51
|
Corbett KM, Ford L, Warren DB, Pouton CW, Chalmers DK. Cyclosporin Structure and Permeability: From A to Z and Beyond. J Med Chem 2021; 64:13131-13151. [PMID: 34478303 DOI: 10.1021/acs.jmedchem.1c00580] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cyclosporins are natural or synthetic undecapeptides with a wide range of actual and potential pharmaceutical applications. Several members of the cyclosporin compound family have remarkably high passive membrane permeabilities that are not well-described by simple structural metrics. Here we review experimental studies of cyclosporin structure and permeability, including cyclosporin-metal complexes. We also discuss models for the conformation-dependent permeability of cyclosporins and similar compounds. Finally, we identify current knowledge gaps in the literature and provide recommendations regarding future avenues of exploration.
Collapse
Affiliation(s)
- Karen M Corbett
- Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Leigh Ford
- Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Dallas B Warren
- Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Colin W Pouton
- Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
| | - David K Chalmers
- Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
| |
Collapse
|
52
|
Lee D, Lee S, Choi J, Song YK, Kim MJ, Shin DS, Bae MA, Kim YC, Park CJ, Lee KR, Choi JH, Seo J. Interplay among Conformation, Intramolecular Hydrogen Bonds, and Chameleonicity in the Membrane Permeability and Cyclophilin A Binding of Macrocyclic Peptide Cyclosporin O Derivatives. J Med Chem 2021; 64:8272-8286. [PMID: 34096287 DOI: 10.1021/acs.jmedchem.1c00211] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
A macrocyclic peptide scaffold with well-established structure-property relationship is desirable for tackling undruggable targets. Here, we adopted a natural macrocycle, cyclosporin O (CsO) and its derivatives (CP1-3), and evaluated the impact of conformation on membrane permeability, cyclophilin A (CypA) binding, and the pharmacokinetic (PK) profile. In nonpolar media, CsO showed a similar conformation to cyclosporin A (CsA), a well-known chameleonic macrocycle, but less chameleonic behavior in a polar environment. The weak chameleonicity of CsO resulted in decreased membrane permeability; however, the more rigid conformation of CsO was not detrimental to its PK profile. CsO exhibited a higher plasma concentration than CsA, which resulted from minimal CypA binding and lower accumulation in red blood cells and moderate oral bioavailability (F = 12%). Our study aids understanding of CsO, a macrocyclic peptide that is less explored than CsA but with greater potential for diversity generation and rational design.
Collapse
Affiliation(s)
- Dongjae Lee
- Department of Chemistry, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| | - Sungjin Lee
- Department of Chemistry, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| | - Jieun Choi
- Department of Chemistry, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| | - Yoo-Kyung Song
- Laboratory of Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Ochang 28116, Republic of Korea
| | - Min Ju Kim
- Laboratory of Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Ochang 28116, Republic of Korea
| | - Dae-Seop Shin
- Bio Platform Technology Research Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon 34114, Republic of Korea
| | - Myung Ae Bae
- Bio Platform Technology Research Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon 34114, Republic of Korea
| | - Yong-Chul Kim
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Chin-Ju Park
- Department of Chemistry, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| | - Kyeong-Ryoon Lee
- Laboratory of Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Ochang 28116, Republic of Korea
| | - Jun-Ho Choi
- Department of Chemistry, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| | - Jiwon Seo
- Department of Chemistry, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| |
Collapse
|
53
|
Vu QN, Young R, Sudhakar HK, Gao T, Huang T, Tan YS, Lau YH. Cyclisation strategies for stabilising peptides with irregular conformations. RSC Med Chem 2021; 12:887-901. [PMID: 34263169 PMCID: PMC8230030 DOI: 10.1039/d1md00098e] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 04/12/2021] [Indexed: 11/21/2022] Open
Abstract
Cyclisation is a common synthetic strategy for enhancing the therapeutic potential of peptide-based molecules. While there are extensive studies on peptide cyclisation for reinforcing regular secondary structures such as α-helices and β-sheets, there are remarkably few reports of cyclising peptides which adopt irregular conformations in their bioactive target-bound state. In this review, we highlight examples where cyclisation techniques have been successful in stabilising irregular conformations, then discuss how the design of cyclic constraints for irregularly structured peptides can be informed by existing β-strand stabilisation approaches, new computational design techniques, and structural principles extracted from cyclic peptide library screening hits. Through this analysis, we demonstrate how existing peptide cyclisation techniques can be adapted to address the synthetic design challenge of stabilising irregularly structured binding motifs.
Collapse
Affiliation(s)
- Quynh Ngoc Vu
- School of Chemistry, Eastern Ave, The University of Sydney NSW 2006 Australia
| | - Reginald Young
- School of Chemistry, Eastern Ave, The University of Sydney NSW 2006 Australia
| | | | - Tianyi Gao
- School of Chemistry, Eastern Ave, The University of Sydney NSW 2006 Australia
| | - Tiancheng Huang
- School of Chemistry, Eastern Ave, The University of Sydney NSW 2006 Australia
| | - Yaw Sing Tan
- Bioinformatics Institute, Agency for Science, Technology and Research (ASTAR) 30 Biopolis Street, #07-01, Matrix Singapore 138671 Singapore
| | - Yu Heng Lau
- School of Chemistry, Eastern Ave, The University of Sydney NSW 2006 Australia
| |
Collapse
|
54
|
Koštrun S, Fajdetić A, Pešić D, Brajša K, Bencetić Mihaljević V, Jelić D, Petrinić Grba A, Elenkov I, Rupčić R, Kapić S, Ozimec Landek I, Butković K, Grgičević A, Žiher D, Čikoš A, Padovan J, Saxty G, Dack K, Bladh H, Skak-Nielsen T, Feldbaek Nielsen S, Lambert M, Stahlhut M. Macrolide Inspired Macrocycles as Modulators of the IL-17A/IL-17RA Interaction. J Med Chem 2021; 64:8354-8383. [PMID: 34100601 DOI: 10.1021/acs.jmedchem.1c00327] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Interleukin 17 (IL-17) cytokines promote inflammatory pathophysiology in many autoimmune diseases, including psoriasis, multiple sclerosis, rheumatoid arthritis, and inflammatory bowel disease. Such broad involvement of IL-17 in various autoimmune diseases makes it an ideal target for drug discovery. Psoriasis is a chronic inflammatory disease characterized by numerous defective components of the immune system. Significantly higher levels of IL-17A have been noticed in lesions of psoriatic patients, if compared to non-lesion parts. Therefore, this paper is focused on the macrolide inspired macrocycles as potential IL-17A/IL-17RA modulators and covers the molecular design, synthesis, and in vitro profiling. Macrocycles are designed to diversify and enrich chemical space through different ring sizes and a variety of three-dimensional shapes. Inhibitors in the nM range were identified in both target-based and phenotypic assays. In vitro ADME as well as in vivo PK properties are reported.
Collapse
Affiliation(s)
- Sanja Koštrun
- Fidelta Ltd, Prilaz baruna Filipovića 29, 10000 Zagreb, Croatia
| | - Andrea Fajdetić
- Fidelta Ltd, Prilaz baruna Filipovića 29, 10000 Zagreb, Croatia
| | - Dijana Pešić
- Fidelta Ltd, Prilaz baruna Filipovića 29, 10000 Zagreb, Croatia
| | - Karmen Brajša
- Fidelta Ltd, Prilaz baruna Filipovića 29, 10000 Zagreb, Croatia
| | | | - Dubravko Jelić
- Fidelta Ltd, Prilaz baruna Filipovića 29, 10000 Zagreb, Croatia
| | | | - Ivaylo Elenkov
- Fidelta Ltd, Prilaz baruna Filipovića 29, 10000 Zagreb, Croatia
| | - Renata Rupčić
- Fidelta Ltd, Prilaz baruna Filipovića 29, 10000 Zagreb, Croatia
| | - Samra Kapić
- Fidelta Ltd, Prilaz baruna Filipovića 29, 10000 Zagreb, Croatia
| | | | | | - Ana Grgičević
- Fidelta Ltd, Prilaz baruna Filipovića 29, 10000 Zagreb, Croatia
| | - Dinko Žiher
- Fidelta Ltd, Prilaz baruna Filipovića 29, 10000 Zagreb, Croatia
| | - Ana Čikoš
- Fidelta Ltd, Prilaz baruna Filipovića 29, 10000 Zagreb, Croatia
| | - Jasna Padovan
- Fidelta Ltd, Prilaz baruna Filipovića 29, 10000 Zagreb, Croatia
| | - Gordon Saxty
- Fidelta Ltd, Prilaz baruna Filipovića 29, 10000 Zagreb, Croatia
| | - Kevin Dack
- LEO Pharma A/S, Industriparken 55, 2750 Ballerup, Denmark
| | - Haakan Bladh
- LEO Pharma A/S, Industriparken 55, 2750 Ballerup, Denmark
| | | | | | - Maja Lambert
- LEO Pharma A/S, Industriparken 55, 2750 Ballerup, Denmark
| | | |
Collapse
|
55
|
Moritsugu K, Takeuchi K, Kamiya N, Higo J, Yasumatsu I, Fukunishi Y, Fukuda I. Flexibility and Cell Permeability of Cyclic Ras-Inhibitor Peptides Revealed by the Coupled Nosé-Hoover Equation. J Chem Inf Model 2021; 61:1921-1930. [PMID: 33835817 DOI: 10.1021/acs.jcim.0c01427] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Quantifying the cell permeability of cyclic peptides is crucial for their rational drug design. However, the reasons remain unclear why a minor chemical modification, such as the difference between Ras inhibitors cyclorasin 9A5 and 9A54, can substantially change a peptide's permeability. To address this question, we performed enhanced sampling simulations of these two 11-mer peptides using the coupled Nosé-Hoover equation (cNH) we recently developed. The present cNH simulations realized temperature fluctuations over a wide range (240-600 K) in a dynamic manner, allowing structural samplings that were well validated by nuclear Overhauser effect measurements. The derived structural ensembles were comprehensively analyzed by all-atom structural clustering, mapping the derived clusters onto principal components (PCs) that characterize the cyclic structure, and calculating cluster-dependent geometric and chemical properties. The planar-open conformation was dominant in aqueous solvent, owing to inclusion of the Trp side chain in the main-chain ring, while the compact-closed conformation, which favors cell permeation due to its compactness and high polarity, was also accessible. Conformation-dependent cell permeability was observed in one of the derived PCs, demonstrating that decreased cell permeability in 9A54 is due to the high free energy barrier separating the two conformations. The origin of the change in free energy surface was determined to be loss of flexibility in the modified residues 2-3, resulting from the increased bulkiness of their side chains. The derived molecular mechanism of cell permeability highlights the significance of complete structural dynamics surveys for accelerating drug development with cyclic peptides.
Collapse
Affiliation(s)
- Kei Moritsugu
- Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehirocho, Tsurumi, Yokohama, Kanagawa 230-0045, Japan
| | - Koh Takeuchi
- Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology, 2-3-26 Aomi, Koto-ku, Tokyo 135-0064, Japan
| | - Narutoshi Kamiya
- Graduate School of Simulation Studies, University of Hyogo, 7-1-28 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan.,Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Junichi Higo
- Graduate School of Simulation Studies, University of Hyogo, 7-1-28 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan.,Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Isao Yasumatsu
- Structure-Based Drug Design Group, Organic Synthesis Department, Daiichi Sankyo RD Novare Co., Ltd., 1-2-58 Hiromachi, Shinagawa-ku, Tokyo 140-8710, Japan
| | - Yoshifumi Fukunishi
- Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology, 2-3-26 Aomi, Koto-ku, Tokyo 135-0064, Japan
| | - Ikuo Fukuda
- Graduate School of Simulation Studies, University of Hyogo, 7-1-28 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan.,Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
56
|
Nagano M, Huang Y, Obexer R, Suga H. One-Pot In Vitro Ribosomal Synthesis of Macrocyclic Depsipeptides. J Am Chem Soc 2021; 143:4741-4750. [PMID: 33733757 DOI: 10.1021/jacs.1c00466] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Here, we report a method for the one-pot ribosomal synthesis of macrocyclic depsipeptides. This method is based on a Ser-Pro-Cys-Gly (SPCG) motif discovered by in vitro selection of peptides for the function of self-acylation in the presence of a thioester acyl donor, which forms an O-acyl isopeptide bond via intramolecular S-to-O acyl transfer. Ribosomal synthesis of linear peptides containing the SPCG motif and a backbone "acyl donor" thioester at a downstream position results in spontaneous conversion to the corresponding cyclic depsipeptides (CDPs) in a nearly independent manner of ring size and sequence context. Mutational analysis of the SPCG motif revealed that the P and G residues are dispensable to some extent, but the arrangement of residues in SXCX is crucial for efficient acyl transfer, e.g., CPSG is much less efficient. Finally, one-pot ribosomal synthesis of macrocyclic depsipeptides with various ring sizes and sequences has been demonstrated. This synthetic method can facilitate the ribosomal construction of highly diverse CDP libraries for the discovery of de novo bioactive CDPs.
Collapse
Affiliation(s)
- Masanobu Nagano
- Department of Chemistry, Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan
| | - Yichao Huang
- Department of Chemistry, Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan
| | - Richard Obexer
- Department of Chemistry, Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan
| | - Hiroaki Suga
- Department of Chemistry, Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan
| |
Collapse
|
57
|
Liposome Click Membrane Permeability Assay for Identifying Permeable Peptides. Pharm Res 2021; 38:843-850. [PMID: 33723794 DOI: 10.1007/s11095-021-03005-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 01/08/2021] [Indexed: 12/26/2022]
Abstract
PURPOSE To develop a novel, target agnostic liposome click membrane permeability assay (LCMPA) using liposome encapsulating copper free click reagent dibenzo cyclooctyne biotin (DBCO-Biotin) to conjugate azido modified peptides that may effectively translocate from extravesicular space into the liposome lumen. METHOD DBCO-Biotin liposomes were prepared with egg phosphatidylcholine and cholesterol by lipid film rehydration, freeze/thaw followed by extrusion. Size of DBCO-Biotin liposomes were characterized with dynamic light scattering. RESULTS The permeable peptides representing energy independent mechanism of permeability showed higher biotinylation in LCMPA. Individual peptide permeability results from LCMPA correlated well with shifts in potency in cellular versus biochemical assays (i.e., cellular/ biochemical ratio) demonstrating quantitative correlation to intracellular barrier in intact cells. CONCLUSION The study provides a novel membrane permeability assay that has potential to evaluate energy independent transport of diverse peptides.
Collapse
|
58
|
Takeuchi K, Misaki I, Tokunaga Y, Fujisaki M, Kamoshida H, Takizawa T, Hanzawa H, Shimada I. Conformational Plasticity of Cyclic Ras‐Inhibitor Peptides Defines Cell Permeabilization Activity. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202016647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Koh Takeuchi
- Cellular and Molecular Biotechnology Research Institute National Institute of Advanced Industrial Science and Technology 2-3-26 Aomi, Koto Tokyo 135-0063 Japan
| | - Imai Misaki
- Japan Biological Informatics Consortium 2-3-26 Aomi, Koto Tokyo 135-0063 Japan
| | - Yuji Tokunaga
- Cellular and Molecular Biotechnology Research Institute National Institute of Advanced Industrial Science and Technology 2-3-26 Aomi, Koto Tokyo 135-0063 Japan
| | - Miwa Fujisaki
- Japan Biological Informatics Consortium 2-3-26 Aomi, Koto Tokyo 135-0063 Japan
| | - Hajime Kamoshida
- Japan Biological Informatics Consortium 2-3-26 Aomi, Koto Tokyo 135-0063 Japan
| | - Takeshi Takizawa
- Biological Research Department Daiichi Sankyo RD Novare Co., Ltd. 1-16-13 Kitakasai, Edogawa-ku Tokyo 134-8630 Japan
| | - Hiroyuki Hanzawa
- Biological Research Department Daiichi Sankyo RD Novare Co., Ltd. 1-16-13 Kitakasai, Edogawa-ku Tokyo 134-8630 Japan
| | - Ichio Shimada
- Graduate School of Pharmaceutical Sciences The University of Tokyo 7-3-1 Hongo Bunkyo-ku Tokyo 113-0033 Japan
- Center for Biosystems Dynamics Research RIKEN 1-7-22 Suehiro-cho, Tsurumi-ku Yokohama 230-0045 Japan
| |
Collapse
|
59
|
Hoang HN, Hill TA, Fairlie DP. Connecting Hydrophobic Surfaces in Cyclic Peptides Increases Membrane Permeability. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202012643] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Huy N. Hoang
- Division of Chemistry and Structural Biology and ARC Centre of Excellence for Innovations in Peptide and Protein Science Institute for Molecular Bioscience The University of Queensland Brisbane QLD 4072 Australia
| | - Timothy A. Hill
- Division of Chemistry and Structural Biology and ARC Centre of Excellence for Innovations in Peptide and Protein Science Institute for Molecular Bioscience The University of Queensland Brisbane QLD 4072 Australia
| | - David P. Fairlie
- Division of Chemistry and Structural Biology and ARC Centre of Excellence for Innovations in Peptide and Protein Science Institute for Molecular Bioscience The University of Queensland Brisbane QLD 4072 Australia
- ARC Centre of Excellence in Advanced Molecular Imaging Institute for Molecular Bioscience The University of Queensland Brisbane QLD 4072 Australia
| |
Collapse
|
60
|
Hoang HN, Hill TA, Fairlie DP. Connecting Hydrophobic Surfaces in Cyclic Peptides Increases Membrane Permeability. Angew Chem Int Ed Engl 2021; 60:8385-8390. [PMID: 33185961 DOI: 10.1002/anie.202012643] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 11/04/2020] [Indexed: 12/16/2022]
Abstract
N- or C-methylation in natural and synthetic cyclic peptides can increase membrane permeability, but it remains unclear why this happens in some cases but not others. Here we compare three-dimensional structures for cyclic peptides from six families, including isomers differing only in the location of an N- or Cα-methyl substituent. We show that a single methyl group only increases membrane permeability when it connects or expands hydrophobic surface patches. Positional isomers, with the same molecular weight, hydrogen bond donors/acceptors, rotatable bonds, calculated LogP, topological polar surface area, and total hydrophobic surface area, can have different membrane permeabilities that correlate with the size of the largest continuous hydrophobic surface patch. These results illuminate a key local molecular determinant of membrane permeability.
Collapse
Affiliation(s)
- Huy N Hoang
- Division of Chemistry and Structural Biology and ARC Centre of Excellence for Innovations in Peptide and Protein Science, Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Timothy A Hill
- Division of Chemistry and Structural Biology and ARC Centre of Excellence for Innovations in Peptide and Protein Science, Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - David P Fairlie
- Division of Chemistry and Structural Biology and ARC Centre of Excellence for Innovations in Peptide and Protein Science, Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia.,ARC Centre of Excellence in Advanced Molecular Imaging, Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, 4072, Australia
| |
Collapse
|
61
|
Viarengo-Baker LA, Brown LE, Rzepiela AA, Whitty A. Defining and navigating macrocycle chemical space. Chem Sci 2021; 12:4309-4328. [PMID: 34163695 PMCID: PMC8179434 DOI: 10.1039/d0sc05788f] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Macrocyclic compounds (MCs) are of growing interest for inhibition of challenging drug targets. We consider afresh what structural and physicochemical features could be relevant to the bioactivity of this compound class. Using these features, we performed Principal Component Analysis to map oral and non-oral macrocycle drugs and clinical candidates, and also commercially available synthetic MCs, in structure–property space. We find that oral MC drugs occupy defined regions that are distinct from those of the non-oral MC drugs. None of the oral MC regions are effectively sampled by the synthetic MCs. We identify 13 properties that can be used to design synthetic MCs that sample regions overlapping with oral MC drugs. The results advance our understanding of what molecular features are associated with bioactive and orally bioavailable MCs, and illustrate an approach by which synthetic chemists can better evaluate MC designs. We also identify underexplored regions of macrocycle chemical space. Macrocyclic compounds (MCs) are of high interest for inhibition of challenging drug targets, but existing oral MC drugs occupy regions of chemical space that are not well sampled by many available synthetic MC chemotypes.![]()
Collapse
Affiliation(s)
- Lauren A Viarengo-Baker
- Department of Chemistry, Boston University 590 Commonwealth Ave Boston Massachusetts 02215 USA
| | - Lauren E Brown
- Department of Chemistry, Boston University 590 Commonwealth Ave Boston Massachusetts 02215 USA .,Center for Molecular Discovery, Boston University 24 Cummington Mall Boston Massachusetts 02215 USA
| | - Anna A Rzepiela
- Pyxis Discovery Delftechpark 26 Delft 2628XH The Netherlands
| | - Adrian Whitty
- Department of Chemistry, Boston University 590 Commonwealth Ave Boston Massachusetts 02215 USA .,Center for Molecular Discovery, Boston University 24 Cummington Mall Boston Massachusetts 02215 USA
| |
Collapse
|
62
|
Kawai T, Mihara Y, Morita M, Ohkubo M, Asami T, Watanabe TM. Quantitation of Cell Membrane Permeability of Cyclic Peptides by Single-Cell Cytoplasm Mass Spectrometry. Anal Chem 2021; 93:3370-3377. [PMID: 33550808 DOI: 10.1021/acs.analchem.0c03901] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Cyclic peptides (CPs) have attracted attention as next-generation drugs because they possess both cell-permeable potential as small molecules and specific affinity similar to antibodies. As intracellular molecules are important targets of CPs, quantitation of the intracellular retention and transmembrane permeability of CPs is necessary for drug development. However, permeated CPs within cells cannot be directly assessed by conventional permeability assays using methods such as artificial membranes and cell monolayers. Here, we propose a new approach using single-cell cytoplasm mass spectrometry (SCC-MS). After cells were incubated with CPs, the cytoplasm was directly collected from a single cell using a microneedle followed by nanoelectrospray ionization mass spectrometry detection of the CPs. The height of the CP peak was plotted against time and fitted with a simple function, y = a(1 - e-bx), to calculate the apparent permeability coefficient (Papp) for both the influx and efflux directions. MCF-7 cells were selected as model cancer cells and cultured with cyclosporin A (CsA) and its demethylated analogs (dmCsA-1, -2, and -3) as model CPs. Papp values (10-6 cm/s) obtained from cells incubated with 50 μM CPs ranged from 0.017 to 0.121 for influx and 0.20 to 1.48 for efflux. The higher efflux ratio was possibly caused by efflux transporters such as P-glycoprotein, a well-known receptor of CsA. The equilibrated intracellular concentration of CPs was estimated to be as low as 4.1-6.8 μM, which showed good consistency with the high efflux ratio. SCC-MS is promising as a reliable permeability assay for next-generation CP-based pharmaceuticals.
Collapse
Affiliation(s)
- Takayuki Kawai
- RIKEN Center for Biosystems Dynamics Research, Suita, Osaka 565-0874, Japan.,Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 565-0871, Japan
| | - Yasuhiro Mihara
- Research Headquarters, Taisho Pharmaceutical Co., LTD., Saitama-shi, Saitama 331-9530, Japan
| | - Makiko Morita
- RIKEN Center for Biosystems Dynamics Research, Suita, Osaka 565-0874, Japan
| | - Masahiko Ohkubo
- Research Headquarters, Taisho Pharmaceutical Co., LTD., Saitama-shi, Saitama 331-9530, Japan
| | - Taiji Asami
- Research Headquarters, Taisho Pharmaceutical Co., LTD., Saitama-shi, Saitama 331-9530, Japan
| | - Tomonobu M Watanabe
- RIKEN Center for Biosystems Dynamics Research, Suita, Osaka 565-0874, Japan.,Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima City, Hiroshima 734-8553, Japan
| |
Collapse
|
63
|
Peier A, Ge L, Boyer N, Frost J, Duggal R, Biswas K, Edmondson S, Hermes JD, Yan L, Zimprich C, Sadruddin A, Kristal Kaan HY, Chandramohan A, Brown CJ, Thean D, Lee XE, Yuen TY, Ferrer-Gago FJ, Johannes CW, Lane DP, Sherborne B, Corona C, Robers MB, Sawyer TK, Partridge AW. NanoClick: A High Throughput, Target-Agnostic Peptide Cell Permeability Assay. ACS Chem Biol 2021; 16:293-309. [PMID: 33539064 DOI: 10.1021/acschembio.0c00804] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Macrocyclic peptides open new opportunities to target intracellular protein-protein interactions (PPIs) that are often considered nondruggable by traditional small molecules. However, engineering sufficient membrane permeability into these molecules is a central challenge for identifying clinical candidates. Currently, there is a lack of high-throughput assays to assess peptide permeability, which limits our capacity to engineer this property into macrocyclic peptides for advancement through drug discovery pipelines. Accordingly, we developed a high throughput and target-agnostic cell permeability assay that measures the relative cumulative cytosolic exposure of a peptide in a concentration-dependent manner. The assay was named NanoClick as it combines in-cell Click chemistry with an intracellular NanoBRET signal. We validated the approach using known cell penetrating peptides and further demonstrated a correlation to cellular activity using a p53/MDM2 model system. With minimal change to the peptide sequence, NanoClick enables the ability to measure uptake of molecules that enter the cell via different mechanisms such as endocytosis, membrane translocation, or passive permeability. Overall, the NanoClick assay can serve as a screening tool to uncover predictive design rules to guide structure-activity-permeability relationships in the optimization of functionally active molecules.
Collapse
Affiliation(s)
- Andrea Peier
- Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Lan Ge
- Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Nicolas Boyer
- Merck & Co., Inc., Boston, Massachusetts 02115, United States
| | - John Frost
- Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Ruchia Duggal
- Merck & Co., Inc., Boston, Massachusetts 02115, United States
| | - Kaustav Biswas
- Merck & Co., Inc., Boston, Massachusetts 02115, United States
| | - Scott Edmondson
- Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | | | - Lin Yan
- Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Chad Zimprich
- Promega Corporation, Madison, Wisconsin 53711, United States
| | | | | | | | - Christopher J. Brown
- Agency for Science, Technology and Research (A*STAR) Singapore 138665, Singapore
| | - Dawn Thean
- Agency for Science, Technology and Research (A*STAR) Singapore 138665, Singapore
| | - Xue Er Lee
- Agency for Science, Technology and Research (A*STAR) Singapore 138665, Singapore
| | - Tsz Ying Yuen
- Agency for Science, Technology and Research (A*STAR) Singapore 138665, Singapore
| | | | - Charles W. Johannes
- Agency for Science, Technology and Research (A*STAR) Singapore 138665, Singapore
| | - David P. Lane
- Agency for Science, Technology and Research (A*STAR) Singapore 138665, Singapore
| | - Brad Sherborne
- Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Cesear Corona
- Promega Biosciences Incorporated, San Luis Obispo, California 93401, United States
| | | | - Tomi K. Sawyer
- Merck & Co., Inc., Boston, Massachusetts 02115, United States
| | | |
Collapse
|
64
|
Takeuchi K, Misaki I, Tokunaga Y, Fujisaki M, Kamoshida H, Takizawa T, Hanzawa H, Shimada I. Conformational Plasticity of Cyclic Ras‐Inhibitor Peptides Defines Cell Permeabilization Activity. Angew Chem Int Ed Engl 2021; 60:6567-6572. [DOI: 10.1002/anie.202016647] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/08/2021] [Indexed: 01/05/2023]
Affiliation(s)
- Koh Takeuchi
- Cellular and Molecular Biotechnology Research Institute National Institute of Advanced Industrial Science and Technology 2-3-26 Aomi, Koto Tokyo 135-0063 Japan
| | - Imai Misaki
- Japan Biological Informatics Consortium 2-3-26 Aomi, Koto Tokyo 135-0063 Japan
| | - Yuji Tokunaga
- Cellular and Molecular Biotechnology Research Institute National Institute of Advanced Industrial Science and Technology 2-3-26 Aomi, Koto Tokyo 135-0063 Japan
| | - Miwa Fujisaki
- Japan Biological Informatics Consortium 2-3-26 Aomi, Koto Tokyo 135-0063 Japan
| | - Hajime Kamoshida
- Japan Biological Informatics Consortium 2-3-26 Aomi, Koto Tokyo 135-0063 Japan
| | - Takeshi Takizawa
- Biological Research Department Daiichi Sankyo RD Novare Co., Ltd. 1-16-13 Kitakasai, Edogawa-ku Tokyo 134-8630 Japan
| | - Hiroyuki Hanzawa
- Biological Research Department Daiichi Sankyo RD Novare Co., Ltd. 1-16-13 Kitakasai, Edogawa-ku Tokyo 134-8630 Japan
| | - Ichio Shimada
- Graduate School of Pharmaceutical Sciences The University of Tokyo 7-3-1 Hongo Bunkyo-ku Tokyo 113-0033 Japan
- Center for Biosystems Dynamics Research RIKEN 1-7-22 Suehiro-cho, Tsurumi-ku Yokohama 230-0045 Japan
| |
Collapse
|
65
|
Gray ALH, Steren CA, Haynes IW, Bermejo GA, Favretto F, Zweckstetter M, Do TD. Structural Flexibility of Cyclosporine A Is Mediated by Amide Cis- Trans Isomerization and the Chameleonic Roles of Calcium. J Phys Chem B 2021; 125:1378-1391. [PMID: 33523658 DOI: 10.1021/acs.jpcb.0c11152] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Falling outside of Lipinski's rule of five, macrocyclic drugs have accessed unique binding sites of their target receptors unreachable by traditional small molecules. Cyclosporin(e) A (CycA), an extensively studied macrocyclic natural product, is an immunosuppressant with undesirable side effects such as electrolytic imbalances. In this work, a comprehensive view on the conformational landscape of CycA, its interactions with Ca2+, and host-guest interactions with cyclophilin A (CypA) is reported through exhaustive analyses that combine ion-mobility spectrometry-mass spectrometry (IMS-MS), nuclear magnetic resonance (NMR) spectroscopy, distance-geometry modeling, and NMR-driven molecular dynamics. Our IMS-MS data show that CycA can adopt extremely compact conformations with significantly smaller collisional cross sections than the closed conformation observed in CDCl3. To adopt these conformations, the macrocyclic ring has to twist and bend via cis-trans isomerization of backbone amides, and thus, we termed this family of structures the "bent" conformation. Furthermore, NMR measurements indicate that the closed conformation exists at 19% in CD3OD/H2O and 55% in CD3CN. However, upon interacting with Ca2+, in addition to the bent and previously reported closed conformations of free CycA, the CycA:Ca2+ complex is open and has all-trans peptide bonds. Previous NMR studies using calcium perchlorate reported only the closed conformation of CycA (which contains one cis peptide bond). Here, calcium chloride, a more biologically relevant salt, was used, and interestingly, it helps converting the cis-MeLeu9-MeLeu10 peptide bond into a trans bond. Last, we were able to capture the native binding of CycA and CypA to give forth evidence that IMS-MS is able to probe the solution-phase structures of the complexes and that the Ca2+:CycA complex may play an essential role in the binding of CycA to CypA.
Collapse
Affiliation(s)
- Amber L H Gray
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Carlos A Steren
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Isaac W Haynes
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Guillermo A Bermejo
- Computational Biomolecular Magnetic Resonance Core, Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-0520, United States
| | - Filippo Favretto
- Translational Structural Biology in Dementia, German Center for Neurodegenerative Diseases (DZNE), Von-Siebold-Str. 3a, 37075 Göttingen, Germany
| | - Markus Zweckstetter
- Translational Structural Biology in Dementia, German Center for Neurodegenerative Diseases (DZNE), Von-Siebold-Str. 3a, 37075 Göttingen, Germany.,Department for NMR-Based Structural Biology, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Thanh D Do
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, United States
| |
Collapse
|
66
|
Tsutsumi H, Kuroda T, Kimura H, Goto Y, Suga H. Posttranslational chemical installation of azoles into translated peptides. Nat Commun 2021; 12:696. [PMID: 33514734 PMCID: PMC7846737 DOI: 10.1038/s41467-021-20992-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 01/06/2021] [Indexed: 02/06/2023] Open
Abstract
Azoles are five-membered heterocycles often found in the backbones of peptidic natural products and synthetic peptidomimetics. Here, we report a method of ribosomal synthesis of azole-containing peptides involving specific ribosomal incorporation of a bromovinylglycine derivative into the nascent peptide chain and its chemoselective conversion to a unique azole structure. The chemoselective conversion was achieved by posttranslational dehydrobromination of the bromovinyl group and isomerization in aqueous media under fairly mild conditions. This method enables us to install exotic azole groups, oxazole and thiazole, at designated positions in the peptide chain with both linear and macrocyclic scaffolds and thereby expand the repertoire of building blocks in the mRNA-templated synthesis of designer peptides. Azoles are five-membered heterocycles found in peptidic natural products and synthetic peptiodomimetics. Here the authors demonstrate a posttranslational chemical modification method for in vitro ribosomal synthesis of peptides with exotic azole groups at specific positions.
Collapse
Affiliation(s)
- Haruka Tsutsumi
- Department of Chemistry, Graduate School of Science, The University of Tokyo, Bunkyo, Tokyo, Japan
| | - Tomohiro Kuroda
- Department of Chemistry, Graduate School of Science, The University of Tokyo, Bunkyo, Tokyo, Japan
| | - Hiroyuki Kimura
- Department of Chemistry, Graduate School of Science, The University of Tokyo, Bunkyo, Tokyo, Japan
| | - Yuki Goto
- Department of Chemistry, Graduate School of Science, The University of Tokyo, Bunkyo, Tokyo, Japan.
| | - Hiroaki Suga
- Department of Chemistry, Graduate School of Science, The University of Tokyo, Bunkyo, Tokyo, Japan.
| |
Collapse
|
67
|
Zane D, Feldman PL, Sawyer T, Sobol Z, Hawes J. Development and Regulatory Challenges for Peptide Therapeutics. Int J Toxicol 2020; 40:108-124. [PMID: 33327828 DOI: 10.1177/1091581820977846] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
There has been an increased interest in and activity for the use of peptide therapeutics to treat a variety of human diseases. The number of peptide drugs entering clinical development and the market has increased significantly over the past decade despite inherent challenges of peptide therapeutic discovery, development, and patient-friendly delivery. Disparities in interpretation and application of existing regulatory guidances to innovative synthetic and conjugated peptide assets have resulted in challenges for both regulators and sponsors. The Symposium on Development and Regulatory Challenges for Peptide Therapeutics at the 40th Annual Meeting of the American College of Toxicology held in November of 2019 focused on the following specific topics: (1) peptide therapeutic progress and future directions, and approaches to discover, optimize, assess, and deliver combination peptide therapeutics for treatment of diseases; (2) toxicological considerations to advance peptide drug-device combination products for efficient development and optimal patient benefit and adherence; (3) industry and regulatory perspectives on the regulation of synthetic and conjugated peptide products, including exploration of regulatory classifications, interpretations, and application of the existing guidances International Council for Harmonisation (ICH) M3(R2) and ICH S6(R1) in determining nonclinical study recommendations; and (4) presentation of the 2016 Health and Environmental Sciences Institute's Genetic Toxicology Technical Committee working group assessment of genotoxicity testing requirements. Perspectives were shared from industry and regulatory scientists working in the peptide therapeutics field followed by an open forum panel discussion to discuss questions drafted for the peptide therapeutics scientific community, which will be discussed in more detail.
Collapse
Affiliation(s)
- Doris Zane
- 435529Intarcia Therapeutics, Inc., Hayward, CA, USA
| | - Paul L Feldman
- 435529Intarcia Therapeutics, Inc., Research Triangle Park, NC, USA
| | | | - Zhanna Sobol
- Pfizer Inc., Worldwide Research and Development, Groton, CT, USA
| | - Jessica Hawes
- 4137Food and Drug Administration (FDA), Center for Drug Evaluation and Research (CDER), Silver Spring, MD, USA.,Hawes is now with Food and Drug Administration (FDA), National Center for Toxicological Research (NCTR), Jefferson, AR, USA
| |
Collapse
|
68
|
Rogers JM, Nawatha M, Lemma B, Vamisetti GB, Livneh I, Barash U, Vlodavsky I, Ciechanover A, Fushman D, Suga H, Brik A. In vivo modulation of ubiquitin chains by N-methylated non-proteinogenic cyclic peptides. RSC Chem Biol 2020; 2:513-522. [PMID: 34179781 PMCID: PMC8232551 DOI: 10.1039/d0cb00179a] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Cancer and other disease states can change the landscape of proteins post-translationally tagged with ubiquitin (Ub) chains. Molecules capable of modulating Ub chains are potential therapeutic agents, but their discovery represents a significant challenge. Recently, it was shown that de novo cyclic peptides, selected from trillion-member random libraries, are capable of binding particular Ub chains. However, these peptides were overwhelmingly proteinogenic, so the prospect of in vivo activity was uncertain. Here, we report the discovery of small, non-proteinogenic cyclic peptides, rich in non-canonical features like N-methylation, which can tightly and specifically bind Lys48-linked Ub chains. These peptides engage three Lys48-linked Ub units simultaneously, block the action of deubiquitinases and the proteasome, induce apoptosis in vitro, and attenuate tumor growth in vivo. This highlights the potential of non-proteinogenic cyclic peptide screening to rapidly find in vivo-active leads, and the targeting of ubiquitin chains as a promising anti-cancer mechanism of action.
Collapse
Affiliation(s)
- Joseph M Rogers
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.,Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen 2100, Denmark
| | - Mickal Nawatha
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Haifa 3200008, Israel
| | - Betsegaw Lemma
- Department of Chemistry and Biochemistry, Center for Biomolecular Structure and Organization, University of Maryland, College Park, MD 20742, USA
| | - Ganga B Vamisetti
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Haifa 3200008, Israel
| | - Ido Livneh
- The Rappaport Faculty of Medicine and Research Institute, Technion-Israel Institute of Technology, Haifa 31096, Israel
| | - Uri Barash
- The Rappaport Faculty of Medicine and Research Institute, Technion-Israel Institute of Technology, Haifa 31096, Israel
| | - Israel Vlodavsky
- The Rappaport Faculty of Medicine and Research Institute, Technion-Israel Institute of Technology, Haifa 31096, Israel
| | - Aaron Ciechanover
- The Rappaport Faculty of Medicine and Research Institute, Technion-Israel Institute of Technology, Haifa 31096, Israel
| | - David Fushman
- Department of Chemistry and Biochemistry, Center for Biomolecular Structure and Organization, University of Maryland, College Park, MD 20742, USA
| | - Hiroaki Suga
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Ashraf Brik
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Haifa 3200008, Israel
| |
Collapse
|
69
|
Benhamou RI, Vezina-Dawod S, Choudhary S, Won Wang K, Meyer SM, Yildirim I, Disney MD. Macrocyclization of a Ligand Targeting a Toxic RNA Dramatically Improves Potency. Chembiochem 2020; 21:3229-3233. [PMID: 32649032 PMCID: PMC7674229 DOI: 10.1002/cbic.202000445] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Indexed: 12/21/2022]
Abstract
RNA molecules both contribute to and are causative of many human diseases. One method to perturb RNA function is to target its structure with small molecules. However, discovering bioactive ligands for RNA targets is challenging. Here, we show that the bioactivity of a linear dimeric ligand that inactivates the RNA trinucleotide repeat expansion that causes myotonic dystrophy type 1 [DM1; r(CUG)exp ] can be improved by macrocyclization. Indeed, the macrocyclic compound is ten times more potent than the linear compound for improving DM1-associated defects in cells, including in patient-derived myotubes (muscle cells). This enhancement in potency is due to the macrocycle's increased affinity and selectively for the target, which inhibit r(CUG)exp 's toxic interaction with muscleblind-like 1 (MBNL1), and its superior cell permeability. Macrocyclization could prove to be an effective way to enhance the bioactivity of modularly assembled ligands targeting RNA.
Collapse
Affiliation(s)
- Raphael I Benhamou
- Departments of Chemistry and Neuroscience, The Scripps Research Institute, 130 Scripps Way, Jupiter, FL 33458, USA
| | - Simon Vezina-Dawod
- Departments of Chemistry and Neuroscience, The Scripps Research Institute, 130 Scripps Way, Jupiter, FL 33458, USA
| | - Shruti Choudhary
- Departments of Chemistry and Neuroscience, The Scripps Research Institute, 130 Scripps Way, Jupiter, FL 33458, USA
| | - Kye Won Wang
- Department of Chemistry, Florida Atlantic University, John D. MacArthur Campus, Jupiter, FL 33458, USA
| | - Samantha M Meyer
- Departments of Chemistry and Neuroscience, The Scripps Research Institute, 130 Scripps Way, Jupiter, FL 33458, USA
| | - Ilyas Yildirim
- Department of Chemistry, Florida Atlantic University, John D. MacArthur Campus, Jupiter, FL 33458, USA
| | - Matthew D Disney
- Departments of Chemistry and Neuroscience, The Scripps Research Institute, 130 Scripps Way, Jupiter, FL 33458, USA
| |
Collapse
|
70
|
Buckton LK, Rahimi MN, McAlpine SR. Cyclic Peptides as Drugs for Intracellular Targets: The Next Frontier in Peptide Therapeutic Development. Chemistry 2020; 27:1487-1513. [PMID: 32875673 DOI: 10.1002/chem.201905385] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 08/26/2020] [Indexed: 12/18/2022]
Abstract
Developing macrocyclic peptides that can reach intracellular targets is a significant challenge. This review discusses the most recent strategies used to develop cell permeable cyclic peptides that maintain binding to their biological target inside the cell. Macrocyclic peptides are unique from small molecules because traditional calculated physical properties are unsuccessful for predicting cell membrane permeability. Peptide synthesis and experimental membrane permeability is the only strategy that effectively differentiates between cell permeable and cell impermeable molecules. Discussed are chemical strategies, including backbone N-methylation and stereochemical changes, which have produced molecular scaffolds with improved cell permeability. However, these improvements often come at the expense of biological activity as chemical modifications alter the peptide conformation, frequently impacting the compound's ability to bind to the target. Highlighted is the most promising approach, which involves side-chain alterations that improve cell permeability without impact binding events.
Collapse
Affiliation(s)
- Laura K Buckton
- Department of Chemistry, University of New South Wales, Sydney, Gate 2 High Street, SEB 701, Kensington, NSW, 2052, Australia
| | - Marwa N Rahimi
- Department of Chemistry, University of New South Wales, Sydney, Gate 2 High Street, SEB 701, Kensington, NSW, 2052, Australia
| | - Shelli R McAlpine
- Department of Chemistry, University of New South Wales, Sydney, Gate 2 High Street, SEB 701, Kensington, NSW, 2052, Australia
| |
Collapse
|
71
|
Dubey A, Takeuchi K, Reibarkh M, Arthanari H. The role of NMR in leveraging dynamics and entropy in drug design. JOURNAL OF BIOMOLECULAR NMR 2020; 74:479-498. [PMID: 32720098 PMCID: PMC7686249 DOI: 10.1007/s10858-020-00335-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 07/11/2020] [Indexed: 05/03/2023]
Abstract
Nuclear magnetic resonance (NMR) spectroscopy has contributed to structure-based drug development (SBDD) in a unique way compared to the other biophysical methods. The potency of a ligand binding to a protein is dictated by the binding free energy, which is an intricate interplay between entropy and enthalpy. In addition to providing the atomic resolution structural information, NMR can help to identify protein-ligand interactions that potentially contribute to the enthalpic component of the free energy. NMR can also illuminate dynamic aspects of the interaction, which correspond to the entropic term of the free energy. The ability of NMR to access both terms in the free energy equation stems from the suite of experiments developed to shed light on various aspects that contribute to both entropy and enthalpy, deepening our understanding of the biological function of macromolecules and assisting to target them in physiological conditions. Here we provide a brief account of the contribution of NMR to SBDD, highlighting hallmark examples and discussing the challenges that demand further method development. In the era of integrated biology, the unique ability of NMR to directly ascertain structural and dynamical aspects of macromolecule and monitor changes in these properties upon engaging a ligand can be combined with computational and other structural and biophysical methods to provide a more complete picture of the energetics of drug engagement with the target. Such efforts can be used to engineer better drugs.
Collapse
Affiliation(s)
- Abhinav Dubey
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, 02115, USA
| | - Koh Takeuchi
- Cellular and Molecular Biotechnology Research Institute & Molecular Profiling Research Center for Drug Discovery (molprof), National Institute of Advanced Industrial Science and Technology (AIST), Tokyo, 135-0064, Japan.
| | - Mikhail Reibarkh
- Analytical Research and Development, Merck & Co., Inc., Rahway, NJ, 07065, USA
| | - Haribabu Arthanari
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA.
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
72
|
Zhang Z, Gao R, Hu Q, Peacock H, Peacock DM, Dai S, Shokat KM, Suga H. GTP-State-Selective Cyclic Peptide Ligands of K-Ras(G12D) Block Its Interaction with Raf. ACS CENTRAL SCIENCE 2020; 6:1753-1761. [PMID: 33145412 PMCID: PMC7596874 DOI: 10.1021/acscentsci.0c00514] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Indexed: 05/08/2023]
Abstract
We report the identification of three cyclic peptide ligands of K-Ras(G12D) using an integrated in vitro translation-mRNA display selection platform. These cyclic peptides show preferential binding to the GTP-bound state of K-Ras(G12D) over the GDP-bound state and block Ras-Raf interaction. A co-crystal structure of peptide KD2 with K-Ras(G12D)·GppNHp reveals that this peptide binds in the Switch II groove region with concomitant opening of the Switch II loop and a 40° rotation of the α2 helix, and that a threonine residue (Thr10) on KD2 has direct access to the mutant aspartate (Asp12) on K-Ras. Replacing this threonine with non-natural amino acids afforded peptides with improved potency at inhibiting the interaction between Raf1-RBD and K-Ras(G12D) but not wildtype K-Ras. The union of G12D over wildtype selectivity and GTP state/GDP state selectivity is particularly desirable, considering that oncogenic K-Ras(G12D) exists predominantly in the GTP state in cancer cells, and wildtype K-Ras signaling is important for the maintenance of healthy cells.
Collapse
Affiliation(s)
- Ziyang Zhang
- Department of Cellular
and Molecular Pharmacology, Howard Hughes Medical Institute, University of California—San Francisco, San Francisco, California 94158, United States
| | - Rong Gao
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Qi Hu
- Department of Cellular
and Molecular Pharmacology, Howard Hughes Medical Institute, University of California—San Francisco, San Francisco, California 94158, United States
| | - Hayden Peacock
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - D. Matthew Peacock
- Department of Cellular
and Molecular Pharmacology, Howard Hughes Medical Institute, University of California—San Francisco, San Francisco, California 94158, United States
| | - Shizhong Dai
- Department of Cellular
and Molecular Pharmacology, Howard Hughes Medical Institute, University of California—San Francisco, San Francisco, California 94158, United States
| | - Kevan M. Shokat
- Department of Cellular
and Molecular Pharmacology, Howard Hughes Medical Institute, University of California—San Francisco, San Francisco, California 94158, United States
| | - Hiroaki Suga
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
73
|
Cyclic gomesin, a stable redesigned spider peptide able to enter cancer cells. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1863:183480. [PMID: 32979382 DOI: 10.1016/j.bbamem.2020.183480] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 09/08/2020] [Accepted: 09/16/2020] [Indexed: 12/25/2022]
Abstract
Anticancer chemo- and targeted therapies are limited in some cases due to strong side effects and/or drug resistance. Peptides have received renascent interest as anticancer therapeutics and are currently being considered as alternatives and/or as complementary to biologics and small-molecule drugs. Gomesin, a disulfide-rich host defense peptide expressed in the Brazilian spider Acanthoscurria gomesiana selectively targets and disrupts cancer cell membranes. In the current study, we employed a range of biophysical methodologies with model membranes and bioassays to investigate the use of a cyclic analogue of gomesin as a drug scaffold to internalize cancer cells. We found that cyclic gomesin can internalize cancer cells via endocytosis and direct membrane permeation. In addition, we designed an improved non-disruptive and non-toxic cyclic gomesin analogue by incorporating D-amino acids within the scaffold. This improved analogue retained the ability to enter cancer cells and can be used as a scaffold to deliver drugs. Efforts to investigate the internalization mechanism used by host defense peptides, and to improve their stability, potency, selectivity and ability to permeate cancer cell membranes will increase the opportunities to repurpose peptides as templates for designing alternative anticancer therapeutic leads.
Collapse
|
74
|
Stadelmann T, Subramanian G, Menon S, Townsend CE, Lokey RS, Ebert MO, Riniker S. Connecting the conformational behavior of cyclic octadepsipeptides with their ionophoric property and membrane permeability. Org Biomol Chem 2020; 18:7110-7126. [PMID: 32902550 PMCID: PMC7796559 DOI: 10.1039/d0ob01447h] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Cyclic octadepsipeptides such as PF1022A and its synthetic derivative emodepside exhibit anthelmintic activity with the latter sold as a commercial drug treatment against gastrointestinal nematodes for animal health use. The structure-permeability relationship of these cyclic depsipeptides that could ultimately provide insights into the compound bioavailability is not yet well understood. The fully N-methylated amide backbone and apolar sidechain residues do not allow for the formation of intramolecular hydrogen bonds, normally observed in the membrane-permeable conformations of cyclic peptides. Hence, any understanding gained on these depsipeptides would serve as a prototype for future design strategies. In previous nuclear magnetic resonance (NMR) studies, two macrocyclic core conformers of emodepside were detected, one with all backbone amides in trans-configuration (hereon referred as the symmetric conformer) and the other with one amide in cis-configuration (hereon referred as the asymmetric conformer). In addition, these depsipeptides were also reported to be ionophores with a preference of potassium over sodium. In this study, we relate the conformational behavior of PF1022A, emodepside, and closely related analogs with their ionophoric characteristic probed using NMR and molecular dynamics (MD) simulations and finally evaluated their passive membrane permeability using PAMPA. We find that the equilibrium between the two core conformers shifts more towards the symmetric conformer upon addition of monovalent cations with selectivity for potassium over sodium. Both the NMR experiments and the theoretical Markov state models based on extensive MD simulations indicate a more rigid backbone for the asymmetric conformation, whereas the symmetric conformation shows greater flexibility. The experimental results further advocate for the symmetric conformation binding the cation. The PAMPA results suggest that the investigated depsipeptides are retained in the membrane, which may be advantageous for the likely target, a membrane-bound potassium channel.
Collapse
Affiliation(s)
- Thomas Stadelmann
- Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 1-5, 8093 Zurich, Switzerland.
| | - Govindan Subramanian
- Veterinary Medicine Research & Development, Zoetis, 333 Portage Street, Bldg. 300, Kalamazoo, Michigan 49007, USA
| | - Sanjay Menon
- Veterinary Medicine Research & Development, Zoetis, 333 Portage Street, Bldg. 300, Kalamazoo, Michigan 49007, USA
| | - Chad E Townsend
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, California 93064, USA
| | - R Scott Lokey
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, California 93064, USA
| | - Marc-Olivier Ebert
- Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 1-5, 8093 Zurich, Switzerland.
| | - Sereina Riniker
- Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 1-5, 8093 Zurich, Switzerland.
| |
Collapse
|
75
|
Jwad R, Weissberger D, Hunter L. Strategies for Fine-Tuning the Conformations of Cyclic Peptides. Chem Rev 2020; 120:9743-9789. [PMID: 32786420 DOI: 10.1021/acs.chemrev.0c00013] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cyclic peptides are promising scaffolds for drug development, attributable in part to their increased conformational order compared to linear peptides. However, when optimizing the target-binding or pharmacokinetic properties of cyclic peptides, it is frequently necessary to "fine-tune" their conformations, e.g., by imposing greater rigidity, by subtly altering certain side chain vectors, or by adjusting the global shape of the macrocycle. This review systematically examines the various types of structural modifications that can be made to cyclic peptides in order to achieve such conformational control.
Collapse
Affiliation(s)
- Rasha Jwad
- Department of Chemistry, College of Science, Al-Nahrain University, Baghdad, Iraq
| | - Daniel Weissberger
- School of Chemistry, University of New South Wales (UNSW) Sydney, New South Wales 2052, Australia
| | - Luke Hunter
- School of Chemistry, University of New South Wales (UNSW) Sydney, New South Wales 2052, Australia
| |
Collapse
|
76
|
Kamenik AS, Kraml J, Hofer F, Waibl F, Quoika PK, Kahler U, Schauperl M, Liedl KR. Macrocycle Cell Permeability Measured by Solvation Free Energies in Polar and Apolar Environments. J Chem Inf Model 2020; 60:3508-3517. [PMID: 32551643 PMCID: PMC7388155 DOI: 10.1021/acs.jcim.0c00280] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The relation of surface polarity and conformational preferences is decisive for cell permeability and thus bioavailability of macrocyclic drugs. Here, we employ grid inhomogeneous solvation theory (GIST) to calculate solvation free energies for a series of six macrocycles in water and chloroform as a measure of passive membrane permeability. We perform accelerated molecular dynamics simulations to capture a diverse structural ensemble in water and chloroform, allowing for a direct profiling of solvent-dependent conformational preferences. Subsequent GIST calculations facilitate a quantitative measure of solvent preference in the form of a transfer free energy, calculated from the ensemble-averaged solvation free energies in water and chloroform. Hence, the proposed method considers how the conformational diversity of macrocycles in polar and apolar solvents translates into transfer free energies. Following this strategy, we find a striking correlation of 0.92 between experimentally determined cell permeabilities and calculated transfer free energies. For the studied model systems, we find that the transfer free energy exceeds the purely water-based solvation free energies as a reliable estimate of cell permeability and that conformational sampling is imperative for a physically meaningful model. We thus recommend this purely physics-based approach as a computational tool to assess cell permeabilities of macrocyclic drug candidates.
Collapse
Affiliation(s)
- Anna S Kamenik
- Institute of General, Inorganic and Theoretical Chemistry and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80-82, Innsbruck A-6020 Austria
| | - Johannes Kraml
- Institute of General, Inorganic and Theoretical Chemistry and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80-82, Innsbruck A-6020 Austria
| | - Florian Hofer
- Institute of General, Inorganic and Theoretical Chemistry and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80-82, Innsbruck A-6020 Austria
| | - Franz Waibl
- Institute of General, Inorganic and Theoretical Chemistry and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80-82, Innsbruck A-6020 Austria
| | - Patrick K Quoika
- Institute of General, Inorganic and Theoretical Chemistry and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80-82, Innsbruck A-6020 Austria
| | - Ursula Kahler
- Institute of General, Inorganic and Theoretical Chemistry and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80-82, Innsbruck A-6020 Austria
| | - Michael Schauperl
- Institute of General, Inorganic and Theoretical Chemistry and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80-82, Innsbruck A-6020 Austria
| | - Klaus R Liedl
- Institute of General, Inorganic and Theoretical Chemistry and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80-82, Innsbruck A-6020 Austria
| |
Collapse
|
77
|
Efimov S, Dubinin M, Kobchikova P, Zgadzay Y, Khodov I, Belosludtsev K, Klochkov V. Comparison of cyclosporin variants B–E based on their structural properties and activity in mitochondrial membranes. Biochem Biophys Res Commun 2020; 526:1054-1060. [DOI: 10.1016/j.bbrc.2020.03.184] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Accepted: 03/31/2020] [Indexed: 12/17/2022]
|
78
|
Fundamental aspects of DMPK optimization of targeted protein degraders. Drug Discov Today 2020; 25:969-982. [PMID: 32298797 DOI: 10.1016/j.drudis.2020.03.012] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 03/03/2020] [Accepted: 03/16/2020] [Indexed: 12/30/2022]
Abstract
Targeted protein degraders are an emerging modality. Their properties fall outside the traditional small-molecule property space and are in the 'beyond rule of 5' space. Consequently, drug discovery programs focused on developing orally bioavailable degraders are expected to face complex drug metabolism and pharmacokinetics (DMPK) challenges compared with traditional small molecules. Nevertheless, little information is available on the DMPK optimization of oral degraders. Therefore, in this review, we discuss our experience of these DMPK optimization challenges and present methodologies and strategies to overcome the hurdles dealing with this new small-molecule modality, specifically in developing oral degraders to treat cancer.
Collapse
|
79
|
Koike K, Nagano M, Ebihara M, Hirayama T, Tsuji M, Suga H, Nagasawa H. Design, Synthesis, and Conformation-Activity Study of Unnatural Bridged Bicyclic Depsipeptides as Highly Potent Hypoxia Inducible Factor-1 Inhibitors and Antitumor Agents. J Med Chem 2020; 63:4022-4046. [PMID: 32202785 DOI: 10.1021/acs.jmedchem.9b02039] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
By carrying out structural modifications based on the bicyclic peptide structure of echinomycin, we successfully synthesized various powerful antitumor derivatives. The ring conformation in the obtained compounds was restricted by cross-linking with an unnatural bond. The prepared derivatives were demonstrated to strongly suppress the hypoxia inducible factor (HIF)-1 transcriptional activation and hypoxia induction of HIF-1 protein expression. Particularly, alkene-bridged derivative 12 exhibited remarkably potent cytotoxicity (IC50 = 0.22 nM on the MCF-7 cell line) and HIF-1 inhibition (IC50 = 0.09 nM), which considerably exceeded those of echinomycin. Conformational analyses and molecular modeling studies revealed that the biological activities were enhanced following restriction of the conformation by cross-linking through a metabolically stable and rigid bridge bond. In addition, we proposed a new globular conformation stabilized by intramolecular π stacking that can contribute to the biological effects of bicyclic depsipeptides. The developments presented in the current study serve as a useful guide to expand the chemical space of peptides in drug discovery.
Collapse
Affiliation(s)
- Kota Koike
- Laboratory of Pharmaceutical and Medicinal Chemistry, Gifu Pharmaceutical University, Gifu-city, Gifu 501-1196, Japan
| | - Masanobu Nagano
- Department of Chemistry, The University of Tokyo, Bunkyoku, Tokyo 113-0033, Japan
| | - Masahiro Ebihara
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, Gifu-city, Gifu 501-1193, Japan
| | - Tasuku Hirayama
- Laboratory of Pharmaceutical and Medicinal Chemistry, Gifu Pharmaceutical University, Gifu-city, Gifu 501-1196, Japan
| | - Mieko Tsuji
- Laboratory of Pharmaceutical and Medicinal Chemistry, Gifu Pharmaceutical University, Gifu-city, Gifu 501-1196, Japan
| | - Hiroaki Suga
- Department of Chemistry, The University of Tokyo, Bunkyoku, Tokyo 113-0033, Japan
| | - Hideko Nagasawa
- Laboratory of Pharmaceutical and Medicinal Chemistry, Gifu Pharmaceutical University, Gifu-city, Gifu 501-1196, Japan
| |
Collapse
|
80
|
Joshi R, Qin L, Cao X, Zhong S, Voss C, Min W, Li SSC. DLC1 SAM domain-binding peptides inhibit cancer cell growth and migration by inactivating RhoA. J Biol Chem 2019; 295:645-656. [PMID: 31806702 DOI: 10.1074/jbc.ra119.011929] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Indexed: 12/25/2022] Open
Abstract
Deleted-in-liver cancer 1 (DLC1) exerts its tumor suppressive function mainly through the Rho-GTPase-activating protein (RhoGAP) domain. When activated, the domain promotes the hydrolysis of RhoA-GTP, leading to reduced cell migration. DLC1 is kept in an inactive state by an intramolecular interaction between its RhoGAP domain and the DLC1 sterile α motif (SAM) domain. We have shown previously that this autoinhibited state of DLC1 may be alleviated by tensin-3 (TNS3) or PTEN. We show here that the TNS3/PTEN-DLC1 interactions are mediated by the C2 domains of the former and the SAM domain of the latter. Intriguingly, the DLC1 SAM domain was capable of binding to specific peptide motifs within the C2 domains. Indeed, peptides containing the binding motifs were highly effective in blocking the C2-SAM domain-domain interaction. Importantly, when fused to the tat protein-transduction sequence and subsequently introduced into cells, the C2 peptides potently promoted the RhoGAP function in DLC1, leading to decreased RhoA activation and reduced tumor cell growth in soft agar and migration in response to growth factor stimulation. To facilitate the development of the C2 peptides as potential therapeutic agents, we created a cyclic version of the TNS3 C2 domain-derived peptide and showed that this peptide readily entered the MDA-MB-231 breast cancer cells and effectively inhibited their migration. Our work shows, for the first time, that the SAM domain is a peptide-binding module and establishes the framework on which to explore DLC1 SAM domain-binding peptides as potential therapeutic agents for cancer treatment.
Collapse
Affiliation(s)
- Rakesh Joshi
- Department of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, Ontario N6A 5C1, Canada; Departments of Surgery, Pathology and Oncology, Western University, London, Ontario N6A 5A5, Canada
| | - Lyugao Qin
- Department of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, Ontario N6A 5C1, Canada
| | - Xuan Cao
- School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Shanshan Zhong
- Department of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, Ontario N6A 5C1, Canada
| | - Courtney Voss
- Department of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, Ontario N6A 5C1, Canada
| | - Weiping Min
- Departments of Surgery, Pathology and Oncology, Western University, London, Ontario N6A 5A5, Canada.
| | - Shawn S C Li
- Department of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, Ontario N6A 5C1, Canada.
| |
Collapse
|
81
|
Hyun S, Li L, Yoon KC, Yu J. An amphipathic cell penetrating peptide aids cell penetration of cyclosporin A and increases its therapeutic effect in an in vivo mouse model for dry eye disease. Chem Commun (Camb) 2019; 55:13657-13660. [PMID: 31595891 DOI: 10.1039/c9cc05960a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Cell penetrating peptide (CPP), LK-3, causes a ca. 10-fold increase in the cell penetration of cyclosporin A (CsA) at nanomolar concentrations. The results of an in vivo dry eye mouse model demonstrated that a 100-fold lower dose of the CsA/LK-3 complex than that of Restasis® is sufficient to cause the same therapeutic effect.
Collapse
Affiliation(s)
- Soonsil Hyun
- Institute of Molecular Biology and Genetics, Seoul National University, Seoul 08826, Korea
| | - Lan Li
- Department of Ophthalmology, Chonnam National University Medical School and Hospital, Gwangju 61469, Korea.
| | - Kyung Chul Yoon
- Department of Ophthalmology, Chonnam National University Medical School and Hospital, Gwangju 61469, Korea.
| | - Jaehoon Yu
- Department of Chemistry and Education, Seoul National University, Seoul 08826, Korea.
| |
Collapse
|
82
|
Wang F, Liu LS, Lau CH, Han Chang TJ, Tam DY, Leung HM, Tin C, Lo PK. Synthetic α-l-Threose Nucleic Acids Targeting BcL-2 Show Gene Silencing and in Vivo Antitumor Activity for Cancer Therapy. ACS APPLIED MATERIALS & INTERFACES 2019; 11:38510-38518. [PMID: 31556592 DOI: 10.1021/acsami.9b14324] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
We design and synthesize a sequence-defined α-l-threose nucleic acid (TNA) polymer, which is complementary to certain nucleotide sites of target anti-apoptotic proteins, BcL-2 involving in development and progression of tumors. Compared to scramble TNA, anti-BcL-2 TNA significantly suppresses target mRNA and protein expression in cancerous cells and shows antitumor activity in carcinoma xenografts, resulting in suppression of tumor cell growth and induction of tumor cell death. Together with good biocompatibility, very low toxicity, excellent specificity features, and strong binding affinity toward the complementary target RNAs, TNAs become new useful biomaterials and effective alternatives to traditional antisense oligonucleotides including locked nucleic acids, morpholino oligomers, and peptide nucleic acids in antisense therapy. Compared to conventional cancer therapy such as radiotherapy, surgery, and chemotherapy, we anticipate that this TNA-based polymeric system will work effectively in antisense cancer therapy and shortly start to play an important role in practical application.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Pik Kwan Lo
- Key Laboratory of Biochip Technology, Biotech and Health Care , Shenzhen Research Institute of City University of Hong Kong , Shenzhen 518057 , China
| |
Collapse
|
83
|
Abstract
Approximately 75% of all disease-relevant human proteins, including those involved in intracellular protein-protein interactions (PPIs), are undruggable with the current drug modalities (i.e., small molecules and biologics). Macrocyclic peptides provide a potential solution to these undruggable targets because their larger sizes (relative to conventional small molecules) endow them the capability of binding to flat PPI interfaces with antibody-like affinity and specificity. Powerful combinatorial library technologies have been developed to routinely identify cyclic peptides as potent, specific inhibitors against proteins including PPI targets. However, with the exception of a very small set of sequences, the vast majority of cyclic peptides are impermeable to the cell membrane, preventing their application against intracellular targets. This Review examines common structural features that render most cyclic peptides membrane impermeable, as well as the unique features that allow the minority of sequences to enter the cell interior by passive diffusion, endocytosis/endosomal escape, or other mechanisms. We also present the current state of knowledge about the molecular mechanisms of cell penetration, the various strategies for designing cell-permeable, biologically active cyclic peptides against intracellular targets, and the assay methods available to quantify their cell-permeability.
Collapse
Affiliation(s)
- Patrick G. Dougherty
- Department of Chemistry and Biochemistry, The Ohio State University, 484 West 12 Avenue, Columbus, Ohio 43210, United States
| | - Ashweta Sahni
- Department of Chemistry and Biochemistry, The Ohio State University, 484 West 12 Avenue, Columbus, Ohio 43210, United States
| | - Dehua Pei
- Department of Chemistry and Biochemistry, The Ohio State University, 484 West 12 Avenue, Columbus, Ohio 43210, United States
| |
Collapse
|
84
|
Gadgil P, Alleyne C, Feng KI, Hu M, Gindy M, Buevich AV, Fauty S, Salituro G, Wen J, Li Y, Nofsinger R, Sawyer TK, Buist N. Assessing the Utility of In Vitro Screening Tools for Predicting Bio-Performance of Oral Peptide Delivery. Pharm Res 2019; 36:151. [DOI: 10.1007/s11095-019-2682-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Accepted: 08/04/2019] [Indexed: 12/29/2022]
|
85
|
Dickson P, Kodadek T. Chemical composition of DNA-encoded libraries, past present and future. Org Biomol Chem 2019; 17:4676-4688. [PMID: 31017595 PMCID: PMC6520149 DOI: 10.1039/c9ob00581a] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
DNA-encoded libraries represent an exciting and powerful modality for high-throughput screening. In this article, we highlight recent important advances in this field and also suggest some important directions that would make the technology even more powerful.
Collapse
Affiliation(s)
- Paige Dickson
- Department of Chemistry, The Scripps Research Institute, 130 Scripps Way, Jupiter, FL 33458, USA.
| | | |
Collapse
|
86
|
Complex macrocycle exploration: parallel, heuristic, and constraint-based conformer generation using ForceGen. J Comput Aided Mol Des 2019; 33:531-558. [PMID: 31054028 PMCID: PMC6554267 DOI: 10.1007/s10822-019-00203-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 04/20/2019] [Indexed: 11/24/2022]
Abstract
ForceGen is a template-free, non-stochastic approach for 2D to 3D structure generation and conformational elaboration for small molecules, including both non-macrocycles and macrocycles. For conformational search of non-macrocycles, ForceGen is both faster and more accurate than the best of all tested methods on a very large, independently curated benchmark of 2859 PDB ligands. In this study, the primary results are on macrocycles, including results for 431 unique examples from four separate benchmarks. These include complex peptide and peptide-like cases that can form networks of internal hydrogen bonds. By making use of new physical movements (“flips” of near-linear sub-cycles and explicit formation of hydrogen bonds), ForceGen exhibited statistically significantly better performance for overall RMS deviation from experimental coordinates than all other approaches. The algorithmic approach offers natural parallelization across multiple computing-cores. On a modest multi-core workstation, for all but the most complex macrocycles, median wall-clock times were generally under a minute in fast search mode and under 2 min using thorough search. On the most complex cases (roughly cyclic decapeptides and larger) explicit exploration of likely hydrogen bonding networks yielded marked improvements, but with calculation times increasing to several minutes and in some cases to roughly an hour for fast search. In complex cases, utilization of NMR data to constrain conformational search produces accurate conformational ensembles representative of solution state macrocycle behavior. On macrocycles of typical complexity (up to 21 rotatable macrocyclic and exocyclic bonds), design-focused macrocycle optimization can be practically supported by computational chemistry at interactive time-scales, with conformational ensemble accuracy equaling what is seen with non-macrocyclic ligands. For more complex macrocycles, inclusion of sparse biophysical data is a helpful adjunct to computation.
Collapse
|
87
|
Small structural alterations greatly influence the membrane affinity of lipophilic ligands: Membrane interactions of bafilomycin A1 and its desmethyl derivative bearing 19F-labeling. Bioorg Med Chem 2019; 27:1677-1682. [DOI: 10.1016/j.bmc.2019.03.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 03/06/2019] [Accepted: 03/07/2019] [Indexed: 11/20/2022]
|
88
|
Atangcho L, Navaratna T, Thurber GM. Hitting Undruggable Targets: Viewing Stabilized Peptide Development through the Lens of Quantitative Systems Pharmacology. Trends Biochem Sci 2019; 44:241-257. [PMID: 30563724 PMCID: PMC6661118 DOI: 10.1016/j.tibs.2018.11.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 08/31/2018] [Accepted: 11/22/2018] [Indexed: 01/10/2023]
Abstract
Stabilized peptide therapeutics have the potential to hit currently undruggable targets, dramatically expanding the druggable genome. However, major obstacles to their development include poor intracellular delivery, rapid degradation, low target affinity, and membrane toxicity. With the emergence of multiple stabilization techniques and screening technologies, the high efficacy of various bioactive peptides has been demonstrated in vitro, albeit with limited success in vivo. We discuss here the chemical and pharmacokinetic barriers to achieving in vivo efficacy, analyze the characteristics of FDA-approved peptide drugs, and propose a developmental tool that considers the molecular properties of stabilized peptides in a comprehensive and quantitative manner to achieve the necessary rates for in vivo delivery to the target, efficacy, and ultimately clinical translation.
Collapse
Affiliation(s)
- Lydia Atangcho
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Tejas Navaratna
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Greg M Thurber
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, USA; Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
89
|
Caron G, Kihlberg J, Ermondi G. Intramolecular hydrogen bonding: An opportunity for improved design in medicinal chemistry. Med Res Rev 2019; 39:1707-1729. [PMID: 30659634 DOI: 10.1002/med.21562] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 12/18/2018] [Accepted: 12/19/2019] [Indexed: 12/14/2022]
Abstract
Recent literature shows that intramolecular hydrogen bond (IMHB) formation can positively impact upon the triad of permeability, solubility, and potency of drugs and candidates. IMHB modulation can be applied to compounds in any chemical space as a means for discovering drug candidates with both acceptable potency and absorption, distribution, metabolism, and excretion-Tox profiles. Integrating IMHB formation in design of drugs is, therefore, an exciting and timely challenge for modern medicinal chemistry. In this review, we first provide some background about IMHBs from the medicinal chemist's point of view and highlight some IMHB-associated misconceptions. Second, we propose a classification of IMHBs for drug discovery purposes, review the most common in silico tactics to include IMHBs in lead optimization and list some experimental physicochemical descriptors, which quantify the propensity of compounds to form IMHBs. By focusing on the compounds size and the number of IMHBs that can potentially be formed, we also outline the major difficulties encountered when designing compounds based on the inclusion of IMHBs. Finally, we discuss recent case studies illustrating the application of IMHB to optimize cell permeability and physicochemical properties of small molecules, cyclic peptides and macrocycles.
Collapse
Affiliation(s)
- Giulia Caron
- Molecular Biotechnology and Health Sciences Department, University of Torino, Torino, Italy
| | - Jan Kihlberg
- Department of Chemistry - BMC, Uppsala University, Uppsala, Sweden
| | - Giuseppe Ermondi
- Molecular Biotechnology and Health Sciences Department, University of Torino, Torino, Italy
| |
Collapse
|
90
|
Sakai-Kato K, Yoshida K, Izutsu KI. Effect of surface charge on the size-dependent cellular internalization of liposomes. Chem Phys Lipids 2019; 224:104726. [PMID: 30660745 DOI: 10.1016/j.chemphyslip.2019.01.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 10/09/2018] [Accepted: 01/16/2019] [Indexed: 11/25/2022]
Abstract
Here we report that the size dependence of cellular internalization of liposomes differs depending on the surface charge. We prepared liposomes of various lipid compositions ranging from 100 to 200 nm size. It was found that cationic liposomes composed of 1,2-Dioleoyl-sn-glycero-3-phosphocholine (DOPC) and 1,2-Dioleoyl-3-trimethylammonium-propane (DOTAP) were most effectively internalized into cells when their mean particle sizes were around 180 nm. When their size was reduced to around 90 nm, the level of internalization reduced six-fold. Conversely, hydrogenated soy phosphatidylcholine (HSPC)/N-(carbonyl-methoxypolyethylene glycol 2000)-1,2-distearoyl-sn-glycero-3-phosphoethanolamine (PEG2000-DSPE)/cholesterol(Chol) liposomes, HSPC/PEG2000-DSPE liposomes, and HSPC/Chol liposomes were most readily internalized when they were around 110 to 130 nm in mean particle size. Unlike DOPC/DOTAP liposomes the difference between the maximum and minimum levels of internalization was less than two-fold. It has been suggested that strong electrostatic interactions between cationic liposomes and the negatively charged plasma membrane affect the size dependence and optimal size range for internalization of liposomes. Size dependence of internalization should be carefully monitored for effective formulation development and quality control of liposome drug products.
Collapse
Affiliation(s)
- Kumiko Sakai-Kato
- Division of Drugs, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa, 210-9501, Japan.
| | - Kohki Yoshida
- Division of Drugs, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa, 210-9501, Japan
| | - Ken-Ichi Izutsu
- Division of Drugs, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa, 210-9501, Japan
| |
Collapse
|
91
|
Blanco MJ. Building upon Nature's Framework: Overview of Key Strategies Toward Increasing Drug-Like Properties of Natural Product Cyclopeptides and Macrocycles. Methods Mol Biol 2019; 2001:203-233. [PMID: 31134573 DOI: 10.1007/978-1-4939-9504-2_10] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The pharmaceutical industry has focused mainly in the development of small-molecule entities intended for oral administration for the past decades. As a result, the majority of existing drugs address only a narrow range of biological targets. In the era of post-genomics, transcriptomics, and proteomics, there is an increasing interest on larger modulators of proteins that can span larger surfaces, access new therapeutic mechanisms of action, and provide greater target specificity. Traditional drug-like molecules developed using "rule-of-five" (Ro5) guidelines have been proven ineffective against a variety of challenging targets, such as protein-protein interactions, nucleic acid complexes, and antibacterial modalities. However, natural products are known to be effective at modulating such targets, leading to a renewed focus by medicinal chemists on investigating underrepresented chemical scaffolds associated with natural products. Here we describe recent efforts toward identification of novel natural cyclopeptides and macrocycles as well as selected medicinal chemistry strategies to increase drug-like properties or further exploration of their activity.
Collapse
|
92
|
Abstract
This review describes a selection of macrocyclic natural products and structurally modified analogs containing peptidic and non-peptidic elements as structural features that potentially modulate cellular permeability. Examples range from exclusively peptidic structures like cyclosporin A or phepropeptins to compounds with mostly non-peptidic character, such as telomestatin or largazole. Furthermore, semisynthetic approaches and synthesis platforms to generate general and focused libraries of compounds at the interface of cyclic peptides and non-peptidic macrocycles are discussed.
Collapse
|
93
|
Abstract
One of the most exciting facets of cyclic peptides is that they have the potential to be orally bioavailable, despite having physical properties well beyond the traditional "Rule-of-5" chemistry space (Lipinski et al., Adv Drug Deliv Rev. 23(1): 3-25, 1997). An important component of meeting this challenge is to design cyclic peptides with good intestinal permeability. Here we discuss the design principles for intestinal permeability that have been developed in recent year. These principles can be subdivided into three regimes: physical property guidelines, design strategies for the macrocyclic ring, and design strategies for side chains. The most important overall aims are to minimize solvent-exposed polarity while keeping size, flexibility, and lipophilicity within favorable ranges, thereby allowing peptide chemists to achieve intestinal permeability in addition to other important properties for their compounds, such as solubility and binding affinity. Here we describe a variety of design strategies that have been developed to help peptide chemists in this endeavor.
Collapse
|
94
|
Huang Y, Wiedmann MM, Suga H. RNA Display Methods for the Discovery of Bioactive Macrocycles. Chem Rev 2018; 119:10360-10391. [PMID: 30395448 DOI: 10.1021/acs.chemrev.8b00430] [Citation(s) in RCA: 166] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The past two decades have witnessed the emergence of macrocycles, including macrocyclic peptides, as a promising yet underexploited class of de novo drug candidates. Both rational/computational design and in vitro display systems have contributed tremendously to the development of cyclic peptide binders of either traditional targets such as cell-surface receptors and enzymes or challenging targets such as protein-protein interaction surfaces. mRNA display, a key platform technology for the discovery of cyclic peptide ligands, has become one of the leading strategies that can generate natural-product-like macrocyclic peptide binders with antibody-like affinities. On the basis of the original cell-free transcription/translation system, mRNA display is highly evolvable to realize its full potential by applying genetic reprogramming and chemical/enzymatic modifications. In addition, mRNA display also allows the follow-up hit-to-lead development using high-throughput focused affinity maturation. Finally, mRNA-displayed peptides can be readily engineered to create chemical conjugates based on known small molecules or biologics. This review covers the birth and growth of mRNA display and discusses the above features of mRNA display with success stories and future perspectives and is up to date as of August 2018.
Collapse
Affiliation(s)
- Yichao Huang
- Department of Chemistry, Graduate School of Science , The University of Tokyo , 7-3-1 Hongo , Bunkyo-ku, Tokyo 113-0033 , Japan
| | - Mareike Margarete Wiedmann
- Department of Chemistry, Graduate School of Science , The University of Tokyo , 7-3-1 Hongo , Bunkyo-ku, Tokyo 113-0033 , Japan
| | - Hiroaki Suga
- Department of Chemistry, Graduate School of Science , The University of Tokyo , 7-3-1 Hongo , Bunkyo-ku, Tokyo 113-0033 , Japan
| |
Collapse
|
95
|
Abstract
The 20 proteinogenic amino acids have physicochemical properties that allow peptides and proteins to fold and bind. However, there are numerous unnatural, nonproteinogenic amino acids that may be equally good, or even better, at folding and binding. Exploration of these alternative peptide building blocks has been limited by slow, one-at-a-time synthesis and testing. We describe how, in a single experiment, multiple nonproteinogenic amino acids can be trialed at all positions in a peptide sequence, with thousands of modifications tested in parallel. This permits detailed analysis of how chemical structure relates to function and allows for systematic comparisons of proteinogenic and nonproteinogenic chemistry. Such analysis can guide the improvement of drug-candidate peptides, including the therapeutically promising class of cyclic peptides. High-resolution structure–activity analysis of polypeptides requires amino acid structures that are not present in the universal genetic code. Examination of peptide and protein interactions with this resolution has been limited by the need to individually synthesize and test peptides containing nonproteinogenic amino acids. We describe a method to scan entire peptide sequences with multiple nonproteinogenic amino acids and, in parallel, determine the thermodynamics of binding to a partner protein. By coupling genetic code reprogramming to deep mutational scanning, any number of amino acids can be exhaustively substituted into peptides, and single experiments can return all free energy changes of binding. We validate this approach by scanning two model protein-binding peptides with 21 diverse nonproteinogenic amino acids. Dense structure–activity maps were produced at the resolution of single aliphatic atom insertions and deletions. This permits rapid interrogation of interaction interfaces, as well as optimization of affinity, fine-tuning of physical properties, and systematic assessment of nonproteinogenic amino acids in binding and folding.
Collapse
|
96
|
Tortorella E, Tedesco P, Palma Esposito F, January GG, Fani R, Jaspars M, de Pascale D. Antibiotics from Deep-Sea Microorganisms: Current Discoveries and Perspectives. Mar Drugs 2018; 16:md16100355. [PMID: 30274274 PMCID: PMC6213577 DOI: 10.3390/md16100355] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 09/25/2018] [Accepted: 09/27/2018] [Indexed: 12/17/2022] Open
Abstract
The increasing emergence of new forms of multidrug resistance among human pathogenic bacteria, coupled with the consequent increase of infectious diseases, urgently requires the discovery and development of novel antimicrobial drugs with new modes of action. Most of the antibiotics currently available on the market were obtained from terrestrial organisms or derived semisynthetically from fermentation products. The isolation of microorganisms from previously unexplored habitats may lead to the discovery of lead structures with antibiotic activity. The deep-sea environment is a unique habitat, and deep-sea microorganisms, because of their adaptation to this extreme environment, have the potential to produce novel secondary metabolites with potent biological activities. This review covers novel antibiotics isolated from deep-sea microorganisms. The chemical classes of the compounds, their bioactivities, and the sources of organisms are outlined. Furthermore, the authors report recent advances in techniques and strategies for the exploitation of deep-sea microorganisms.
Collapse
Affiliation(s)
- Emiliana Tortorella
- Institute of Protein Biochemistry, National Research Council, I-80131 Naples, Italy.
| | - Pietro Tedesco
- Institute of Protein Biochemistry, National Research Council, I-80131 Naples, Italy.
- Laboratoire d'Ingénierie des Systèmes Biologiques et des Procédés, INSA, 31400 Toulouse, France.
| | - Fortunato Palma Esposito
- Institute of Protein Biochemistry, National Research Council, I-80131 Naples, Italy.
- Stazione Zoologica "Anthon Dorn", Villa Comunale, I-80121 Naples, Italy.
| | - Grant Garren January
- Institute of Protein Biochemistry, National Research Council, I-80131 Naples, Italy.
| | - Renato Fani
- Department of Biology, University of Florence, Sesto Fiorentino, I-50019 Florence, Italy.
| | - Marcel Jaspars
- Marine Biodiscovery Centre, Department of Chemistry, University of Aberdeen, Aberdeen, Scotland AB24 3UE, UK.
| | - Donatella de Pascale
- Institute of Protein Biochemistry, National Research Council, I-80131 Naples, Italy.
- Stazione Zoologica "Anthon Dorn", Villa Comunale, I-80121 Naples, Italy.
| |
Collapse
|
97
|
Passioura T, Liu W, Dunkelmann D, Higuchi T, Suga H. Display Selection of Exotic Macrocyclic Peptides Expressed under a Radically Reprogrammed 23 Amino Acid Genetic Code. J Am Chem Soc 2018; 140:11551-11555. [PMID: 30157372 DOI: 10.1021/jacs.8b03367] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Bioactive naturally occurring macrocyclic peptides often exhibit a strong bias for hydrophobic residues. Recent advances in in vitro display technologies have made possible the identification of potent macrocyclic peptide ligands to protein targets of interest. However, such approaches have so far been restricted to using libraries composed of peptides containing mixtures of hydrophobic and hydrophilic/charged amino acids encoded by the standard genetic code. In the present study, we have demonstrated ribosomal expression of exotic macrocyclic peptides under a radically reprogrammed, relatively hydrophobic, genetic code, comprising 12 proteinogenic and 11 nonproteinogenic amino acids. Screening of this library for affinity to the interleukin-6 receptor (IL6R) as a case study successfully identified exotic macrocyclic peptide ligands with high affinity, validating the feasibility of this approach for the discovery of relatively hydrophobic exotic macrocyclic peptide ligands.
Collapse
Affiliation(s)
- Toby Passioura
- Department of Chemistry , Graduate School of Science, The University of Tokyo , 7-3-1, Hongo , Tokyo 113-0033 , Japan
| | - Wenyu Liu
- Department of Chemistry , Graduate School of Science, The University of Tokyo , 7-3-1, Hongo , Tokyo 113-0033 , Japan
| | - Daniel Dunkelmann
- Department of Chemistry , Graduate School of Science, The University of Tokyo , 7-3-1, Hongo , Tokyo 113-0033 , Japan
| | - Takashi Higuchi
- Department of Chemistry , Graduate School of Science, The University of Tokyo , 7-3-1, Hongo , Tokyo 113-0033 , Japan
| | - Hiroaki Suga
- Department of Chemistry , Graduate School of Science, The University of Tokyo , 7-3-1, Hongo , Tokyo 113-0033 , Japan
| |
Collapse
|
98
|
Sakai-Kato K, Nanjo K, Goda Y. Rapid Analysis of Cyclic Peptide Cyclosporine A by HPLC Using a Column Packed with Nonporous Particles. Chem Pharm Bull (Tokyo) 2018; 66:805-809. [PMID: 30068800 DOI: 10.1248/cpb.c18-00279] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We developed a rapid and efficient analytical technique for cyclosporine A using HPLC on a column packed with 2-µm nonporous octadecylsilyl silica particles. Under optimized conditions, cyclosporine A was separated with high resolution from other cyclic peptides within 3 min, because the mass transfer resistance in the stationary phase was reduced by the use of the small, nonporous particles. Although the plate number increased greatly with the increase in the column temperature, the retention times were not affected. This behavior is different from other cyclic peptides or linear peptides. Based on its physicochemical characteristics, cyclosporine A is a poor hydrogen bond donor, and has a small topological polar surface area, low rotatable bond count, and high log P value. These results show that cyclosporine A is structurally rigid and undergoes poor water solvation even at high temperature. In the context of the rapid development of cyclic peptides with similar physicochemical characteristics to cyclosporine A, our developed method is useful for the development of cyclic peptide therapeutics.
Collapse
|
99
|
Jiang Y, Long H, Zhu Y, Zeng Y. Macrocyclic peptides as regulators of protein-protein interactions. CHINESE CHEM LETT 2018. [DOI: 10.1016/j.cclet.2018.05.028] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
100
|
Masuda Y, Tanaka R, Ganesan A, Doi T. Systematic Analysis of the Relationship among 3D Structure, Bioactivity, and Membrane Permeability of PF1171F, a Cyclic Hexapeptide with Paralyzing Effects on Silkworms. J Org Chem 2018; 82:11447-11463. [PMID: 28981274 DOI: 10.1021/acs.joc.7b01975] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
PF1171 hexapeptides, a family of cyclic hexapeptides produced by fungi, exhibit paralyzing effects on the larvae of silkworms via oral administration. To elucidate the structural features of PF1171 hexapeptides that are crucial for bioactivity, the relationship among 3D structure, bioactivity, and membrane permeability of PF1171F (the peptide with the highest bioavailability) was systematically analyzed through the synthesis of 22 analogues. The PF1171F analogues were prepared by the solid-phase synthesis of a linear precursor and subsequent solution-phase macrolactamization. Analysis by NMR spectroscopy and molecular modeling indicated that the major 3D conformations of PF1171F in various solvents resemble its X-ray crystal structure. The analogues with this conformation tend to exhibit potent paralysis against silkworms, indicating the significance of the conformation in the paralysis. The biological activity was dependent on the mode of administration, varying between hemolymph injection and oral administration. Parallel artificial membrane permeability assay (PAMPA) of the analogues revealed a correlation between membrane permeabilities and paralytic activity by hemolymph injection, indicating that the target molecule of PF1171F is present inside the cell membrane.
Collapse
Affiliation(s)
- Yuichi Masuda
- Graduate School of Bioresources, Mie University , 1577 Kurimamachiya-cho, Tsu 514-8507, Japan.,Graduate School of Pharmaceutical Sciences, Tohoku University , 6-3 Aza-Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | - Ren Tanaka
- Graduate School of Pharmaceutical Sciences, Tohoku University , 6-3 Aza-Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | - A Ganesan
- School of Pharmacy, University of East Anglia , Norwich Research Park, Norwich NR4 7TJ, United Kingdom
| | - Takayuki Doi
- Graduate School of Pharmaceutical Sciences, Tohoku University , 6-3 Aza-Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| |
Collapse
|