Coelho LFL, Magno de Freitas Almeida G, Mennechet FJD, Blangy A, Uzé G. Interferon-alpha and -beta differentially regulate osteoclastogenesis: role of differential induction of chemokine CXCL11 expression.
Proc Natl Acad Sci U S A 2005;
102:11917-22. [PMID:
16081539 PMCID:
PMC1187968 DOI:
10.1073/pnas.0502188102]
[Citation(s) in RCA: 94] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
In humans, type I interferon (IFN) is a family of 17 cytokines, among which the alpha subtypes and the beta subtype are differentially expressed. It has been suggested that IFN-beta activates a specific signaling cascade in addition to those activated by all type I IFNs. Nevertheless, no true biological relevance for a differential activity of alpha and beta IFN subtypes has been identified so far. Because type I IFNs are critical for the regulation of osteoclastogenesis in mice, we have compared the effect of IFN-alpha2 and IFN-beta on the differentiation of human monocytes into osteoclasts. Primary monocytes undergoing osteoclastic differentiation are highly and equally sensitive to both alpha2 and beta IFNs as determined by measuring the induction levels of several IFN-stimulated genes. However, IFN-beta was 100-fold more potent than the alpha2 subtype at inhibiting osteoclastogenesis. Expression profiling of the genes differentially regulated by IFN-alpha2 and IFN-beta in this cellular system revealed the chemokine CXCL11 as the only IFN-induced gene differentially up-regulated by IFN-beta. We show that recombinant CXCL11 by itself inhibits osteoclastic differentiation. These results indicate that autocrine-acting CXCL11 mediates, at least in part, the regulations of osteoclastogenesis by type I IFNs.
Collapse