51
|
Getting Ready for the Dance: FANCJ Irons Out DNA Wrinkles. Genes (Basel) 2016; 7:genes7070031. [PMID: 27376332 PMCID: PMC4962001 DOI: 10.3390/genes7070031] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 06/13/2016] [Accepted: 06/27/2016] [Indexed: 12/21/2022] Open
Abstract
Mounting evidence indicates that alternate DNA structures, which deviate from normal double helical DNA, form in vivo and influence cellular processes such as replication and transcription. However, our understanding of how the cellular machinery deals with unusual DNA structures such as G-quadruplexes (G4), triplexes, or hairpins is only beginning to emerge. New advances in the field implicate a direct role of the Fanconi Anemia Group J (FANCJ) helicase, which is linked to a hereditary chromosomal instability disorder and important for cancer suppression, in replication past unusual DNA obstacles. This work sets the stage for significant progress in dissecting the molecular mechanisms whereby replication perturbation by abnormal DNA structures leads to genomic instability. In this review, we focus on FANCJ and its role to enable efficient DNA replication when the fork encounters vastly abundant naturally occurring DNA obstacles, which may have implications for targeting rapidly dividing cancer cells.
Collapse
|
52
|
Bretscher HS, Fox DT. Proliferation of Double-Strand Break-Resistant Polyploid Cells Requires Drosophila FANCD2. Dev Cell 2016; 37:444-57. [PMID: 27270041 PMCID: PMC4901310 DOI: 10.1016/j.devcel.2016.05.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 02/22/2016] [Accepted: 05/02/2016] [Indexed: 12/17/2022]
Abstract
Conserved DNA-damage responses (DDRs) sense genome damage and prevent mitosis of broken chromosomes. How cells lacking DDRs cope with broken chromosomes during mitosis is poorly understood. DDRs are frequently inactivated in cells with extra genomes (polyploidy), suggesting that study of polyploidy can reveal how cells with impaired DDRs/genome damage continue dividing. Here, we show that continued division and normal organ development occurs in polyploid, DDR-impaired Drosophila papillar cells. As papillar cells become polyploid, they naturally accumulate broken acentric chromosomes but do not apoptose/arrest the cell cycle. To survive mitosis with acentric chromosomes, papillar cells require Fanconi anemia proteins FANCD2 and FANCI, as well as Blm helicase, but not canonical DDR signaling. FANCD2 acts independently of previous S phases to promote alignment and segregation of acentric DNA produced by double-strand breaks, thus avoiding micronuclei and organ malformation. Because polyploidy and impaired DDRs can promote cancer, our findings provide insight into disease-relevant DNA-damage tolerance mechanisms.
Collapse
Affiliation(s)
- Heidi S Bretscher
- Department of Pharmacology & Cancer Biology, Duke University School of Medicine, DUMC Box 3813, Durham, NC 27710, USA
| | - Donald T Fox
- Department of Pharmacology & Cancer Biology, Duke University School of Medicine, DUMC Box 3813, Durham, NC 27710, USA.
| |
Collapse
|
53
|
Barthelemy J, Hanenberg H, Leffak M. FANCJ is essential to maintain microsatellite structure genome-wide during replication stress. Nucleic Acids Res 2016; 44:6803-16. [PMID: 27179029 PMCID: PMC5001596 DOI: 10.1093/nar/gkw433] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2015] [Accepted: 05/06/2016] [Indexed: 12/15/2022] Open
Abstract
Microsatellite DNAs that form non-B structures are implicated in replication fork stalling, DNA double strand breaks (DSBs) and human disease. Fanconi anemia (FA) is an inherited disorder in which mutations in at least nineteen genes are responsible for the phenotypes of genome instability and cancer predisposition. FA pathway proteins are active in the resolution of non-B DNA structures including interstrand crosslinks, G quadruplexes and DNA triplexes. In FANCJ helicase depleted cells, we show that hydroxyurea or aphidicolin treatment leads to loss of microsatellite polymerase chain reaction signals and to chromosome recombination at an ectopic hairpin forming CTG/CAG repeat in the HeLa genome. Moreover, diverse endogenous microsatellite signals were also lost upon replication stress after FANCJ depletion, and in FANCJ null patient cells. The phenotype of microsatellite signal instability is specific for FANCJ apart from the intact FA pathway, and is consistent with DSBs at microsatellites genome-wide in FANCJ depleted cells following replication stress.
Collapse
Affiliation(s)
- Joanna Barthelemy
- Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine, Wright State University, Dayton, OH 45435, USA
| | - Helmut Hanenberg
- Department of Pediatrics III, University Children's Hospital Essen, University of Duisburg-Essen, 45122 Essen, Germany Department of Otorhinolaryngology & Head/Neck Surgery, Heinrich Heine University, 40225 Duesseldorf, Germany
| | - Michael Leffak
- Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine, Wright State University, Dayton, OH 45435, USA
| |
Collapse
|
54
|
Ceccaldi R, Sarangi P, D'Andrea AD. The Fanconi anaemia pathway: new players and new functions. Nat Rev Mol Cell Biol 2016; 17:337-49. [PMID: 27145721 DOI: 10.1038/nrm.2016.48] [Citation(s) in RCA: 496] [Impact Index Per Article: 62.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The Fanconi anaemia pathway repairs DNA interstrand crosslinks (ICLs) in the genome. Our understanding of this complex pathway is still evolving, as new components continue to be identified and new biochemical systems are used to elucidate the molecular steps of repair. The Fanconi anaemia pathway uses components of other known DNA repair processes to achieve proper repair of ICLs. Moreover, Fanconi anaemia proteins have functions in genome maintenance beyond their canonical roles of repairing ICLs. Such functions include the stabilization of replication forks and the regulation of cytokinesis. Thus, Fanconi anaemia proteins are emerging as master regulators of genomic integrity that coordinate several repair processes. Here, we summarize our current understanding of the functions of the Fanconi anaemia pathway in ICL repair, together with an overview of its connections with other repair pathways and its emerging roles in genome maintenance.
Collapse
Affiliation(s)
- Raphael Ceccaldi
- Department of Radiation Oncology and Center for DNA Damage and Repair, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts 02215, USA
| | - Prabha Sarangi
- Department of Radiation Oncology and Center for DNA Damage and Repair, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts 02215, USA
| | - Alan D D'Andrea
- Department of Radiation Oncology and Center for DNA Damage and Repair, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts 02215, USA
| |
Collapse
|
55
|
Paradoxical roles of cyclin D1 in DNA stability. DNA Repair (Amst) 2016; 42:56-62. [PMID: 27155130 DOI: 10.1016/j.dnarep.2016.04.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 04/18/2016] [Accepted: 04/27/2016] [Indexed: 12/20/2022]
Abstract
Maintenance of DNA integrity is vital for all of the living organisms. Consequence of DNA damaging ranges from, introducing harmless synonymous mutations, to causing disease-associated mutations, genome instability, and cell death. A cell cycle protein cyclin D1 is an established cancer-driving protein. However, contribution of cyclin D1 to cancer formation and cancer survival is not entirely known. In cancer tissues, overexpression of cyclin D1 is associated with both cancer genome instability, and resistance to DNA-damaging cancer drugs. Emerging evidence indicated that cyclin D1 may play novel direct roles in regulating DNA repair. Here we provide an insight how cyclin D1 expression may contribute to DNA repair and chromosome instability, and how these functions may facilitate cancer formation, and drug resistance.
Collapse
|
56
|
Fu C, Begum K, Overbeek PA. Primary Ovarian Insufficiency Induced by Fanconi Anemia E Mutation in a Mouse Model. PLoS One 2016; 11:e0144285. [PMID: 26939056 PMCID: PMC4777492 DOI: 10.1371/journal.pone.0144285] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2015] [Accepted: 01/18/2016] [Indexed: 01/18/2023] Open
Abstract
In most cases of primary ovarian insufficiency (POI), the cause of the depletion of ovarian follicles is unknown. Fanconi anemia (FA) proteins are known to play important roles in follicular development. Using random insertional mutagenesis with a lentiviral transgene, we identified a family with reduced fertility in the homozygous transgenic mice. We identified the integration site and found that the lentivirus had integrated into intron 8 of the Fanconi E gene (Fance). By RT-PCR and in situ hybridization, we found that Fance transcript levels were significantly reduced. The Fance homozygous mutant mice were assayed for changes in ovarian development, follicle numbers and estrous cycle. Ovarian dysplasias and a severe lack of follicles were seen in the mutant mice. In addition, the estrous cycle was disrupted in adult females. Our results suggest that POI has been induced by the Fance mutation in this new mouse model.
Collapse
Affiliation(s)
- Chun Fu
- Department of Obstetrics and Gynecology, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, United States of America
- * E-mail:
| | - Khurshida Begum
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Paul A. Overbeek
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, United States of America
| |
Collapse
|
57
|
Cantor SB, Nayak S. FANCJ at the FORK. Mutat Res 2016; 788:7-11. [PMID: 26926912 DOI: 10.1016/j.mrfmmm.2016.02.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2015] [Revised: 01/28/2016] [Accepted: 02/10/2016] [Indexed: 12/19/2022]
Affiliation(s)
- Sharon B Cantor
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Medical School, UMASS Memorial Cancer Center, Worcester, Massachusetts 01605, USA.
| | - Sumeet Nayak
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Medical School, UMASS Memorial Cancer Center, Worcester, Massachusetts 01605, USA
| |
Collapse
|
58
|
Federico MB, Vallerga MB, Radl A, Paviolo NS, Bocco JL, Di Giorgio M, Soria G, Gottifredi V. Chromosomal Integrity after UV Irradiation Requires FANCD2-Mediated Repair of Double Strand Breaks. PLoS Genet 2016; 12:e1005792. [PMID: 26765540 PMCID: PMC4712966 DOI: 10.1371/journal.pgen.1005792] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 12/17/2015] [Indexed: 12/29/2022] Open
Abstract
Fanconi Anemia (FA) is a rare autosomal recessive disorder characterized by hypersensitivity to inter-strand crosslinks (ICLs). FANCD2, a central factor of the FA pathway, is essential for the repair of double strand breaks (DSBs) generated during fork collapse at ICLs. While lesions different from ICLs can also trigger fork collapse, the contribution of FANCD2 to the resolution of replication-coupled DSBs generated independently from ICLs is unknown. Intriguingly, FANCD2 is readily activated after UV irradiation, a DNA-damaging agent that generates predominantly intra-strand crosslinks but not ICLs. Hence, UV irradiation is an ideal tool to explore the contribution of FANCD2 to the DNA damage response triggered by DNA lesions other than ICL repair. Here we show that, in contrast to ICL-causing agents, UV radiation compromises cell survival independently from FANCD2. In agreement, FANCD2 depletion does not increase the amount of DSBs generated during the replication of UV-damaged DNA and is dispensable for UV-induced checkpoint activation. Remarkably however, FANCD2 protects UV-dependent, replication-coupled DSBs from aberrant processing by non-homologous end joining, preventing the accumulation of micronuclei and chromatid aberrations including non-homologous chromatid exchanges. Hence, while dispensable for cell survival, FANCD2 selectively safeguards chromosomal stability after UV-triggered replication stress.
Collapse
Affiliation(s)
- María Belén Federico
- Cell Cycle and Genomic Stability Laboratory, Fundación Instituto Leloir, IIBBA/ CONICET, Buenos Aires, Argentina
| | - María Belén Vallerga
- Cell Cycle and Genomic Stability Laboratory, Fundación Instituto Leloir, IIBBA/ CONICET, Buenos Aires, Argentina
| | - Analía Radl
- Laboratorio de Dosimetría Biológica, Autoridad Regulatoria Nuclear, Buenos Aires, Argentina
| | - Natalia Soledad Paviolo
- Cell Cycle and Genomic Stability Laboratory, Fundación Instituto Leloir, IIBBA/ CONICET, Buenos Aires, Argentina
| | - José Luis Bocco
- Centro de Investigaciones en Bioquímica Clínica e Inmunología/ CONICET, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Marina Di Giorgio
- Laboratorio de Dosimetría Biológica, Autoridad Regulatoria Nuclear, Buenos Aires, Argentina
| | - Gastón Soria
- Centro de Investigaciones en Bioquímica Clínica e Inmunología/ CONICET, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Vanesa Gottifredi
- Cell Cycle and Genomic Stability Laboratory, Fundación Instituto Leloir, IIBBA/ CONICET, Buenos Aires, Argentina
| |
Collapse
|
59
|
Rad51 recombinase prevents Mre11 nuclease-dependent degradation and excessive PrimPol-mediated elongation of nascent DNA after UV irradiation. Proc Natl Acad Sci U S A 2015; 112:E6624-33. [PMID: 26627254 DOI: 10.1073/pnas.1508543112] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
After UV irradiation, DNA polymerases specialized in translesion DNA synthesis (TLS) aid DNA replication. However, it is unclear whether other mechanisms also facilitate the elongation of UV-damaged DNA. We wondered if Rad51 recombinase (Rad51), a factor that escorts replication forks, aids replication across UV lesions. We found that depletion of Rad51 impairs S-phase progression and increases cell death after UV irradiation. Interestingly, Rad51 and the TLS polymerase polη modulate the elongation of nascent DNA in different ways, suggesting that DNA elongation after UV irradiation does not exclusively rely on TLS events. In particular, Rad51 protects the DNA synthesized immediately before UV irradiation from degradation and avoids excessive elongation of nascent DNA after UV irradiation. In Rad51-depleted samples, the degradation of DNA was limited to the first minutes after UV irradiation and required the exonuclease activity of the double strand break repair nuclease (Mre11). The persistent dysregulation of nascent DNA elongation after Rad51 knockdown required Mre11, but not its exonuclease activity, and PrimPol, a DNA polymerase with primase activity. By showing a crucial contribution of Rad51 to the synthesis of nascent DNA, our results reveal an unanticipated complexity in the regulation of DNA elongation across UV-damaged templates.
Collapse
|
60
|
Zhang P, Sridharan D, Lambert MW. Nuclear α Spectrin Differentially Affects Monoubiquitinated Versus Non-Ubiquitinated FANCD2 Function After DNA Interstrand Cross-Link Damage. J Cell Biochem 2015; 117:671-83. [PMID: 26297932 DOI: 10.1002/jcb.25352] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 08/19/2015] [Indexed: 01/21/2023]
Abstract
Nonerythroid α spectrin (αIISp) and the Fanconi anemia (FA) protein, FANCD2, play critical roles in DNA interstrand cross-link (ICL) repair during S phase. Both are needed for recruitment of repair proteins, such as XPF, to sites of damage and repair of ICLs. However, the relationship between them in ICL repair and whether αIISp is involved in FANCD2's function in repair is unclear. The present studies show that, after ICL formation, FANCD2 disassociates from αIISp and localizes, before αIISp, at sites of damage in nuclear foci. αIISp and FANCD2 foci do not co-localize, in contrast to our previous finding that αIISp and the ICL repair protein, XPF, co-localize and follow a similar time course for formation. Knock-down of αIISp has no effect on monoubiquitination of FANCD2 (FANCD2-Ub) or its localization to chromatin or foci, though it leads to decreased ICL repair. Studies using cells from FA patients, defective in ICL repair and αIISp, have elucidated an important role for αIISp in the function of non-Ub FANCD2. In FA complementation group A (FA-A) cells, in which FANCD2 is not monoubiquitinated and does not form damage-induced foci, we demonstrate that restoration of αIISp levels to normal, by knocking down the protease μ-calpain, leads to formation of non-Ub FANCD2 foci after ICL damage. Since restoration of αIISp levels in FA-A cells restores DNA repair and cell survival, we propose that αIISp is critical for recruitment of non-Ub FANCD2 to sites of damage, which has an important role in the repair response and ICL repair.
Collapse
Affiliation(s)
- Pan Zhang
- Department of Pathology and Laboratory Medicine, Rutgers New Jersey Medical School, 185 South Orange Avenue, Newark, New Jersey, 07103, USA
| | - Deepa Sridharan
- Department of Pathology and Laboratory Medicine, Rutgers New Jersey Medical School, 185 South Orange Avenue, Newark, New Jersey, 07103, USA
| | - Muriel W Lambert
- Department of Pathology and Laboratory Medicine, Rutgers New Jersey Medical School, 185 South Orange Avenue, Newark, New Jersey, 07103, USA
| |
Collapse
|