead to the release of inflammatory markers directly or indirectly by causing cell death. In vitro studies represent a fast and convenient system which may have implications for technology development. Furthermore, knowledge regarding how particles elicit their effects may contribute to understanding of DEP-induced health effects in vivo, with possible implications for identifying susceptible groups of people and effect biomarkers.
Collapse
|
62
|
Koizumi R, Taguchi K, Hisamori M, Kumagai Y. Interaction of 9,10-phenanthraquinone with dithiol causes oxidative modification of Cu,Zn-superoxide dismutase (SOD) through redox cycling. J Toxicol Sci 2013; 38:317-24. [DOI: 10.2131/jts.38.317] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
- Rie Koizumi
- Master’s Program in Environmental Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba
| | - Keiko Taguchi
- Doctoral Program in Biomedical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba
| | - Miwa Hisamori
- Master’s Program in Environmental Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba
| | - Yoshito Kumagai
- Doctoral Program in Biomedical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba
| |
Collapse
|
63
|
Hassan MI, Boosen M, Schaefer L, Kozlowska J, Eisel F, von Knethen A, Beck M, Hemeida RAM, El-Moselhy MAM, Hamada FMA, Beck KF, Pfeilschifter J. Platelet-derived growth factor-BB induces cystathionine γ-lyase expression in rat mesangial cells via a redox-dependent mechanism. Br J Pharmacol 2012; 166:2231-42. [PMID: 22428706 DOI: 10.1111/j.1476-5381.2012.01949.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND AND PURPOSE So far, there is only limited information about the regulation of the endogenous synthesis of hydrogen sulfide (H(2) S), an important gaseous signalling molecule. This study was done to evaluate the redox-dependent signalling events that regulate the expression of the H(2) S synthesising enzyme cystathionine-γ-lyase (CSE) in rat mesangial cells. EXPERIMENTAL APPROACH The effects of platelet-derived growth factor (PDGF)-BB and antioxidants on CSE expression and activity in cultured rat renal mesangial cells were assessed. Activity of nuclear factor erythroid-2-related factor-2 (Nrf2) was measured as the binding capacity to a radiolabelled consensus element by electrophoretic mobility shift assay (EMSA). Furthermore, CSE and Nrf2 expression was analysed in a rat model of anti-Thy-1-induced glomerulonephritis by immunohistochemistry. KEY RESULTS Treatment of mesangial cells with PDGF-BB resulted in a marked time- and dose-dependent up-regulation of CSE mRNA and protein levels, as well as CSE activity accompanied with increased formation of reactive oxygen species. Remarkably, co-administration of antioxidants, such as N-acetylcysteine, ebselen or diphenylene iodonium chloride, drastically reduced PDGF-BB-induced CSE expression. PDGF-BB induced binding of Nrf2 to a corresponding consensus antioxidant element in a redox-dependent manner. Furthermore, PDGF-BB-induced CSE expression in mouse mesangial cells was completely abolished in Nrf2 knockout mice compared with wild-type mice. In a rat model of anti-Thy-1-induced proliferative glomerulonephritis, we observed a marked up-regulation of CSE protein paralleled by a stabilization of Nrf2 protein. CONCLUSIONS AND IMPLICATIONS PDGF-BB regulated CSE via a redox-mediated activation of Nrf2. Such action would aid the resolution of glomerular inflammatory diseases. LINKED ARTICLE This article is commented on by Gallyas, pp. 2228-2230 of this issue. To view this commentary visit http://dx.doi.org/10.1111/j.1476-5381.2012.01976.x.
Collapse
Affiliation(s)
- Mohamed I Hassan
- Pharmazentrum frankfurt/ZAFES, Klinikum der Johann Wolfgang Goethe-Universität, Frankfurt am Main, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
64
|
Stone V, Wilson MR, Lightbody J, Donaldson K. Investigating the potential for interaction between the components of PM(10). Environ Health Prev Med 2012; 7:246-53. [PMID: 21432393 DOI: 10.1007/bf02908883] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2002] [Accepted: 08/20/2002] [Indexed: 12/29/2022] Open
Abstract
The adverse health effects of elevated exposures to PM(10) (particulate matter collected through a size selective inlet with an efficiency of 50% for particles with an aerodynamic diameter of 10 μm) in relation to morbidity and mortality, especially in susceptible individuals, are now well recognised. PM(10) consists of a variable cocktail of components differing in chemical composition and size. Epidemiological and toxicological data suggest that transition metals and ultrafine particles are both able to drive the cellular and molecular changes that underlie PM(10)-induced inflammation and so worsen disease status. Toxicological evidence also suggest roles for the biological components of PM(10) including volatile organic compounds (VOC's), allergens and bacterial-derived endotoxin. Many of these components, in particular transition metals, ultrafine particles, endotoxin and VOC's induce a cellular oxidative stress which initiates an intracellular signaling cascade involving the activation of phosphatase and kinase enzymes as well as transcription factors such as nuclear factor kappa B. Activation of these signaling mechanisms results in an increase in the expression of proinflammatory mediators, and hence enhanced inflammation. Given that many of the components of PM(10) stimulate similar or even identical intracellular signaling pathways, it is conceivable that this will result in synergistic or additive interactions so that the biological response induced by PM(10) exposure is a response to the composition rather than the mass alone. A small number of studies suggest that synergistic interactions occur between ultrafine particles and transition metals, between particles and allergens, and between particles and VOC's. Elucidation of the consequences of interaction between the components of PM(10) in relation to their biological activity implies huge consequences for the methods used to monitor and to legislate pollution exposure in the future, and may drive a move from mass based measurements to composition.
Collapse
Affiliation(s)
- Vicki Stone
- Biomedicine Research Group, School of Life Sciences, Napier University, 10 Colinton Road, Merchiston, EH10 5DT, Edinburgh, U.K.,
| | | | | | | |
Collapse
|
65
|
Ito T, Nagai H, Lin TM, Peterson RE, Tohyama C, Kobayashi T, Nohara K. Organic Chemicals Adsorbed onto Diesel Exhaust Particles Directly Alter the Differentiation of Fetal Thymocytes Through Arylhydrocarbon Receptor but Not Oxidative Stress Responses. J Immunotoxicol 2012; 3:21-30. [PMID: 18958682 DOI: 10.1080/15476910500496289] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
Diesel exhaust particles (DEP) were reported to have adverse effects on the immune system of laboratory animals and to induce thymic involution, particularly when exposure occurred during the fetal or lactational period. DEP consist of a carbon core to which many organic compounds are adsorbed, including polyaromatic hydrocarbons (PAHs) and their derivatives (e.g., dioxins and quinones). Although it has been suggested that these organic compounds were responsible for mediating the effects of DEP through their regulation of gene expression, the molecular mechanism of action of DEP has not been fully elucidated. In this study, we examined the direct effect of DEP extracts and their constituents on gene expression and phenotype in the fetal thymus. Fetal thymuses from C57BL/6 mice were exposed to DEP extracts for 24 hrs, after which their gene expression was analyzed using an Affymetrix GeneChip system. DEP extracts up-regulated several genes known as arylhydrocarbon receptor (AhR)-target genes, including cytochrome P450 1a1 (Cyp1a1), 1b1 (Cyp1b1), TCDD-inducible poly(ADP-ribose) polymerase (Tiparp), and scinderin (Scin). Similarly, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and benzo[a]pyrene (B[a]P), which are AhR ligands, induced remarkably similar changes in gene expression compared to DEP extracts. In addition, our data showed little contribution of quinones to DEP extracts-induced changes in gene expression in fetal thymus through oxidative stress responses. These changes in gene expression were also confirmed by semi-quantitative RT-PCR. Furthermore, DEP extracts skewed thymic T-cell differentiation in favor of the production of CD8 T-cells, which was also observed when exposed to AhR ligands. Our results suggest that organic compounds adsorbed onto DEP alter thymic gene expression and directly affect thymocyte development by activating the AhR.
Collapse
Affiliation(s)
- Tomohiro Ito
- Environmental Health Sciences Division, National Institute for Environmental Studies, Tsukuba, Ibaraki, Japan
| | | | | | | | | | | | | |
Collapse
|
66
|
Kumagai Y, Shimojo N. Possible mechanisms for induction of oxidative stress and suppression of systemic nitric oxide production caused by exposure to environmental chemicals. Environ Health Prev Med 2012; 7:141-50. [PMID: 21432269 DOI: 10.1007/bf02897942] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2002] [Accepted: 05/07/2002] [Indexed: 11/25/2022] Open
Abstract
The cytotoxic effects evoked by exposure to environmental chemicals having electrophilic properties are often attributable to covalent attachment to intracellular macromolecules through sulfhydryl groups or enzyme-mediated redox cycling, leading to the generation of reactive oxygen species (ROS). When huge amounts of ROS form they overwhelm antioxidant defenses resulting in the induction of oxidative stress. Nitric oxide (NO) which plays a crucial role in vascular tone, is formed by endothelial NO synthase (eNOS). Since a decrease in systemic NO production is implicated in the pathophysiological actions of vascular diseases, dysfunction of eNOS by environmental chemicals is associated with cardiopulmonary-related diseases and mortality. In this review, we introduce the mechanism-based toxicities (covalent attachment and redox cycling) of electrophiles. Therefore, this review will focus on the possible mechanisms for the induction of oxidative stress and impairment of NO production caused by environmental chemicals.
Collapse
Affiliation(s)
- Yoshito Kumagai
- Department of Environmental Medicine, Institute of Community Medicine, University of Tsukuba, 305-8575, Tsukuba, Ibaraki, Japan,
| | | |
Collapse
|
67
|
Raemy DO, Grass RN, Stark WJ, Schumacher CM, Clift MJD, Gehr P, Rothen-Rutishauser B. Effects of flame made zinc oxide particles in human lung cells - a comparison of aerosol and suspension exposures. Part Fibre Toxicol 2012; 9:33. [PMID: 22901679 PMCID: PMC3585858 DOI: 10.1186/1743-8977-9-33] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2012] [Accepted: 07/06/2012] [Indexed: 11/23/2022] Open
Abstract
Background Predominantly, studies of nanoparticle (NPs) toxicology in vitro are based upon the exposure of submerged cell cultures to particle suspensions. Such an approach however, does not reflect particle inhalation. As a more realistic simulation of such a scenario, efforts were made towards direct delivery of aerosols to air-liquid-interface cultivated cell cultures by the use of aerosol exposure systems. This study aims to provide a direct comparison of the effects of zinc oxide (ZnO) NPs when delivered as either an aerosol, or in suspension to a triple cell co-culture model of the epithelial airway barrier. To ensure dose–equivalence, ZnO-deposition was determined in each exposure scenario by atomic absorption spectroscopy. Biological endpoints being investigated after 4 or 24h incubation include cytotoxicity, total reduced glutathione, induction of antioxidative genes such as heme-oxygenase 1 (HO–1) as well as the release of the (pro)-inflammatory cytokine TNFα. Results Off-gases released as by-product of flame ZnO synthesis caused a significant decrease of total reduced GSH and induced further the release of the cytokine TNFα, demonstrating the influence of the gas phase on aerosol toxicology. No direct effects could be attributed to ZnO particles. By performing suspension exposure to avoid the factor “flame-gases”, particle specific effects become apparent. Other parameters such as LDH and HO–1 were not influenced by gaseous compounds: Following aerosol exposure, LDH levels appeared elevated at both timepoints and the HO–1 transcript correlated positively with deposited ZnO-dose. Under submerged conditions, the HO–1 induction scheme deviated for 4 and 24h and increased extracellular LDH was found following 24h exposure. Conclusion In the current study, aerosol and suspension-exposure has been compared by exposing cell cultures to equivalent amounts of ZnO. Both exposure strategies differ fundamentally in their dose–response pattern. Additional differences can be found for the factor time: In the aerosol scenario, parameters tend to their maximum already after 4h of exposure, whereas under submerged conditions, effects appear most pronounced mainly after 24h. Aerosol exposure provides information about the synergistic interplay of gaseous and particulate phase of an aerosol in the context of inhalation toxicology. Exposure to suspensions represents a valuable complementary method and allows investigations on particle-associated toxicity by excluding all gas–derived effects.
Collapse
Affiliation(s)
- David O Raemy
- Adolphe Merkle Institute, Bionanomaterials, University of Fribourg, Rte de l'Ancienne Papeterie, P.O. Box 209, CH-1732, Marly, Switzerland
| | | | | | | | | | | | | |
Collapse
|
68
|
Zhang H, Liu H, Davies KJ, Sioutas C, Finch CE, Morgan TE, Forman HJ. Nrf2-regulated phase II enzymes are induced by chronic ambient nanoparticle exposure in young mice with age-related impairments. Free Radic Biol Med 2012; 52:2038-46. [PMID: 22401859 PMCID: PMC3342863 DOI: 10.1016/j.freeradbiomed.2012.02.042] [Citation(s) in RCA: 126] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2011] [Revised: 01/30/2012] [Accepted: 02/25/2012] [Indexed: 01/05/2023]
Abstract
Many xenobiotic detoxifying (phase II) enzymes are induced by sublethal doses of environmental toxicants. However, these adaptive mechanisms have not been studied in response to vehicular-derived airborne nano-sized particulate matter (nPM). Because aging is associated with increased susceptibility to environmental toxicants, we also examined the expression of Nrf2-regulated phase II genes in middle-aged mice and their inducibility by chronic nPM. The nPM from vehicular traffic was collected in urban Los Angeles and reaerosolized for exposure of C57BL/6J male mice (3 and 18 months old) for 150 h over 10 weeks. Brain (cerebellum), liver, and lung were assayed by RT-PCR and/or Western blots for the expression of phase II enzymes, glutamate cysteine ligase (catalytic GCLC, and modifier GCLM subunits), NAD(P)H:quinone oxidoreductase 1 (NQO1), heme oxygenase 1 (HO-1), and relevant transcription factors, NF-E2-related factor 2 (Nrf2), c-Myc, Bach1. Chronic nPM exposure induced GCLC, GCLM, HO-1, NQO1 mRNA, and protein similarly in cerebellum, liver, and lung of young mice. Middle-aged mice had elevated basal levels, but showed impaired further induction by nPM. Similarly, Nrf2 increased with age and was induced by nPM in young but not old. c-Myc showed the same age and induction profile while the age increase in Bach1 was further induced by nPM. Chronic exposure to nanoparticles induced Nrf2-regulated detoxifying enzymes in brain (cerebellum), liver, and lung of young adult mice, indicating a systemic impact of nPM. In contrast, middle-aged mice did not respond above their elevated basal levels except for Bach1. The lack of induction of phase II enzymes in aging mice may be a model for the vulnerability of elderly to air pollution.
Collapse
Affiliation(s)
- Hongqiao Zhang
- Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089
| | - Honglei Liu
- Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089
| | - Kelvin J.A. Davies
- Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089
| | - Constantinos Sioutas
- Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089
| | - Caleb E. Finch
- Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089
| | - Todd E. Morgan
- Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089
| | - Henry Jay Forman
- Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089
- University of California at Merced, Merced, CA 95343
| |
Collapse
|
69
|
Braga M, Schiavone C, Di Gioacchino G, De Angelis I, Cavallucci E, Lazzarin F, Petrarca C, Di Gioacchino M. Environment and T regulatory cells in allergy. THE SCIENCE OF THE TOTAL ENVIRONMENT 2012; 423:193-201. [PMID: 20825978 DOI: 10.1016/j.scitotenv.2010.08.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2009] [Revised: 08/09/2010] [Accepted: 08/09/2010] [Indexed: 05/29/2023]
Abstract
The central role of T regulatory cells in the responses against harmless environmental antigens has been confirmed by many studies. Impaired T regulatory cell function is implicated in many pathological conditions, particularly allergic diseases. The "hygiene hypothesis" suggests that infections and infestations may play a protective role for allergy, whereas environmental pollutants favor the development of allergic diseases. Developing countries suffer from a variety of infections and are also facing an increasing diffusion of environmental pollutants. In these countries allergies increase in relation to the spreading use of xenobiotics (pesticides, herbicides, pollution, etc.) with a rate similar to those of developed countries, overcoming the protective effects of infections. We review here the main mechanisms of non-self tolerance, with particular regard to relations between T regulatory cell activity, infections and infestations such as helminthiasis, and exposure to environmental xenobiotics with relevant diffusion in developing countries.
Collapse
Affiliation(s)
- M Braga
- Allergy Unit, Spedali Civili, Piazzale Spedali Civili, 25123 Brescia, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
70
|
Health and cellular impacts of air pollutants: from cytoprotection to cytotoxicity. Biochem Res Int 2012; 2012:493894. [PMID: 22550588 PMCID: PMC3328890 DOI: 10.1155/2012/493894] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2011] [Revised: 01/17/2012] [Accepted: 01/18/2012] [Indexed: 12/11/2022] Open
Abstract
Air pollution as one of the ravages of our modern societies is primarily linked to urban centers, industrial activities, or road traffic. These atmospheric pollutants have been incriminated in deleterious health effects by numerous epidemiological and in vitro studies. Environmental air pollutants are a heterogeneous mixture of particles suspended into a liquid and gaseous phase which trigger the disruption of redox homeostasis—known under the term of cellular oxidative stress—in relation with the establishment of inflammation and cell death via necrosis, apoptosis, or autophagy. Activation or repression of the apoptotic process as an adaptative response to xenobiotics might lead to either acute or chronic toxicity. The purpose of this paper is to highlight the central role of oxidative stress induced by air pollutants and to focus on the subsequent cellular impacts ranging from cytoprotection to cytotoxicity by decreasing or stimulating apoptosis, respectively.
Collapse
|
71
|
RISTOVSKI ZORAND, MILJEVIC BRANKA, SURAWSKI NICHOLASC, MORAWSKA LIDIA, FONG KWUNM, GOH FELICIA, YANG IANA. Respiratory health effects of diesel particulate matter. Respirology 2012; 17:201-12. [DOI: 10.1111/j.1440-1843.2011.02109.x] [Citation(s) in RCA: 219] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
72
|
Fiorito S, Mastrofrancesco A, Cardinali G, Rosato E, Salsano F, Su DS, Serafino A, Picardo M. Effects of carbonaceous nanoparticles from low-emission and older diesel engines on human skin cells. CARBON 2011; 49:5038-5048. [DOI: 10.1016/j.carbon.2011.07.022] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2025]
|
73
|
Riva D, Magalhães C, Lopes A, Lanças T, Mauad T, Malm O, Valença S, Saldiva P, Faffe D, Zin W. Low dose of fine particulate matter (PM2.5) can induce acute oxidative stress, inflammation and pulmonary impairment in healthy mice. Inhal Toxicol 2011; 23:257-67. [DOI: 10.3109/08958378.2011.566290] [Citation(s) in RCA: 200] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
74
|
Gowdy KM, Krantz QT, King C, Boykin E, Jaspers I, Linak WP, Gilmour MI. Role of oxidative stress on diesel-enhanced influenza infection in mice. Part Fibre Toxicol 2010; 7:34. [PMID: 21092162 PMCID: PMC3001415 DOI: 10.1186/1743-8977-7-34] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2010] [Accepted: 11/22/2010] [Indexed: 01/05/2023] Open
Abstract
Numerous studies have shown that air pollutants, including diesel exhaust (DE), reduce host defenses, resulting in decreased resistance to respiratory infections. This study sought to determine if DE exposure could affect the severity of an ongoing influenza infection in mice, and examine if this could be modulated with antioxidants. BALB/c mice were treated by oropharyngeal aspiration with 50 plaque forming units of influenza A/HongKong/8/68 and immediately exposed to air or 0.5 mg/m3 DE (4 hrs/day, 14 days). Mice were necropsied on days 1, 4, 8 and 14 post-infection and lungs were assessed for virus titers, lung inflammation, immune cytokine expression and pulmonary responsiveness (PR) to inhaled methacholine. Exposure to DE during the course of infection caused an increase in viral titers at days 4 and 8 post-infection, which was associated with increased neutrophils and protein in the BAL, and an early increase in PR. Increased virus load was not caused by decreased interferon levels, since IFN-β levels were enhanced in these mice. Expression and production of IL-4 was significantly increased on day 1 and 4 p.i. while expression of the Th1 cytokines, IFN-γ and IL-12p40 was decreased. Treatment with the antioxidant N-acetylcysteine did not affect diesel-enhanced virus titers but blocked the DE-induced changes in cytokine profiles and lung inflammation. We conclude that exposure to DE during an influenza infection polarizes the local immune responses to an IL-4 dominated profile in association with increased viral disease, and some aspects of this effect can be reversed with antioxidants.
Collapse
Affiliation(s)
- Kymberly M Gowdy
- Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, United States Environmental Protection Agency, 109 T,W, Alexander Dr,, RTP, NC, 27711, USA
| | | | | | | | | | | | | |
Collapse
|
75
|
Li YJ, Takizawa H, Azuma A, Kohyama T, Yamauchi Y, Takahashi S, Yamamoto M, Kawada T, Kudoh S, Sugawara I. Nrf2 is closely related to allergic airway inflammatory responses induced by low-dose diesel exhaust particles in mice. Clin Immunol 2010; 137:234-41. [DOI: 10.1016/j.clim.2010.07.014] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2010] [Revised: 07/30/2010] [Accepted: 07/31/2010] [Indexed: 12/19/2022]
|
76
|
Li YJ, Takizawa H, Azuma A, Kohyama T, Yamauchi Y, Kawada T, Kudoh S, Sugawara I. The effects of oxidative stress induced by prolonged low-dose diesel exhaust particle exposure on the generation of allergic airway inflammation differ between BALB/c and C57BL/6 mice. Immunopharmacol Immunotoxicol 2010; 31:230-7. [PMID: 18791914 DOI: 10.1080/08923970802383316] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
We have recently reported that airway inflammatory responses to the oxidative stress induced by prolonged low-dose diesel exhaust particle (DEP) exposure differ markedly between BALB/c and C57BL/6 mice. In the present study, the effects of genetic differences in the response to prolonged low-dose DEP exposure on the generation of ovalbumin-induced allergic airway inflammation were further explored using the same mouse strains. In BALB/c mice, eosinophils and mucous goblet cells in histopathological pulmonary specimens increased significantly after DEP exposure, and were more marked than in C57BL/6 mice. Interleukin (IL)-5 and IL-13 levels in bronchoalveolar lavage (BAL) fluid were increased significantly by DEP exposure only in BALB/c mice. The DEP-induced increases in peribronchial eosinophils and mucous goblet cells in the lung tissues, and of IL-5 and IL-13 in the BAL fluid, were significantly attenuated by the antioxidant N-acetylcysteine. Thus, the effects of prolonged low-dose DEP exposure on the generation of allergic airway inflammation differed markedly between the mouse strains. These differences may be caused by different antioxidant responses to the oxidative stress induced by DEP exposure. Our results contribute more information to the search for genetic susceptibility factors in the response to DEP, and may thus assist in the discovery of new biomarkers for DEP-related disease.
Collapse
Affiliation(s)
- Ying-Ji Li
- Department of Hygiene and Public Health, Nippon Medical School, Tokyo, Japan
| | | | | | | | | | | | | | | |
Collapse
|
77
|
Zhuang T, Zhang M, Zhang H, Dennery PA, Lin QS. Disrupted postnatal lung development in heme oxygenase-1 deficient mice. Respir Res 2010; 11:142. [PMID: 20932343 PMCID: PMC2964616 DOI: 10.1186/1465-9921-11-142] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2009] [Accepted: 10/10/2010] [Indexed: 01/30/2023] Open
Abstract
Background Heme oxygenase (HO) degrades cellular heme to carbon monoxide, iron and biliverdin. The HO-1 isoform is both inducible and cyto-protective during oxidative stress, inflammation and lung injury. However, little is known about its precise role and function in lung development. We hypothesized that HO-1 is required for mouse postnatal lung alveolar development and that vascular expression of HO-1 is essential and protective during postnatal alveolar development. Methods Neonatal lung development in wildtype and HO-1 mutant mice was evaluated by histological and molecular methods. Furthermore, these newborn mice were treated with postnatal dexamethasone (Dex) till postnatal 14 days, and evaluated for lung development. Results Compared to wildtype littermates, HO-1 mutant mice exhibited disrupted lung alveolar structure including simplification, disorganization and reduced secondary crest formation. These defects in alveolar development were more pronounced when these mice were challenged with Dex treatment. Expression levels of both vascular endothelial and alveolar epithelial markers were also further decreased in HO-1 mutants after Dex treatment. Conclusions These experiments demonstrate that HO-1 is required in normal lung development and that HO-1 disruption and dexamethasone exposure are additive in the disruption of postnatal lung growth. We speculate that HO-1 is involved in postnatal lung development through modulation of pulmonary vascular development.
Collapse
Affiliation(s)
- Tiangang Zhuang
- Division of Neonatology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | | | | | | | | |
Collapse
|
78
|
Hou L, Zhu ZZ, Zhang X, Nordio F, Bonzini M, Schwartz J, Hoxha M, Dioni L, Marinelli B, Pegoraro V, Apostoli P, Bertazzi PA, Baccarelli A. Airborne particulate matter and mitochondrial damage: a cross-sectional study. Environ Health 2010; 9:48. [PMID: 20696069 PMCID: PMC2928195 DOI: 10.1186/1476-069x-9-48] [Citation(s) in RCA: 131] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2009] [Accepted: 08/09/2010] [Indexed: 05/19/2023]
Abstract
UNLABELLED Oxidative stress generation is a primary mechanism mediating the effects of Particulate Matter (PM) on human health. Although mitochondria are both the major intracellular source and target of oxidative stress, the effect of PM on mitochondria has never been evaluated in exposed individuals. METHODS In 63 male healthy steel workers from Brescia, Italy, studied between April and May 2006, we evaluated whether exposure to PM was associated with increased mitochondrial DNA copy number (MtDNAcn), an established marker of mitochondria damage and malfunctioning. Relative MtDNAcn (RMtDNAcn) was determined by real-time PCR in blood DNA obtained on the 1st (time 1) and 4th day (time 2) of the same work week. Individual exposures to PM10, PM1, coarse particles (PM10-PM1) and airborne metal components of PM10 (chromium, lead, arsenic, nickel, manganese) were estimated based on measurements in the 11 work areas and time spent by the study subjects in each area. RESULTS RMtDNAcn was higher on the 4th day (mean = 1.31; 95%CI = 1.22 to 1.40) than on the 1st day of the work week (mean = 1.09; 95%CI = 1.00 to 1.17). PM exposure was positively associated with RMtDNAcn on either the 4th (PM10: beta = 0.06, 95%CI = -0.06 to 0.17; PM1: beta = 0.08, 95%CI = -0.08 to 0.23; coarse: beta = 0.06, 95%CI = -0.06 to 0.17) or the 1st day (PM10: beta = 0.18, 95%CI = 0.09 to 0.26; PM1: beta = 0.23, 95%CI = 0.11 to 0.35; coarse: beta = 0.17, 95%CI = 0.09 to 0.26). Metal concentrations were not associated with RMtDNAcn. CONCLUSIONS PM exposure is associated with damaged mitochondria, as reflected in increased MtDNAcn. Damaged mitochondria may intensify oxidative-stress production and effects.
Collapse
Affiliation(s)
- Lifang Hou
- Department of Preventive Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
- Robert H. Lurie Comprehensive Cancer Center Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Zhong-Zheng Zhu
- Center of Molecular and Genetic Epidemiology, Department of Environmental and Occupational Health, University of Milan and IRCCS Maggiore Policlinico Hospital, Mangiagalli and Regina Elena Foundation, Milan, Italy
- Department of Oncology, No.3 People's Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Xiao Zhang
- Department of Preventive Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Francesco Nordio
- Center of Molecular and Genetic Epidemiology, Department of Environmental and Occupational Health, University of Milan and IRCCS Maggiore Policlinico Hospital, Mangiagalli and Regina Elena Foundation, Milan, Italy
- Department of Clinical Medicine, Nephrology and Health Sciences, University of Parma Medical School, Parma, Italy
| | - Matteo Bonzini
- Department of Clinical and Biological Sciences, University of Insubria, Varese, Italy
| | - Joel Schwartz
- Exposure, Epidemiology and Risk Program, Department of Environmental Health, Harvard School of Public Health, Boston, Massachusetts, USA
| | - Mirjam Hoxha
- Center of Molecular and Genetic Epidemiology, Department of Environmental and Occupational Health, University of Milan and IRCCS Maggiore Policlinico Hospital, Mangiagalli and Regina Elena Foundation, Milan, Italy
| | - Laura Dioni
- Center of Molecular and Genetic Epidemiology, Department of Environmental and Occupational Health, University of Milan and IRCCS Maggiore Policlinico Hospital, Mangiagalli and Regina Elena Foundation, Milan, Italy
| | - Barbara Marinelli
- Center of Molecular and Genetic Epidemiology, Department of Environmental and Occupational Health, University of Milan and IRCCS Maggiore Policlinico Hospital, Mangiagalli and Regina Elena Foundation, Milan, Italy
| | - Valeria Pegoraro
- Center of Molecular and Genetic Epidemiology, Department of Environmental and Occupational Health, University of Milan and IRCCS Maggiore Policlinico Hospital, Mangiagalli and Regina Elena Foundation, Milan, Italy
| | - Pietro Apostoli
- Department of Experimental and Applied Medicine, Occupational Medicine and Industrial Hygiene, University of Brescia, Brescia, Italy
| | - Pier Alberto Bertazzi
- Center of Molecular and Genetic Epidemiology, Department of Environmental and Occupational Health, University of Milan and IRCCS Maggiore Policlinico Hospital, Mangiagalli and Regina Elena Foundation, Milan, Italy
| | - Andrea Baccarelli
- Center of Molecular and Genetic Epidemiology, Department of Environmental and Occupational Health, University of Milan and IRCCS Maggiore Policlinico Hospital, Mangiagalli and Regina Elena Foundation, Milan, Italy
- Exposure, Epidemiology and Risk Program, Department of Environmental Health, Harvard School of Public Health, Boston, Massachusetts, USA
| |
Collapse
|
79
|
Zhang H, Forman HJ. Reexamination of the electrophile response element sequences and context reveals a lack of consensus in gene function. BIOCHIMICA ET BIOPHYSICA ACTA 2010; 1799:496-501. [PMID: 20478426 PMCID: PMC2893253 DOI: 10.1016/j.bbagrm.2010.05.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/15/2009] [Revised: 04/12/2010] [Accepted: 05/07/2010] [Indexed: 12/18/2022]
Abstract
The electrophile response element (EpRE) is essential for regulation of many genes involved in protection against toxic agents. Putative EpRE core sequences (TGAnnnnGC) are localized in 5'-flanking regions (5'-UTR) of these genes but specificity of the internal bases and whether location affects function has not been refined. The catalytic subunit of human glutamate cysteine ligase (GCLC) gene is well documented to be under EpRE regulation and four sequences having an EpRE "consensus" sequence were reported with only one (EpRE 4) responsive to electrophiles. Using GCLC as a model, we asked whether the internal variable or flanking nucleotides and the location of the sequence were required for functional activity in response to 4-hydroxenonenal (HNE). We found that thirteen putative EpRE core sequences (TGAnnnnGC) were localized in 5'-UTR of GCLC and confirmed that EpRE 4 showed both constitutive and HNE-inducible activity. Four other sequences exhibited only constitutive activity while other putative EpREs demonstrated no activity. Nucleotide mutagenesis demonstrated specific requirements for internal and flanking nucleotides that were specific for the electrophilic response and that a TRE-like sequence within EpRE was essential for basal (non-electrophile-dependent) activity. Furthermore, EpRE 4 relocated to positions of other putative EpREs maintained activity but moving other EpREs to the EpRE 4 location did not. Thus in GCLC, specific flanking and internal nucleotides within EpRE were far more important for function than previously described while location did not influence activity. These two findings bring into question the meaning of the phrase, "consensus sequence" for this important cis element.
Collapse
Affiliation(s)
- Hongqiao Zhang
- School of Natural Sciences, University of California at Merced, Merced, CA 95343, USA
| | | |
Collapse
|
80
|
Novel antioxidant approaches to the treatment of upper airway inflammation. Curr Opin Allergy Clin Immunol 2010; 10:34-41. [PMID: 19935060 DOI: 10.1097/aci.0b013e328334f613] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
PURPOSE OF REVIEW Current understanding of the role of oxidative stress in airway inflammation suggests that antioxidant therapy may be important to optimize the treatment. This review summarizes recent investigations of novel antioxidant agents for upper airway inflammation, with selected studies focused on lower airway disease as additional candidate therapeutics. RECENT FINDINGS Recently investigated antioxidant therapies for airway inflammation may be broadly grouped into three categories: endogenous metabolic agents, vitamins/nutrients, and botanical extracts. Studies examining effects in upper airway inflammation are limited and primarily consist of in-vitro human and in-vivo animal models. More extensive studies have investigated the benefits of antioxidants in lower airway conditions such as allergic asthma. Existing evidence identifies antioxidant agents with potential therapeutic value, although human studies suggest that subpopulations affected by specific genetic, environmental, dietary factors, or all are most likely to benefit from antioxidant therapy. SUMMARY Oxidative stress plays a causative role in upper airway inflammation, and novel strategies to mitigate cellular injury with antioxidant therapy may ameliorate disease in target populations. Preclinical studies demonstrate evidence of anti-inflammatory effects for a number of promising antioxidant agents. Well designed interventional human studies of the upper airway, which account for complex gene-environment-diet interactions, will be necessary to adequately examine the potential clinical benefit of antioxidant therapies for rhinosinusitis.
Collapse
|
81
|
Comparative evaluation of the effects of short-term inhalation exposure to diesel engine exhaust on rat lung and brain. Arch Toxicol 2010; 84:553-62. [PMID: 20467864 PMCID: PMC2886900 DOI: 10.1007/s00204-010-0551-7] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2010] [Accepted: 04/22/2010] [Indexed: 11/01/2022]
Abstract
Combustion-derived nanoparticles, such as diesel engine exhaust particles, have been implicated in the adverse health effects of particulate air pollution. Recent studies suggest that inhaled nanoparticles may also reach and/or affect the brain. The aim of our study was to comparatively evaluate the effects of short-term diesel engine exhaust (DEE) inhalation exposure on rat brain and lung. After 4 or 18 h recovery from a 2 h nose-only exposure to DEE (1.9 mg/m(3)), the mRNA expressions of heme oxygenase-1 (HO-1), inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), and cytochrome P450 1A1 (CYP1A1) were investigated in lung as well as in pituitary gland, hypothalamus, olfactory bulb, olfactory tubercles, cerebral cortex, and cerebellum. HO-1 protein expression in brain was investigated by immunohistochemistry and ELISA. In the lung, 4 h post-exposure, CYP1A1 and iNOS mRNA levels were increased, while 18 h post-exposure HO-1 was increased. In the pituitary at 4 h post-exposure, both CYP1A1 and HO-1 were increased; HO-1 was also elevated in the olfactory tuberculum at this time point. At 18 h post-exposure, increased expression of HO-1 and COX-2 was observed in cerebral cortex and cerebellum, respectively. Induction of HO-1 protein was not observed after DEE exposure. Bronchoalveolar lavage analysis of inflammatory cell influx, TNF-alpha, and IL-6 indicated that the mRNA expression changes occurred in the absence of lung inflammation. Our study shows that a single, short-term inhalation exposure to DEE triggers region-specific gene expression changes in rat brain to an extent comparable to those observed in the lung.
Collapse
|
82
|
Rubio V, Valverde M, Rojas E. Effects of atmospheric pollutants on the Nrf2 survival pathway. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2010; 17:369-82. [PMID: 19367423 DOI: 10.1007/s11356-009-0140-6] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2008] [Accepted: 02/16/2009] [Indexed: 04/15/2023]
Abstract
BACKGROUND, AIM, AND SCOPE Atmospheric pollution is a worldwide problem. Exposure to atmospheric pollutants causes toxic cellular effects. One of the mechanisms of toxicity by these pollutants is the promotion of oxidative stress. Several signaling pathways control cellular redox homeostasis. In this respect, nuclear factor erythroid 2-related factor 2 (Nrf2) is a crucial transcription factor in the cell's response to oxidative stress. MAIN FEATURES In cellular animal models, exposure to atmospheric pollutants activates Nrf2, attenuating its toxic and even its carcinogenic effects. Therefore, we have reviewed the scientific literature in order to indicate that air pollutants, such as particulate matter, polycyclic aromatic hydrocarbons, and gaseous matter, are Nrf2 pathway inductors, triggering self-defense through the establishment of proinflammatory and antioxidant responses. RESULTS AND DISCUSSION Exposure to reactive molecules as atmospheric pollutants causes the activation of Nrf2 and the subsequent regulation of the expression of cytoprotective and detoxifying enzymes, as well as antioxidants. Moreover, induction of Nrf2 prior to exposure reduces the harmful effects of pollutants. The present article discusses the protective role of the Nrf2 pathway against different atmospheric pollutant insults. CONCLUSIONS Nrf2 regulates the expression of numerous cytoprotective genes that function to detoxify reactive species produced during atmospheric pollutant metabolic reactions. From the papers highlighted in this review, we conclude that Nrf2 has an important role in the defense against atmospheric pollutant-induced toxicity. PERSPECTIVES Further studies are needed to understand the signaling events that turn on the system in response to atmospheric pollutant stress. This could allow for the possibility of targeting the pathway for prevention benefits in the near future.
Collapse
Affiliation(s)
- Valentina Rubio
- Instituto de Investigaciones Biomédicas, Departamento de Medicina Genómica y Toxicología Ambiental, Universidad Nacional Autónoma de México, México D.F., 04510, Mexico
| | | | | |
Collapse
|
83
|
Stojicic N, Baumstark-Khan C, Hellweg CE, Grotheer HH, Reitz G, Kolanus W, Hemmersbach R. Toxicity of ethylene combustion condensates is directly proportional to their carbon content. Toxicology 2010; 269:35-40. [DOI: 10.1016/j.tox.2010.01.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2009] [Revised: 01/03/2010] [Accepted: 01/05/2010] [Indexed: 01/08/2023]
|
84
|
Dirscherl K, Karlstetter M, Ebert S, Kraus D, Hlawatsch J, Walczak Y, Moehle C, Fuchshofer R, Langmann T. Luteolin triggers global changes in the microglial transcriptome leading to a unique anti-inflammatory and neuroprotective phenotype. J Neuroinflammation 2010; 7:3. [PMID: 20074346 PMCID: PMC2819254 DOI: 10.1186/1742-2094-7-3] [Citation(s) in RCA: 126] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2009] [Accepted: 01/14/2010] [Indexed: 11/10/2022] Open
Abstract
Background Luteolin, a plant derived flavonoid, exerts a variety of pharmacological activities and anti-oxidant properties associated with its capacity to scavenge oxygen and nitrogen species. Luteolin also shows potent anti-inflammatory activities by inhibiting nuclear factor kappa B (NFkB) signaling in immune cells. To better understand the immuno-modulatory effects of this important flavonoid, we performed a genome-wide expression analysis in pro-inflammatory challenged microglia treated with luteolin and conducted a phenotypic and functional characterization. Methods Resting and LPS-activated BV-2 microglia were treated with luteolin in various concentrations and mRNA levels of pro-inflammatory markers were determined. DNA microarray experiments and bioinformatic data mining were performed to capture global transcriptomic changes following luteolin stimulation of microglia. Extensive qRT-PCR analyses were carried out for an independent confirmation of newly identified luteolin-regulated transcripts. The activation state of luteolin-treated microglia was assessed by morphological characterization. Microglia-mediated neurotoxicity was assessed by quantifying secreted nitric oxide levels and apoptosis of 661W photoreceptors cultured in microglia-conditioned medium. Results Luteolin dose-dependently suppressed pro-inflammatory marker expression in LPS-activated microglia and triggered global changes in the microglial transcriptome with more than 50 differentially expressed transcripts. Pro-inflammatory and pro-apoptotic gene expression was effectively blocked by luteolin. In contrast, mRNA levels of genes related to anti-oxidant metabolism, phagocytic uptake, ramification, and chemotaxis were significantly induced. Luteolin treatment had a major effect on microglial morphology leading to ramification of formerly amoeboid cells associated with the formation of long filopodia. When co-incubated with luteolin, LPS-activated microglia showed strongly reduced NO secretion and significantly decreased neurotoxicity on 661W photoreceptor cultures. Conclusions Our findings confirm the inhibitory effects of luteolin on pro-inflammatory cytokine expression in microglia. Moreover, our transcriptomic data suggest that this flavonoid is a potent modulator of microglial activation and affects several signaling pathways leading to a unique phenotype with anti-inflammatory, anti-oxidative, and neuroprotective characteristics. With the identification of several novel luteolin-regulated genes, our findings provide a molecular basis to understand the versatile effects of luteolin on microglial homeostasis. The data also suggest that luteolin could be a promising candidate to develop immuno-modulatory and neuroprotective therapies for the treatment of neurodegenerative disorders.
Collapse
Affiliation(s)
- Konstantin Dirscherl
- Institute of Human Genetics, University of Regensburg, Franz-Josef-Strauss-Allee 11, 93053 Regensburg, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
85
|
The Role of Stable Free Radicals, Metals and PAHs of Airborne Particulate Matter in Mechanisms of Oxidative Stress and Carcinogenicity. URBAN AIRBORNE PARTICULATE MATTER 2010. [DOI: 10.1007/978-3-642-12278-1_21] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
86
|
Jami SK, Dalal A, Divya K, Kirti PB. Molecular cloning and characterization of five annexin genes from Indian mustard (Brassica juncea L. Czern and Coss). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2009; 47:977-990. [PMID: 19758812 DOI: 10.1016/j.plaphy.2009.08.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2008] [Revised: 08/07/2009] [Accepted: 08/15/2009] [Indexed: 05/28/2023]
Abstract
Plant annexins constitute a multigene family having suggested roles in a variety of cellular processes including stress responses. We have isolated and characterized five different cDNAs of mustard, Brassica juncea (AnnBj1, AnnBj2, AnnBj3, AnnBj6 and AnnBj7) encoding annexin proteins using a RT-PCR/RACE-PCR based strategy. The predicted molecular masses of these annexins are approximately 36.0 kDa with acidic pIs. At the amino acid level, they share high sequence similarity with each other and with annexins from higher plants. Phylogenetic analysis revealed their evolutionary relationship with corresponding orthologous sequences in Arabidopsis and deduced proteins in various plant species. Expression analysis by semi-quantitative RT-PCR revealed that these genes are differentially expressed in various tissues. The expression patterns of these genes also showed regulation by various stress conditions such as exposure to signaling molecules, salinity and oxidative stress and wounding. Additionally, the in silico promoter analysis (of AnnBj1, AnnBj2 and AnnBj3) showed the presence of different cis-responsive elements that could respond to various stress conditions. These results indicate that AnnBj genes may play important roles in adaptation of plants to various environmental stresses.
Collapse
Affiliation(s)
- Sravan Kumar Jami
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad 500046, India.
| | | | | | | |
Collapse
|
87
|
Li YJ, Kawada T, Matsumoto A, Azuma A, Kudoh S, Takizawa H, Sugawara I. AIRWAY INFLAMMATORY RESPONSES TO OXIDATIVE STRESS INDUCED BY LOW-DOSE DIESEL EXHAUST PARTICLE EXPOSURE DIFFER BETWEEN MOUSE STRAINS. Exp Lung Res 2009; 33:227-44. [PMID: 17620185 DOI: 10.1080/01902140701481062] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Low-dose diesel exhaust particle (DEP) exposure induces airway inflammation and exaggerates asthmatic responses in mice, but it is unclear whether strains differ in their susceptibility to adverse effects from low-dose DEP exposure. The authors used BALB/c and C57BL/6 mouse strains to search for genetically based differences in response to low-dose DEP (100 microg/m(3)) exposure in terms of airway inflammatory response. The macrophage count in bronchoalveolar lavage (BAL) fluid soon after DE exposure began was significantly greater in C57BL/6 mice (P < .05) than that in BALB/c mice. The count did not increase significantly in BALB/c mice until later. Heme oxygenase-1 (HO-1) mRNA expression and protein production in lung tissues soon after exposure began were more marked in BALB/c mice than in C57BL/6 mice, but the reverse was true later on. The increases in interleukin (IL)-1beta and interferon (IFN)-gamma levels in BAL fluid after DE exposure were significant only in BALB/c mice; there were significantly increases in monocyte chemoattractant protein (MCP)-1, IL-12, IL-10, IL-4, and IL-13 in both strains, but these were more marked in C57BL/6 mice. These interstrain differences in airway inflammatory response after DE exposure were significantly attenuated by antioxidant N-acetylcysteine (NAC) treatment. Changes in airway hyperresponsiveness were independent of the airway inflammation induced by low-dose DEP. Thus, in BALB/c mice, innate immunity may play a central role in DE exposure response, whereas in C57BL/6 mice Th2-dominant responses play a central role. Low-dose DEP exposure induces airway inflammatory responses that differ among strains, and these differences may be caused by differences in sensitivity to oxidative stress.
Collapse
Affiliation(s)
- Ying-Ji Li
- Department of Hygiene and Public Health, Nippon Medical School, Tokyo, Japan
| | | | | | | | | | | | | |
Collapse
|
88
|
Vondráček J, Krčmář P, Procházková J, Trilecová L, Gavelová M, Skálová L, Szotáková B, Bunček M, Radilová H, Kozubík A, Machala M. The role of aryl hydrocarbon receptor in regulation of enzymes involved in metabolic activation of polycyclic aromatic hydrocarbons in a model of rat liver progenitor cells. Chem Biol Interact 2009; 180:226-37. [DOI: 10.1016/j.cbi.2009.03.011] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2008] [Revised: 03/10/2009] [Accepted: 03/16/2009] [Indexed: 11/30/2022]
|
89
|
Omura S, Koike E, Kobayashi T. Microarray analysis of gene expression in rat alveolar epithelial cells exposed to fractionated organic extracts of diesel exhaust particles. Toxicology 2009; 262:65-72. [DOI: 10.1016/j.tox.2009.05.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2009] [Revised: 05/01/2009] [Accepted: 05/10/2009] [Indexed: 12/24/2022]
|
90
|
Li N, Wang M, Bramble LA, Schmitz DA, Schauer JJ, Sioutas C, Harkema JR, Nel AE. The adjuvant effect of ambient particulate matter is closely reflected by the particulate oxidant potential. ENVIRONMENTAL HEALTH PERSPECTIVES 2009; 117:1116-23. [PMID: 19654922 PMCID: PMC2717139 DOI: 10.1289/ehp.0800319] [Citation(s) in RCA: 157] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2008] [Accepted: 03/11/2009] [Indexed: 05/17/2023]
Abstract
BACKGROUND It has been demonstrated that ambient particulate matter (PM) can act as an adjuvant for allergic sensitization. Redox-active organic chemicals on the particle surface play an important role in PM adverse health effects and may determine the adjuvant effect of different particle types according to their potential to perturb redox equilibrium in the immune system. OBJECTIVES We determined whether the adjuvant effect of ambient fine particles versus ultrafine particles (UFPs) is correlated to their prooxidant potential. METHODS We have established an intranasal sensitization model that uses ambient PM as a potential adjuvant for sensitization to ovalbumin (OVA), which enhances the capacity for secondary OVA challenge to induce allergic airway inflammation. RESULTS UFPs with a greater polycyclic aromatic hydrocarbon (PAH) content and higher oxidant potential enhanced OVA sensitization more readily than did fine particles. This manifests as enhanced allergic inflammation upon secondary OVA challenge, leading to eosinophilic inflammation and mucoid hyperplasia starting at the nasal turbinates all the way down to the small pulmonary airways. The thiol antioxidant N-acetyl cysteine was able to suppress some of these sensitization events. CONCLUSIONS The adjuvant effects of ambient UFP is determined by their oxidant potential, which likely plays a role in changing the redox equilibrium in the mucosal immune system.
Collapse
Affiliation(s)
- Ning Li
- Division of NanoMedicine, Department of Medicine
| | - Meiying Wang
- Division of NanoMedicine, Department of Medicine
- Southern California Particle Center, University of California at Los Angeles, Los Angeles, California, USA
| | - Lori A. Bramble
- Department of Pathobiology and Diagnostic Investigation, College of Veterinary Medicine, Michigan State University, East Lansing, Michigan, USA
| | - Debra A. Schmitz
- Southern California Particle Center, University of California at Los Angeles, Los Angeles, California, USA
| | - James J. Schauer
- Department of Civil and Environmental Engineering, University of Wisconsin, Madison, Wisconsin, USA
| | - Constantinos Sioutas
- Southern California Particle Center, University of California at Los Angeles, Los Angeles, California, USA
- Department of Civil and Environmental Engineering, University of Southern California, Los Angeles, California, USA
| | - Jack R. Harkema
- Southern California Particle Center, University of California at Los Angeles, Los Angeles, California, USA
- Department of Pathobiology and Diagnostic Investigation, College of Veterinary Medicine, Michigan State University, East Lansing, Michigan, USA
| | - Andre E. Nel
- Division of NanoMedicine, Department of Medicine
- Southern California Particle Center, University of California at Los Angeles, Los Angeles, California, USA
- Address correspondence to A.E. Nel, Division of NanoMedicine, Department of Medicine, University of California, 10833 Le Conte Ave., 52-175 CHS, Los Angeles, CA 90095 USA. Telephone: (310) 825-6620. Fax: (310) 206-8107. E-mail:
| |
Collapse
|
91
|
Park YY. Ischemia/reperfusion Lung Injury Increases Serum Ferritin and Heme Oxygenase-1 in Rats. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2009; 13:181-7. [PMID: 19885035 DOI: 10.4196/kjpp.2009.13.3.181] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2009] [Revised: 05/11/2009] [Accepted: 05/25/2009] [Indexed: 01/11/2023]
Abstract
Intestinal ischemia/reperfusion (I/R) is one of common causes of acute lung injury (ALI). Early and accurate diagnosis of patients who are like to develop serious acute respiratory distress syndrome (ARDS) would give a therapeutic advantage. Ferritin and heme oxygenase-1 (HO-1) are increased by oxidative stress and are potential candidates as a predictive biomarker of ARDS. However, the mechanisms responsible for the increases of ferritin and HO-1, and their relationship to ALI, are unclear. In order to elucidate the interactions between ferritin and HO-1, we studied the changes in ferritin and HO-1 levels in serum and bronchoalveolar lavage (BAL) fluid after intestinal I/R injury in rats. Leukocyte number and protein contents in BAL fluid were elevated following I/R, and the increases were attenuated by mepacrine pretreatment. Both serum ferritin and HO-1 concentrations were progressively elevated throughout the 3 h observation period. Mepacrine pretreatment attenuated the increase of serum and BAL fluid ferritin concentrations, but did not suppress the increase of serum HO-1. Moreover, BAL fluid HO-1 levels did not change after I/R or after mepacrine pretreated I/R compared with sham rats. Unlike ferritin, HO-1 levels are not exactly matched with the ALI. Therefore, there might be a different mechanism between the changes of ferritin and HO-1 in intestinal I/R-induced ALI model.
Collapse
Affiliation(s)
- Yoon-Yub Park
- Department of Physiology, School of Medicine, Catholic University of Daegu, Daegu 705-718, Korea
| |
Collapse
|
92
|
Bargagli E, Olivieri C, Bennett D, Prasse A, Muller-Quernheim J, Rottoli P. Oxidative stress in the pathogenesis of diffuse lung diseases: a review. Respir Med 2009; 103:1245-56. [PMID: 19464864 DOI: 10.1016/j.rmed.2009.04.014] [Citation(s) in RCA: 151] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2008] [Revised: 04/03/2009] [Accepted: 04/15/2009] [Indexed: 02/06/2023]
Abstract
Oxidative stress is an imbalance between oxidants (reactive oxygen and nitrogen species) and antioxidants that may affect lipids, DNA, carbohydrates and proteins. The lung is continuously exposed to endogenous and exogenous oxidants (cigarette smoke, mineral dust, ozone, radiation). Reactive oxygen and nitrogen species are mainly produced by phagocytes as well as by polymorphonuclear, alveolar, bronchial and endothelial cells. A potential role of oxidative stress in the pathogenesis of diffuse lung diseases (particularly idiopathic pulmonary fibrosis) has been demonstrated. Increased oxidant levels and decreased antioxidant defences can contribute to the progression of idiopathic pulmonary fibrosis and other diffuse lung diseases. The growing number of papers on the different aspects of oxidant/antioxidant imbalance in diffuse lung diseases in the last decade reflects increasing interest in this topic and suggests that specific DLDs may be characterized by specific patterns of oxidation and antioxidant responses. The study of oxidative stress can provide insights into etiopathogenesis and favour the discovery of new treatments. In this review of the literature on oxidants and antioxidants in diffuse lung diseases, the focus is on idiopathic pulmonary fibrosis, sarcoidosis, pneumoconiosis and pulmonary fibrosis associated with systemic sclerosis.
Collapse
Affiliation(s)
- E Bargagli
- Respiratory Diseases Section, Department of Clinical Medicine and Immunological Sciences, University of Siena, viale Bracci, Siena, Italy.
| | | | | | | | | | | |
Collapse
|
93
|
Ramgolam K, Favez O, Cachier H, Gaudichet A, Marano F, Martinon L, Baeza-Squiban A. Size-partitioning of an urban aerosol to identify particle determinants involved in the proinflammatory response induced in airway epithelial cells. Part Fibre Toxicol 2009; 6:10. [PMID: 19302717 PMCID: PMC2667424 DOI: 10.1186/1743-8977-6-10] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2008] [Accepted: 03/23/2009] [Indexed: 01/26/2023] Open
Abstract
Background The contribution of air particles in human cardio-respiratory diseases has been enlightened by several epidemiological studies. However the respective involvement of coarse, fine and ultrafine particles in health effects is still unclear. The aim of the present study is to determine which size fraction from a chemically characterized background aerosol has the most important short term biological effect and to decipher the determinants of such a behaviour. Results Ambient aerosols were collected at an urban background site in Paris using four 13-stage low pressure cascade impactors running in parallel (winter and summer 2005) in order to separate four size-classes (PM0.03–0.17 (defined here as ultrafine particles), PM0.17–1 (fine), PM1–2.5(intermediate) and PM2.5–10 (coarse)). Accordingly, their chemical composition and their pro-inflammatory potential on human airway epithelial cells were investigated. Considering isomass exposures (same particle concentrations for each size fractions) the pro-inflammatory response characterized by Granulocyte Macrophage-Colony Stimulating Factor (GM-CSF) release was found to decrease with aerosol size with no seasonal dependency. When cells were exposed to isovolume of particle suspensions in order to respect the particle proportions observed in ambient air, the GM-CSF release was maximal with the fine fraction. In presence of a recombinant endotoxin neutralizing protein, the GM-CSF release induced by particles is reduced for all size-fractions, with exception of the ultra-fine fraction which response is not modified. The different aerosol size-fractions were found to display important chemical differences related to the various contributing primary and secondary sources and aerosol age. The GM-CSF release was correlated to the organic component of the aerosols and especially its water soluble fraction. Finally, Cytochrome P450 1A1 activity that reflects PAH bioavailability varied as a function of the season: it was maximal for the fine fraction in winter and for the ultrafine fraction in summer. Conclusion In the frame of future regulations, a particular attention should thus be paid to the ultrafine/fine (here referred to as PM1) fraction due to their overwhelming anthropogenic origin and predominance in the urban aerosol and their pro-inflammatory potential.
Collapse
Affiliation(s)
- Kiran Ramgolam
- Univ Paris Diderot, Paris 7, Laboratory of Molecular and Cellular Responses to Xénobiotics, Unit of Functional and Adaptive Biology affiliated to CNRS, 5 rue Thomas Mann, case courrier 7073, 75013 Paris, France.
| | | | | | | | | | | | | |
Collapse
|
94
|
Riedl MA, Saxon A, Diaz-Sanchez D. Oral sulforaphane increases Phase II antioxidant enzymes in the human upper airway. Clin Immunol 2009; 130:244-51. [PMID: 19028145 PMCID: PMC2668525 DOI: 10.1016/j.clim.2008.10.007] [Citation(s) in RCA: 169] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2008] [Accepted: 10/09/2008] [Indexed: 12/19/2022]
Abstract
BACKGROUND Cellular oxidative stress is an important factor in asthma and is thought to be the principle mechanism by which oxidant pollutants such as ozone and particulates mediate their pro-inflammatory effects. Endogenous Phase II enzymes abrogate oxidative stress through the scavenging of reactive oxygen species and metabolism of reactive chemicals. OBJECTIVE We conducted a placebo-controlled dose escalation trial to investigate the in vivo effects of sulforaphane, a naturally occurring potent inducer of Phase II enzymes, on the expression of glutathione-s-transferase M1 (GSTM1), glutathione-s-transferase P1 (GSTP1), NADPH quinone oxidoreductase (NQO1), and hemoxygenase-1 (HO-1) in the upper airway of human subjects. METHODS Study subjects consumed oral sulforaphane doses contained in a standardized broccoli sprout homogenate (BSH). RNA expression for selected Phase II enzymes was measured in nasal lavage cells by RT-PCR before and after sulforaphane dosing. RESULTS All subjects tolerated oral sulforaphane dosing without significant adverse events. Increased Phase II enzyme expression in nasal lavage cells occurred in a dose-dependent manner with maximal enzyme induction observed at the highest dose of 200 g broccoli sprouts prepared as BSH. Significant increases were seen in all sentinel Phase II enzymes RNA expression compared to baseline. Phase II enzyme induction was not seen with ingestion of non-sulforaphane containing alfalfa sprouts. CONCLUSION Oral sulforaphane safely and effectively induces mucosal Phase II enzyme expression in the upper airway of human subjects. This study demonstrates the potential of antioxidant Phase II enzymes induction in the human airway as a strategy to reduce the inflammatory effects of oxidative stress. CLINICAL IMPLICATIONS This study demonstrates the potential of enhancement of Phase II enzyme expression as a novel therapeutic strategy for oxidant induced airway disease. CAPSULE SUMMARY A placebo-controlled dose escalation trial demonstrated that naturally occurring sulforaphane from broccoli sprouts can induce a potent increase in antioxidant Phase II enzymes in airway cells.
Collapse
Affiliation(s)
- Marc A Riedl
- The Hart and Louis Laboratory, Clinical Immunology and Allergy, Department of Medicine, UCLA David Geffen School of Medicine, 10833 Le Conte Avenue, Los Angeles, CA 90095, USA.
| | | | | |
Collapse
|
95
|
Stevens T, Cho SH, Linak WP, Gilmour MI. Differential potentiation of allergic lung disease in mice exposed to chemically distinct diesel samples. Toxicol Sci 2008; 107:522-34. [PMID: 19074765 DOI: 10.1093/toxsci/kfn248] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Numerous studies have demonstrated that diesel exhaust particles (DEP) potentiate allergic immune responses, however the chemical components associated with this effect, and the underlying mechanisms are not well understood. This study characterized the composition of three chemically distinct DEP samples (N, C, and A-DEP), and compared post-sensitization and post-challenge inflammatory allergic phenotypes in BALB/c mice. Mice were instilled intranasally with saline or 150 microg of N-DEP, A-DEP, or C-DEP with or without 20 microg of ovalbumin (OVA) on days 0 and 13, and were subsequently challenged with 20 microg of OVA on days 23, 26, and 29. Mice were necropsied 18 h post-sensitization and 18 and 48 h post-challenge. N-DEP, A-DEP, and C-DEP contained 1.5, 68.6, and 18.9% extractable organic material (EOM) and 47, 431, and 522 microg of polycyclic aromatic hydrocarbons (PAHs), respectively. The post-challenge results showed that DEP given with OVA induced a gradation of adjuvancy as follows: C-DEP approximately A-DEP > N-DEP. The C- and A-DEP/OVA exposure groups had significant increases in eosinophils, OVA-specific IgG1, and airway hyperresponsiveness. In addition, the C-DEP/OVA exposure increased the T helper 2 (T(H)2) chemoattractant chemokine, thymus and activation-regulated chemokine and exhibited the most severe perivascular inflammation in the lung, whereas A-DEP/OVA increased interleukin (IL)-5 and IL-10. In contrast, N-DEP/OVA exposure only increased OVA-specific IgG1 post-challenge. Analysis of early signaling showed that C-DEP induced a greater number of T(H)2 cytokines compared with A-DEP and N-DEP. The results suggest that potentiation of allergic immune responses by DEP is associated with PAH content rather than the total amount of EOM.
Collapse
Affiliation(s)
- Tina Stevens
- Curriculum in Toxicology, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | | | | | | |
Collapse
|
96
|
Soberanes S, Urich D, Baker CM, Burgess Z, Chiarella SE, Bell EL, Ghio AJ, De Vizcaya-Ruiz A, Liu J, Ridge KM, Kamp DW, Chandel NS, Schumacker PT, Mutlu GM, Budinger GRS. Mitochondrial complex III-generated oxidants activate ASK1 and JNK to induce alveolar epithelial cell death following exposure to particulate matter air pollution. J Biol Chem 2008; 284:2176-86. [PMID: 19033436 DOI: 10.1074/jbc.m808844200] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
We have previously reported that airborne particulate matter air pollution (PM) activates the intrinsic apoptotic pathway in alveolar epithelial cells through a pathway that requires the mitochondrial generation of reactive oxygen species (ROS) and the activation of p53. We sought to examine the source of mitochondrial oxidant production and the molecular links between ROS generation and the activation of p53 in response to PM exposure. Using a mitochondrially targeted ratiometric sensor (Ro-GFP) in cells lacking mitochondrial DNA (rho0 cells) and cells stably expressing a small hairpin RNA directed against the Rieske iron-sulfur protein, we show that site III of the mitochondrial electron transport chain is primarily responsible for fine PM (PM2.5)-induced oxidant production. In alveolar epithelial cells, the overexpression of SOD1 prevented the PM2.5-induced ROS generation from the mitochondria and prevented cell death. Infection of mice with an adenovirus encoding SOD1 prevented the PM2.5-induced death of alveolar epithelial cells and the associated increase in alveolar-capillary permeability. Treatment with PM2.5 resulted in the ROS-mediated activation of the oxidant-sensitive kinase ASK1 and its downstream kinase JNK. Murine embryonic fibroblasts from ASK1 knock-out mice, alveolar epithelial cells transfected with dominant negative constructs against ASK1, and pharmacologic inhibition of JNK with SP600125 (25 microM) prevented the PM2.5-induced phosphorylation of p53 and cell death. We conclude that particulate matter air pollution induces the generation of ROS primarily from site III of the mitochondrial electron transport chain and that these ROS activate the intrinsic apoptotic pathway through ASK1, JNK, and p53.
Collapse
Affiliation(s)
- Saul Soberanes
- Division of Pulmonary and Critical Care Medicine, The Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
97
|
Riedl MA, Saxon A, Diaz-Sanchez D. Oral sulforaphane increases Phase II antioxidant enzymes in the human upper airway. CLINICAL IMMUNOLOGY (ORLANDO, FLA.) 2008. [PMID: 19028145 DOI: 10.1016/j.clim.2008.10.0079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
BACKGROUND Cellular oxidative stress is an important factor in asthma and is thought to be the principle mechanism by which oxidant pollutants such as ozone and particulates mediate their pro-inflammatory effects. Endogenous Phase II enzymes abrogate oxidative stress through the scavenging of reactive oxygen species and metabolism of reactive chemicals. OBJECTIVE We conducted a placebo-controlled dose escalation trial to investigate the in vivo effects of sulforaphane, a naturally occurring potent inducer of Phase II enzymes, on the expression of glutathione-s-transferase M1 (GSTM1), glutathione-s-transferase P1 (GSTP1), NADPH quinone oxidoreductase (NQO1), and hemoxygenase-1 (HO-1) in the upper airway of human subjects. METHODS Study subjects consumed oral sulforaphane doses contained in a standardized broccoli sprout homogenate (BSH). RNA expression for selected Phase II enzymes was measured in nasal lavage cells by RT-PCR before and after sulforaphane dosing. RESULTS All subjects tolerated oral sulforaphane dosing without significant adverse events. Increased Phase II enzyme expression in nasal lavage cells occurred in a dose-dependent manner with maximal enzyme induction observed at the highest dose of 200 g broccoli sprouts prepared as BSH. Significant increases were seen in all sentinel Phase II enzymes RNA expression compared to baseline. Phase II enzyme induction was not seen with ingestion of non-sulforaphane containing alfalfa sprouts. CONCLUSION Oral sulforaphane safely and effectively induces mucosal Phase II enzyme expression in the upper airway of human subjects. This study demonstrates the potential of antioxidant Phase II enzymes induction in the human airway as a strategy to reduce the inflammatory effects of oxidative stress. CLINICAL IMPLICATIONS This study demonstrates the potential of enhancement of Phase II enzyme expression as a novel therapeutic strategy for oxidant induced airway disease. CAPSULE SUMMARY A placebo-controlled dose escalation trial demonstrated that naturally occurring sulforaphane from broccoli sprouts can induce a potent increase in antioxidant Phase II enzymes in airway cells.
Collapse
Affiliation(s)
- Marc A Riedl
- The Hart and Louis Laboratory, Clinical Immunology and Allergy, Department of Medicine, UCLA David Geffen School of Medicine, 10833 Le Conte Avenue, Los Angeles, CA 90095, USA.
| | | | | |
Collapse
|
98
|
Xia T, Kovochich M, Liong M, Mädler L, Gilbert B, Shi H, Yeh JI, Zink JI, Nel AE. Comparison of the mechanism of toxicity of zinc oxide and cerium oxide nanoparticles based on dissolution and oxidative stress properties. ACS NANO 2008; 2:2121-34. [PMID: 19206459 PMCID: PMC3959800 DOI: 10.1021/nn800511k] [Citation(s) in RCA: 1586] [Impact Index Per Article: 93.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Nanomaterials (NM) exhibit novel physicochemical properties that determine their interaction with biological substrates and processes. Three metal oxide nanoparticles that are currently being produced in high tonnage, TiO(2), ZnO, and CeO(2), were synthesized by flame spray pyrolysis process and compared in a mechanistic study to elucidate the physicochemical characteristics that determine cellular uptake, subcellular localization, and toxic effects based on a test paradigm that was originally developed for oxidative stress and cytotoxicity in RAW 264.7 and BEAS-2B cell lines. ZnO induced toxicity in both cells, leading to the generation of reactive oxygen species (ROS), oxidant injury, excitation of inflammation, and cell death. Using ICP-MS and fluorescent-labeled ZnO, it is found that ZnO dissolution could happen in culture medium and endosomes. Nondissolved ZnO nanoparticles enter caveolae in BEAS-2B but enter lysosomes in RAW 264.7 cells in which smaller particle remnants dissolve. In contrast, fluorescent-labeled CeO(2) nanoparticles were taken up intact into caveolin-1 and LAMP-1 positive endosomal compartments, respectively, in BEAS-2B and RAW 264.7 cells, without inflammation or cytotoxicity. Instead, CeO(2) suppressed ROS production and induced cellular resistance to an exogenous source of oxidative stress. Fluorescent-labeled TiO(2) was processed by the same uptake pathways as CeO(2) but did not elicit any adverse or protective effects. These results demonstrate that metal oxide nanoparticles induce a range of biological responses that vary from cytotoxic to cytoprotective and can only be properly understood by using a tiered test strategy such as we developed for oxidative stress and adapted to study other aspects of nanoparticle toxicity.
Collapse
Affiliation(s)
- Tian Xia
- Division of NanoMedicine, Department of Medicine, University of California, Los Angeles, CA 90095
| | - Michael Kovochich
- Division of NanoMedicine, Department of Medicine, University of California, Los Angeles, CA 90095
| | - Monty Liong
- Department of Chemistry & Biochemistry, University of California, Los Angeles, CA 90095
| | - Lutz Mädler
- Foundation Institute of Materials Science, Division of Process & Chemical Engineering, Department of Production Engineering, University of Bremen, Germany
- California NanoSystems Institute, University of California, Los Angeles, CA 90095
| | - Benjamin Gilbert
- Earth Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
| | - Haibin Shi
- Department of Structural Biology, University of Pittsburgh Medical School, Pittsburgh, PA 15260
| | - Joanne I. Yeh
- Department of Structural Biology, University of Pittsburgh Medical School, Pittsburgh, PA 15260
- Department of Bioengineering, University of Pittsburgh Medical School, Pittsburgh, PA 15260
| | - Jeffrey I. Zink
- Department of Chemistry & Biochemistry, University of California, Los Angeles, CA 90095
- The Southern California Particle Center, University of California, Los Angeles, CA 90095
| | - Andre E. Nel
- Division of NanoMedicine, Department of Medicine, University of California, Los Angeles, CA 90095
- The Southern California Particle Center, University of California, Los Angeles, CA 90095
- California NanoSystems Institute, University of California, Los Angeles, CA 90095
- Corresponding Author: Andre Nel, M.D., Department of Medicine, Division of NanoMedicine, UCLA School of Medicine, 52-175 CHS, 10833 Le Conte Ave, Los Angeles, CA 90095-1680. Tel: (310) 825-6620, Fax: (310) 206-8107
| |
Collapse
|
99
|
Haymes K, Hester S, Benson W, McClintock J. Potential Use of Microarray Technology at the U.S. Environmental Protection Agency. Genomics 2008. [DOI: 10.3109/9781420067064-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
100
|
Ayres JG, Borm P, Cassee FR, Castranova V, Donaldson K, Ghio A, Harrison RM, Hider R, Kelly F, Kooter IM, Marano F, Maynard RL, Mudway I, Nel A, Sioutas C, Smith S, Baeza-Squiban A, Cho A, Duggan S, Froines J. Evaluating the Toxicity of Airborne Particulate Matter and Nanoparticles by Measuring Oxidative Stress Potential—A Workshop Report and Consensus Statement. Inhal Toxicol 2008; 20:75-99. [DOI: 10.1080/08958370701665517] [Citation(s) in RCA: 336] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|