51
|
Roll L, Faissner A. Tenascins in CNS lesions. Semin Cell Dev Biol 2019; 89:118-124. [DOI: 10.1016/j.semcdb.2018.09.012] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 09/03/2018] [Accepted: 09/27/2018] [Indexed: 02/06/2023]
|
52
|
Tucker RP, Degen M. The Expression and Possible Functions of Tenascin-W During Development and Disease. Front Cell Dev Biol 2019; 7:53. [PMID: 31032255 PMCID: PMC6473177 DOI: 10.3389/fcell.2019.00053] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 03/20/2019] [Indexed: 01/18/2023] Open
Abstract
Tenascins are a family of multifunctional glycoproteins found in the extracellular matrix of chordates. Two of the tenascins, tenascin-C and tenascin-W, form hexabrachions. In this review, we describe the discovery and domain architecture of tenascin-W, its evolution and patterns of expression during embryogenesis and in tumors, and its effects on cells in culture. In avian and mammalian embryos tenascin-W is primarily expressed at sites of osteogenesis, and in the adult tenascin-W is abundant in certain stem cell niches. In primary cultures of osteoblasts tenascin-W promotes cell migration, the formation of mineralized foci and increases alkaline phosphatase activity. Tenascin-W is also prominent in many solid tumors, yet it is missing from the extracellular matrix of most adult tissues. This makes it a potential candidate for use as a marker of tumor stroma and a target for anti-cancer therapies.
Collapse
Affiliation(s)
- Richard P Tucker
- Department of Cell Biology and Human Anatomy, University of California, Davis, Davis, CA, United States
| | - Martin Degen
- Laboratory for Oral Molecular Biology, Department of Orthodontics and Dentofacial Orthopedics, University of Bern, Bern, Switzerland
| |
Collapse
|
53
|
Bardell D, Milner PI, Goljanek-Whysall K, Peffers MJ. Differences in plasma and peritoneal fluid proteomes identifies potential biomarkers associated with survival following strangulating small intestinal disease. Equine Vet J 2019; 51:727-732. [PMID: 30854696 DOI: 10.1111/evj.13094] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 03/02/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND Strangulating small intestinal disease (SSID) carries a poor prognosis for survival in comparison to other types of colic, particularly if resection is required. Identification of markers which aid early diagnosis may prevent the need for resection, assist with more accurate prognostication and/or support the decision on whether surgical intervention is likely to be successful, would be of significant welfare benefit. OBJECTIVES To apply an unbiased methodology to investigate the plasma and peritoneal fluid proteomes in horses diagnosed with SSID requiring resection, to identify novel biomarkers which may be of diagnostic or prognostic value. STUDY DESIGN Prospective clinical study. METHODS Plasma and peritoneal fluid from horses presented with acute abdominal signs consistent with SSID was collected at initial clinical examination. Samples from eight horses diagnosed with SSID at surgery in which resection of affected bowel was performed and four control horses subjected to euthanasia for orthopaedic conditions were submitted for liquid chromatography tandem mass spectrometry. Protein expression profiles were determined using label-free quantification. Data were analysed using analysis of variance to identify differentially expressed proteins between control and all SSID horses and SSID horses which survived to hospital discharge and those which did not. Significance was assumed at P≤0.05. RESULTS A greater number of proteins were identified in peritoneal fluid than plasma of both SSID cases and controls, with 123 peritoneal fluid and 13 plasma proteins significantly differentially expressed (DE) between cases and controls (P<0.05, ≥2 fold change). Twelve peritoneal fluid proteins (P<0.036) and four plasma proteins (P<0.05) were significantly DE between SSID horses which survived and those which did not. MAIN LIMITATIONS A low number of samples were analysed, there was variation in duration and severity of SSID and only short-term outcome was considered. CONCLUSIONS Changes in peritoneal fluid proteome may provide a sensitive indicator of small intestinal strangulation and provide biomarkers relevant to prognosis.
Collapse
Affiliation(s)
- D Bardell
- Institute of Ageing and Chronic Disease, Department of Musculoskeletal Biology, University of Liverpool, Liverpool, UK.,Institute of Veterinary Science, University of Liverpool, Neston, Wirral, UK
| | - P I Milner
- Institute of Ageing and Chronic Disease, Department of Musculoskeletal Biology, University of Liverpool, Liverpool, UK.,Institute of Veterinary Science, University of Liverpool, Neston, Wirral, UK
| | - K Goljanek-Whysall
- Institute of Ageing and Chronic Disease, Department of Musculoskeletal Biology, University of Liverpool, Liverpool, UK
| | - M J Peffers
- Institute of Ageing and Chronic Disease, Department of Musculoskeletal Biology, University of Liverpool, Liverpool, UK
| |
Collapse
|
54
|
Kajitani N, Yamada T, Kawakami K, Matsumoto KI. TNX deficiency results in bone loss due to an increase in multinucleated osteoclasts. Biochem Biophys Res Commun 2019; 512:659-664. [PMID: 30922562 DOI: 10.1016/j.bbrc.2019.03.134] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 03/20/2019] [Indexed: 12/11/2022]
Abstract
Tenascin-X (TNX), a glycoprotein of the extracellular matrix (ECM), is expressed in various tissues and plays an important role in ECM architecture. The TNXB gene encoding TNX is known as the gene responsible for classic-like Ehlers-Danlos syndrome (clEDS). To date, the role of TNX in dermal, muscular and obstetric features has been reported, but its role in bone homeostasis remains to be clarified. In this study, we found significant bone loss and upregulation of osteoclast marker gene expression in TNX-deficient mice. Further, TNX deficiency in the bone marrow promoted multinucleation of osteoclasts and resulted in increased bone resorption activity. These results indicate that multinucleated osteoclasts are the cause of bone loss in a TNX-deficient environment. Our findings provide new insight into the mechanism of osteoclast differentiation mediated by TNX and the pathology of clEDS.
Collapse
Affiliation(s)
- Naoyo Kajitani
- Department of Experimental Animals, Interdisciplinary Center for Science Research, Organization for Research and Academic Information, Shimane University, 89-1 Enya-cho, Izumo, Shimane, 693-8501, Japan; Department of Biosignaling and Radioisotope Experiment, Interdisciplinary Center for Science Research, Organization for Research and Academic Information, Shimane University, 89-1 Enya-cho, Izumo, Shimane, 693-8501, Japan.
| | - Takaya Yamada
- Department of Experimental Animals, Interdisciplinary Center for Science Research, Organization for Research and Academic Information, Shimane University, 89-1 Enya-cho, Izumo, Shimane, 693-8501, Japan.
| | - Kohei Kawakami
- Department of Experimental Animals, Interdisciplinary Center for Science Research, Organization for Research and Academic Information, Shimane University, 89-1 Enya-cho, Izumo, Shimane, 693-8501, Japan.
| | - Ken-Ichi Matsumoto
- Department of Biosignaling and Radioisotope Experiment, Interdisciplinary Center for Science Research, Organization for Research and Academic Information, Shimane University, 89-1 Enya-cho, Izumo, Shimane, 693-8501, Japan.
| |
Collapse
|
55
|
Aktar R, Peiris M, Fikree A, Eaton S, Kritas S, Kentish SJ, Araujo EJA, Bacarin C, Page AJ, Voermans NC, Aziz Q, Blackshaw LA. A novel role for the extracellular matrix glycoprotein-Tenascin-X in gastric function. J Physiol 2019; 597:1503-1515. [PMID: 30605228 PMCID: PMC6418764 DOI: 10.1113/jp277195] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 12/19/2018] [Indexed: 01/27/2023] Open
Abstract
KEY POINTS Tenascin X (TNX) functions in the extracellular matrix of skin and joints where it maintains correct intercellular connections and tissue architecture TNX is associated exclusively with vagal-afferent endings and some myenteric neurones in mouse and human stomach, respectively. TNX-deficient mice have accelerated gastric emptying and hypersensitivity of gastric vagal mechanoreceptors that can be normalized by an inhibitor of vagal-afferent sensitivity. Cultured nodose ganglion neurones showed no changes in response to capsaicin, cholecystokinin and potassium chloride in TNX-deficient mice. TNX-deficient patients have upper gastric dysfunction consistent with those in a mouse model. Our translational studies suggest that abnormal gastric sensory function may explain the upper gut symptoms present in TNX deficient patients, thus making it important to study gastric physiology. TNX deficiency should be evaluated routinely in patients with connective tissue abnormalities, which will enable a better understanding of its role and allow targeted treatment. For example, inhibitors of vagal afferents-baclofen could be beneficial in patients. These hypotheses need confirmation via targeted clinical trials. ABSTRACT Tenascin-X (TNX) is a glycoprotein that regulates tissue structure via anti-adhesive interactions with collagen in the extracellular matrix. TNX deficiency causes a phenotype similar to hypermobility Ehlers-Danlos syndrome involving joint hypermobility, skin hyperelasticity, pain and gastrointestinal dysfunction. Previously, we have shown that TNX is required for neural control of the bowel by a specific subtype of mainly cholinergic enteric neurones and regulates sprouting and sensitivity of nociceptive sensory endings in mouse colon. These findings correlate with symptoms shown by TNX-deficient patients and mice. We aimed to identify whether TNX is similarly present in neural structures found in mouse and human gastric tissue. We then determined whether TNX has a functional role, specifically in gastric motor and sensory function and nodose ganglia neurones. We report that TNX was present in calretinin-immunoreactive extrinsic nerve endings in mouse and human stomach. TNX deficient mice had accelerated gastric emptying and markedly increased vagal afferent responses to gastric distension that could be rescued with GABAB receptor agonist. There were no changes in nodose ganglia excitability in TNX deficient mice, suggesting that vagal afferent responses are probably the result of altered peripheral mechanosensitivity. In TNXB-deficient patients, significantly greater symptoms of reflux, indigestion and abdominal pain were reported. In the present study, we report the first role for TNX in gastric function. Further studies are required in TNX deficient patients to determine whether symptoms can be relieved using GABAB agonists.
Collapse
Affiliation(s)
- Rubina Aktar
- Blizard InstituteQueen Mary University of LondonLondonUK
| | - Madusha Peiris
- Blizard InstituteQueen Mary University of LondonLondonUK
| | - Asma Fikree
- Blizard InstituteQueen Mary University of LondonLondonUK
| | - Simon Eaton
- Institute of Child HealthUniversity College LondonLondonUK
| | - Stamatiki Kritas
- South Australian Health and Medical Research InstituteUniversity of AdelaideAustralia
| | - Stephen J. Kentish
- South Australian Health and Medical Research InstituteUniversity of AdelaideAustralia
| | - Eduardo J. A. Araujo
- Blizard InstituteQueen Mary University of LondonLondonUK
- Department of HistologyCentre for Biological SciencesState University of LondrinaBrazil
| | - Cristiano Bacarin
- Department of HistologyCentre for Biological SciencesState University of LondrinaBrazil
| | - Amanda J. Page
- South Australian Health and Medical Research InstituteUniversity of AdelaideAustralia
| | - Nicol C. Voermans
- Department of NeurologyRadboud University Medical CentreNijmegenNetherlands
| | - Qasim Aziz
- Blizard InstituteQueen Mary University of LondonLondonUK
| | | |
Collapse
|
56
|
Yan SP, Chu DX, Qiu HF, Xie Y, Wang CF, Zhang JY, Li WC, Guo RX. LncRNA LINC01305 silencing inhibits cell epithelial-mesenchymal transition in cervical cancer by inhibiting TNXB-mediated PI3K/Akt signalling pathway. J Cell Mol Med 2019; 23:2656-2666. [PMID: 30697971 PMCID: PMC6433725 DOI: 10.1111/jcmm.14161] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Revised: 12/14/2018] [Accepted: 12/23/2018] [Indexed: 12/13/2022] Open
Abstract
Cervical cancer (CC) remains one of the leading malignancies afflicting females worldwide, with its aetiology associated with long‐term papillomavirus infection. Recent studies have shifted their focus and research attention to the relationship between long non‐coding RNAs (lncRNAs) and CC therapeutic. Thus, the aim of the current study was to investigate the underlying mechanism of lncRNA LINC01305 on the cell invasion, migration and epithelial‐mesenchymal transition (EMT) of CC cells via modulation of the PI3K/Akt signalling pathway by targeting tenascin‐X B (TNXB). The expressions of LINC01305, TNXB, MMP2, MMP9, E‐cadherin, vimentin, PI3K, Akt, p‐PI3K, p‐Akt and TNXB were detected in this study. After which, the cell invasion and migration abilities of the CC cells were determined respectively. Bioinformatics and the application of a dual luciferase reporter gene assay provided verification indicating that TNXB is the target gene of lncRNA LINC01305. Reverse transcription quantitative polymerase chain reaction (RT‐qPCR) and western blot analysis methods revealed that the expressions of MMP2, MMP9, vimentin, PI3K, Akt, p‐PI3K and p‐Akt were decreased following the down‐regulation of LncRNA LINC01305 or overexpression of TNXB. LncRNA LINC01305 silencing or TNXB overexpression was noted to decrease the migration and invasion of SiHa cells. Taken together, the key findings of the current study present evidence suggesting that lncRNA LINC01305 silencing suppresses EMT, invasion and migration via repressing the PI3K/Akt signalling pathway by means of targeting TNXB in CC cells, which ultimately provides novel insight and identification of potential therapeutic targets for CC.
Collapse
Affiliation(s)
- Shu-Ping Yan
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, P.R. China.,Department of Pathology, School of Basic Medicine, Zhengzhou University, Zhengzhou, Henan Province, P.R. China.,Henan Key Laboratory for Tumor Pathology, Zhengzhou, Henan Province, P.R. China
| | - Dan-Xia Chu
- Department of Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, P.R. China
| | - Hai-Feng Qiu
- Department of Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, P.R. China
| | - Ya Xie
- Department of Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, P.R. China
| | - Chun-Fang Wang
- Department of Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, P.R. China
| | - Jian-Ying Zhang
- Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan Province, P.R. China
| | - Wen-Cai Li
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, P.R. China.,Department of Pathology, School of Basic Medicine, Zhengzhou University, Zhengzhou, Henan Province, P.R. China.,Henan Key Laboratory for Tumor Pathology, Zhengzhou, Henan Province, P.R. China
| | - Rui-Xia Guo
- Department of Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, P.R. China
| |
Collapse
|
57
|
Foulon V, Boudry P, Artigaud S, Guérard F, Hellio C. In Silico Analysis of Pacific Oyster ( Crassostrea gigas) Transcriptome over Developmental Stages Reveals Candidate Genes for Larval Settlement. Int J Mol Sci 2019; 20:E197. [PMID: 30625986 PMCID: PMC6337334 DOI: 10.3390/ijms20010197] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 12/21/2018] [Accepted: 01/04/2019] [Indexed: 02/07/2023] Open
Abstract
Following their planktonic phase, the larvae of benthic marine organisms must locate a suitable habitat to settle and metamorphose. For oysters, larval adhesion occurs at the pediveliger stage with the secretion of a proteinaceous bioadhesive produced by the foot, a specialized and ephemeral organ. Oyster bioadhesive is highly resistant to proteomic extraction and is only produced in very low quantities, which explains why it has been very little examined in larvae to date. In silico analysis of nucleic acid databases could help to identify genes of interest implicated in settlement. In this work, the publicly available transcriptome of Pacific oyster Crassostrea gigas over its developmental stages was mined to select genes highly expressed at the pediveliger stage. Our analysis revealed 59 sequences potentially implicated in adhesion of C. gigas larvae. Some related proteins contain conserved domains already described in other bioadhesives. We propose a hypothetic composition of C. gigas bioadhesive in which the protein constituent is probably composed of collagen and the von Willebrand Factor domain could play a role in adhesive cohesion. Genes coding for enzymes implicated in DOPA chemistry were also detected, indicating that this modification is also potentially present in the adhesive of pediveliger larvae.
Collapse
Affiliation(s)
- Valentin Foulon
- Laboratoire des Sciences de l'Environnement Marin (LEMAR), UMR 6539 CNRS/UBO/IRD/Ifremer, Institut Universitaire Européen de la Mer, Technopole Brest-Iroise, Rue Dumont d'Urville, 29280 Plouzané, France.
| | - Pierre Boudry
- Ifremer, Laboratoire des Sciences de l'Environnement Marin (LEMAR), UMR 6539 CNRS/UBO/IRD/Ifremer, Centre Bretagne, 29280 Plouzané, France.
| | - Sébastien Artigaud
- Laboratoire des Sciences de l'Environnement Marin (LEMAR), UMR 6539 CNRS/UBO/IRD/Ifremer, Institut Universitaire Européen de la Mer, Technopole Brest-Iroise, Rue Dumont d'Urville, 29280 Plouzané, France.
| | - Fabienne Guérard
- Laboratoire des Sciences de l'Environnement Marin (LEMAR), UMR 6539 CNRS/UBO/IRD/Ifremer, Institut Universitaire Européen de la Mer, Technopole Brest-Iroise, Rue Dumont d'Urville, 29280 Plouzané, France.
| | - Claire Hellio
- Laboratoire des Sciences de l'Environnement Marin (LEMAR), UMR 6539 CNRS/UBO/IRD/Ifremer, Institut Universitaire Européen de la Mer, Technopole Brest-Iroise, Rue Dumont d'Urville, 29280 Plouzané, France.
| |
Collapse
|
58
|
Xu P, Dai X, Wang D, Miao Y, Zhang X, Wang S, Teng L, Dong B, Bao Z, Wang S, Lyu Q, Liu W. The discovered chimeric protein plays the cohesive role to maintain scallop byssal root structural integrity. Sci Rep 2018; 8:17082. [PMID: 30459329 PMCID: PMC6244088 DOI: 10.1038/s41598-018-35265-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 10/31/2018] [Indexed: 01/06/2023] Open
Abstract
Adhesion is essential for many marine sessile organisms. Unraveling the compositions and assembly of marine bioadheisves is the fundamental to understand their physiological roles. Despite the remarkable diversity of animal bioadhesion, our understanding of this biological process remains limited to only a few animal lineages, leaving the majority of lineages remain enigmatic. Our previous study demonstrated that scallop byssus had distinct protein composition and unusual assembly mechanism apart from mussels. Here a novel protein (Sbp9) was discovered from the key part of the byssus (byssal root), which contains two Calcium Binding Domain (CBD) and 49 tandem Epidermal Growth Factor-Like (EGFL) domain repeats. Modular architecture of Sbp9 represents a novel chimeric gene family resulting from a gene fusion event through the acquisition of CBD2 domain by tenascin like (TNL) gene from Na+/Ca2+exchanger 1 (NCX1) gene. Finally, free thiols are present in Sbp9 and the results of a rescue assay indicated that Sbp9 likely plays the cohesive role for byssal root integrity. This study not only aids our understanding of byssus assembly but will also inspire biomimetic material design.
Collapse
Affiliation(s)
- Pingping Xu
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Xiaoting Dai
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Dandan Wang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Yan Miao
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Xiaokang Zhang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Shuoshuo Wang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Luyao Teng
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Bo Dong
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Zhenmin Bao
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China.,Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Shi Wang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Qianqian Lyu
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China. .,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.
| | - Weizhi Liu
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China. .,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.
| |
Collapse
|
59
|
Tangprasittipap A, Kaewprommal P, Sripichai O, Sathirapongsasuti N, Satirapod C, Shaw PJ, Piriyapongsa J, Hongeng S. Comparison of gene expression profiles between human erythroid cells derived from fetal liver and adult peripheral blood. PeerJ 2018; 6:e5527. [PMID: 30186694 PMCID: PMC6120446 DOI: 10.7717/peerj.5527] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 08/07/2018] [Indexed: 12/23/2022] Open
Abstract
Background A key event in human development is the establishment of erythropoietic progenitors in the bone marrow, which is accompanied by a fetal-to-adult switch in hemoglobin expression. Understanding of this event could lead to medical application, notably treatment of sickle cell disease and β-thalassemia. The changes in gene expression of erythropoietic progenitor cells as they migrate from the fetal liver and colonize the bone marrow are still rather poorly understood, as primary fetal liver (FL) tissues are difficult to obtain. Methods We obtained human FL tissue and adult peripheral blood (AB) samples from Thai subjects. Primary CD34+ cells were cultured in vitro in a fetal bovine serum-based culture medium. After 8 days of culture, erythroid cell populations were isolated by flow cytometry. Gene expression in the FL- and AB-derived cells was studied by Affymetrix microarray and reverse-transcription quantitative PCR. The microarray data were combined with that from a previous study of human FL and AB erythroid development, and meta-analysis was performed on the combined dataset. Results FL erythroid cells showed enhanced proliferation and elevated fetal hemoglobin relative to AB cells. A total of 1,391 fetal up-regulated and 329 adult up-regulated genes were identified from microarray data generated in this study. Five hundred ninety-nine fetal up-regulated and 284 adult up-regulated genes with reproducible patterns between this and a previous study were identified by meta-analysis of the combined dataset, which constitute a core set of genes differentially expressed between FL and AB erythroid cells. In addition to these core genes, 826 and 48 novel genes were identified only from data generated in this study to be FL up- and AB up-regulated, respectively. The in vivo relevance for some of these novel genes was demonstrated by pathway analysis, which showed novel genes functioning in pathways known to be important in proliferation and erythropoiesis, including the mitogen-activated protein kinase (MAPK) and the phosphatidyl inositol 3 kinase (PI3K)-Akt pathways. Discussion The genes with upregulated expression in FL cells, which include many novel genes identified from data generated in this study, suggest that cellular proliferation pathways are more active in the fetal stage. Erythroid progenitor cells may thus undergo a reprogramming during ontogenesis in which proliferation is modulated by changes in expression of key regulators, primarily MYC, and others including insulin-like growth factor 2 mRNA-binding protein 3 (IGF2BP3), neuropilin and tolloid-like 2 (NETO2), branched chain amino acid transaminase 1 (BCAT1), tenascin XB (TNXB) and proto-oncogene, AP-1 transcription factor subunit (JUND). This reprogramming may thus be necessary for acquisition of the adult identity and switching of hemoglobin expression.
Collapse
Affiliation(s)
| | - Pavita Kaewprommal
- Biostatistics and Bioinformatics Laboratory, Genome Technology Research Unit, National Center for Genetic Engineering and Biotechnology, Pathum Thani, Thailand
| | - Orapan Sripichai
- Thalassemia Research Center, Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, Thailand
| | | | | | - Philip J Shaw
- Protein-Ligand Engineering and Molecular Biology Laboratory, Medical Molecular Biology Research Unit, National Center for Genetic Engineering and Biotechnology, Pathum Thani, Thailand
| | - Jittima Piriyapongsa
- Biostatistics and Bioinformatics Laboratory, Genome Technology Research Unit, National Center for Genetic Engineering and Biotechnology, Pathum Thani, Thailand
| | - Suradej Hongeng
- Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| |
Collapse
|
60
|
Aktar R, Peiris M, Fikree A, Cibert-Goton V, Walmsley M, Tough IR, Watanabe P, Araujo EJA, Mohammed SD, Delalande JM, Bulmer DC, Scott SM, Cox HM, Voermans NC, Aziz Q, Blackshaw LA. The extracellular matrix glycoprotein tenascin-X regulates peripheral sensory and motor neurones. J Physiol 2018; 596:4237-4251. [PMID: 29917237 PMCID: PMC6117562 DOI: 10.1113/jp276300] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 06/11/2018] [Indexed: 12/15/2022] Open
Abstract
KEY POINTS Tenascin-X (TNX) is an extracellular matrix glycoprotein with anti-adhesive properties in skin and joints. Here we report the novel finding that TNX is expressed in human and mouse gut tissue where it is exclusive to specific subpopulations of neurones. Our studies with TNX-deficient mice show impaired defecation and neural control of distal colonic motility that can be rescued with a 5-HT4 receptor agonist. However, colonic secretion is unchanged. They are also susceptible to internal rectal intussusception. Colonic afferent sensitivity is increased in TNX-deficient mice. Correspondingly, there is increased density of and sensitivity of putative nociceptive fibres in TNX-deficient mucosa. A group of TNX-deficient patients report symptoms highly consistent with those in the mouse model. These findings suggest TNX plays entirely different roles in gut to non-visceral tissues - firstly a role in enteric motor neurones and secondly a role influencing nociceptive sensory neurones Studying further the mechanisms by which TNX influences neuronal function will lead to new targets for future treatment. ABSTRACT The extracellular matrix (ECM) is not only an integral structural molecule, but is also critical for a wide range of cellular functions. The glycoprotein tenascin-X (TNX) predominates in the ECM of tissues like skin and regulates tissue structure through anti-adhesive interactions with collagen. Monogenic TNX deficiency causes painful joint hypermobility and skin hyperelasticity, symptoms characteristic of hypermobility Ehlers Danlos syndrome (hEDS). hEDS patients also report consistently increased visceral pain and gastrointestinal (GI) dysfunction. We investigated whether there is a direct link between TNX deficiency and GI pain or motor dysfunction. We set out first to learn where TNX is expressed in human and mouse, then determine how GI function, specifically in the colon, is disordered in TNX-deficient mice and humans of either sex. In human and mouse tissue, TNX was predominantly associated with cholinergic colonic enteric neurones, which are involved in motor control. TNX was absent from extrinsic nociceptive peptidergic neurones. TNX-deficient mice had internal rectal prolapse and a loss of distal colonic contractility which could be rescued by prokinetic drug treatment. TNX-deficient patients reported increased sensory and motor GI symptoms including abdominal pain and constipation compared to controls. Despite absence of TNX from nociceptive colonic neurones, neuronal sprouting and hyper-responsiveness to colonic distension was observed in the TNX-deficient mice. We conclude that ECM molecules are not merely support structures but an integral part of the microenvironment particularly for specific populations of colonic motor neurones where TNX exerts functional influences.
Collapse
Affiliation(s)
- Rubina Aktar
- Blizard Institute, Queen Mary University of London, London, UK
| | - Madusha Peiris
- Blizard Institute, Queen Mary University of London, London, UK
| | - Asma Fikree
- Blizard Institute, Queen Mary University of London, London, UK
| | | | - Maxim Walmsley
- Blizard Institute, Queen Mary University of London, London, UK
| | - Iain R Tough
- Institute of Psychiatry, Psychology and Neuroscience, Kings College London, London, UK
| | - Paulo Watanabe
- Blizard Institute, Queen Mary University of London, London, UK.,Department of Histology, Centre for Biological Sciences, State University of Londrina, Brazil
| | - Eduardo J A Araujo
- Blizard Institute, Queen Mary University of London, London, UK.,Department of Histology, Centre for Biological Sciences, State University of Londrina, Brazil
| | | | | | - David C Bulmer
- Blizard Institute, Queen Mary University of London, London, UK
| | - S Mark Scott
- Blizard Institute, Queen Mary University of London, London, UK
| | - Helen M Cox
- Institute of Psychiatry, Psychology and Neuroscience, Kings College London, London, UK
| | - Nicol C Voermans
- Department of Neurology, Radboud University Medical Centre, Nijmegen, Netherlands
| | - Qasim Aziz
- Blizard Institute, Queen Mary University of London, London, UK
| | | |
Collapse
|
61
|
Imanaka-Yoshida K, Matsumoto KI. Multiple Roles of Tenascins in Homeostasis and Pathophysiology of Aorta. Ann Vasc Dis 2018; 11:169-180. [PMID: 30116408 PMCID: PMC6094038 DOI: 10.3400/avd.ra.17-00118] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Tenascins are a family of large extracellular matrix (ECM) glycoproteins. Four family members (tenascin-C, -R, -X, and -W) have been identified to date. Each member consists of the same types of structural domains and exhibits time- and tissue-specific expression patterns, suggesting their specific roles in embryonic development and tissue remodeling. Among them, the significant involvement of tenascin-C (TNC) and tenascin-X (TNX) in the progression of vascular diseases has been examined in detail. TNC is strongly up-regulated under pathological conditions, induced by a number of inflammatory mediators and mechanical stress. TNC has diverse functions, particularly in the regulation of inflammatory responses. Recent studies suggest that TNC is involved in the pathophysiology of aneurysmal and dissecting lesions, in part by protecting the vascular wall from destructive mechanical stress. TNX is strongly expressed in vascular walls, and its distribution is often reciprocal to that of TNC. TNX is involved in the stability and maintenance of the collagen network and elastin fibers. A deficiency in TNX results in a form of Ehlers–Danlos syndrome (EDS). Although their exact roles in vascular diseases have not yet been elucidated, TNC and TNX are now being recognized as promising biomarkers for diagnosis and risk stratification of vascular diseases.
Collapse
Affiliation(s)
- Kyoko Imanaka-Yoshida
- Department of Pathology and Matrix Biology, Mie University Graduate School of Medicine, Tsu, Mie, Japan.,Mie University Research Center for Matrix Biology, Tsu, Mie, Japan
| | - Ken-Ichi Matsumoto
- Department of Biosignaling and Radioisotope Experiment, Interdisciplinary Center for Science Research, Organization for Research and Academic Information, Shimane University, Izumo, Shimane, Japan
| |
Collapse
|
62
|
Salza R, Lethias C, Ricard-Blum S. The Multimerization State of the Amyloid-β42 Amyloid Peptide Governs its Interaction Network with the Extracellular Matrix. J Alzheimers Dis 2018; 56:991-1005. [PMID: 28106549 DOI: 10.3233/jad-160751] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The goals of this work were i) to identify the interactions of amyloid-β (Aβ)42 under monomeric, oligomeric, and fibrillar forms with the extracellular matrix (ECM) and receptors, ii) to determine the influence of Aβ42 supramolecular organization on these interactions, and iii) to identify the molecular functions, biological processes, and pathways targeted by Aβ42 in the ECM. The ECM and cell surface partners of Aβ42 and its supramolecular forms were identified with protein and glycosaminoglycan (GAG) arrays (81 molecules in triplicate) probed by surface plasmon resonance imaging. The number of partners of Aβ42 increased upon its multimerization, ranging from 4 for the peptide up to 53 for the fibrillar aggregates. The peptide interacted only with ECM proteins but their percentage among Aβ42 partners decreased upon multimerization. Aβ42 and its supramolecular forms recognized different molecular features on their partners, and the partners of Aβ42 fibrillar forms were enriched in laminin IV-A, N-terminal, and EGF-like domains. Aβ42 oligomerization triggered interactions with receptors, whereas Aβ42 fibrillogenesis promoted binding to GAGs, proteoglycans, enzymes, and growth factors and the ability to interact with perineuronal nets. Fibril aggregation bind to further membrane proteins including tumor endothelial marker-8, syndecan-4, and discoidin-domain receptor-2. The partners of the Aβ42 supramolecular forms are enriched in proteins contributing to cell growth and/or maintenance, involved in integrin cell surface interactions and expressed in kidney cancer, preadipocytes, and dentin. In conclusion, the supramolecular assembly of Aβ42 governs its ability to interact in vitro with ECM proteins, remodeling and crosslinking ECM enzymes, proteoglycans, and receptors.
Collapse
Affiliation(s)
- Romain Salza
- Institut de Chimie et Biochimie Moléculaires et Supramoléculaires (ICBMS), UMR 5246 CNRS - Université Lyon 1, Villeurbanne cedex, France
| | - Claire Lethias
- Laboratoire de Biologie Tissulaire et d'Ingénierie Thérapeutique (LBTI), UMR 5305 CNRS - Université Lyon 1, Lyon, Cedex 07, France
| | - Sylvie Ricard-Blum
- Institut de Chimie et Biochimie Moléculaires et Supramoléculaires (ICBMS), UMR 5246 CNRS - Université Lyon 1, Villeurbanne cedex, France
| |
Collapse
|
63
|
Miller WL, Merke DP. Tenascin-X, Congenital Adrenal Hyperplasia, and the CAH-X Syndrome. Horm Res Paediatr 2018; 89:352-361. [PMID: 29734195 PMCID: PMC6057477 DOI: 10.1159/000481911] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 10/02/2017] [Indexed: 01/26/2023] Open
Abstract
Mutations of the CYP21A2 gene encoding adrenal 21-hydroxylase cause congenital adrenal hyperplasia (CAH). The CYP21A2 gene is partially overlapped by the TNXB gene, which encodes an extracellular matrix protein called Tenascin-X (TNX). Mutations affecting both alleles of TNXB cause a severe, autosomal recessive form of Ehlers-Danlos syndrome (EDS). Rarely, patients with severe, salt-wasting CAH have deletions of CYP21A2 that extend into TNXB, resulting in a "contiguous gene syndrome" consisting of CAH and EDS. Heterozygosity for TNXB mutations causing haploinsufficiency of TNX may be associated with the mild "hypermobility form" of EDS, which principally affects small and large joints. Studies of patients with salt-wasting CAH found that up to 10% had clinical features of EDS, associated joint hypermobility, haploinsufficiency of TNX and heterozygosity for TNXB mutations, now called "CAH-X." These patients have joint hypermobility and a spectrum of other comorbidities associated with their connective tissue disorder, including chronic arthralgia, joint subluxations, hernias, and cardiac defects. Other disorders are beginning to be associated with TNX deficiency, including familial vesicoureteral reflux and neurologic disorders. Further work is needed to delineate the full spectrum of TNX-deficient disorders, with and without associated CAH.
Collapse
Affiliation(s)
- Walter L Miller
- Department of Pediatrics, Center for Reproductive Sciences, and Institute of Human Genetics, University of California, San Francisco, California, USA
| | - Deborah P Merke
- National Institutes of Health Clinical Center and the Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, Maryland, USA
| |
Collapse
|
64
|
Sumioka T, Iwanishi H, Okada Y, Nidegawa Y, Miyajima M, Matsumoto KI, Saika S. Loss of tenascin X gene function impairs injury-induced stromal angiogenesis in mouse corneas. J Cell Mol Med 2017; 22:948-956. [PMID: 29160014 PMCID: PMC5783828 DOI: 10.1111/jcmm.13397] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 08/26/2017] [Indexed: 12/18/2022] Open
Abstract
To determine the contribution by tenascin X (Tnx) gene expression to corneal stromal angiogenesis, the effects were determined of its loss on this response in TNX knockout (KO) mice. In parallel, the effects of such a loss were evaluated on vascular endothelial growth factor (VEGF) and transforming growth factor β1 (TGFβ1) gene and protein expression in fibroblasts and macrophages in cell culture. Histological, immunohistochemical and quantitative RT‐PCR changes determined if Tnx gene ablation on angiogenic gene expression, inflammatory cell infiltration and neovascularization induced by central corneal stromal cauterization. The role was determined of Tnx function in controlling VEGF‐A or TGFβ1 gene expression by comparing their expression levels in ocular fibroblasts and macrophages obtained from wild‐type (WT) and body‐wide Tnx KO mice. Tnx was up‐regulated in cauterized cornea. In Tnx KO, macrophage invasion was attenuated, VEGF‐A and its cognate receptor mRNA expression along with neovascularization were lessened in Tnx KOs relative to the changes occurring in their WT counterpart. Loss of Tnx instead up‐regulated in vivo mRNA expression of anti‐angiogenic VEGF‐B but not VEGF‐A. On the other hand, TGFβ1 mRNA expression declined in Tnx KO cultured ocular fibroblasts. Loss of Tnx gene expression caused VEGF‐A expression to decline in macrophages. Tnx gene expression contributes to promoting TGFβ1 mRNA expression in ocular fibroblasts and VEGF‐A in macrophages, macrophage invasion, up‐regulation of VEGF‐A expression and neovascularization in an injured corneal stroma. On the other hand, it suppresses anti‐angiogenic VEGF‐B mRNA expression in vivo.
Collapse
Affiliation(s)
- Takayoshi Sumioka
- Department of Ophthalmology, Wakayama Medical University School of Medicine, Wakayama, Japan
| | - Hiroki Iwanishi
- Department of Ophthalmology, Wakayama Medical University School of Medicine, Wakayama, Japan
| | - Yuka Okada
- Department of Ophthalmology, Wakayama Medical University School of Medicine, Wakayama, Japan
| | - Yuka Nidegawa
- Department of Ophthalmology, Wakayama Medical University School of Medicine, Wakayama, Japan
| | - Masayasu Miyajima
- Animal Center, Wakayama Medical University School of Medicine, Wakayama, Japan
| | - Ken-Ichi Matsumoto
- Department of Biosignaling and Radioisotope Experiment, Interdisciplinary Center for Science Research, Organization for Research and Academic Information, Shimane University, Izumo, Japan
| | - Shizuya Saika
- Department of Ophthalmology, Wakayama Medical University School of Medicine, Wakayama, Japan
| |
Collapse
|
65
|
Zuliani-Alvarez L, Marzeda AM, Deligne C, Schwenzer A, McCann FE, Marsden BD, Piccinini AM, Midwood KS. Mapping tenascin-C interaction with toll-like receptor 4 reveals a new subset of endogenous inflammatory triggers. Nat Commun 2017; 8:1595. [PMID: 29150600 PMCID: PMC5693923 DOI: 10.1038/s41467-017-01718-7] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 10/05/2017] [Indexed: 02/08/2023] Open
Abstract
Pattern recognition underpins innate immunity; the accurate identification of danger, including infection, injury, or tumor, is key to an appropriately targeted immune response. Pathogen detection is increasingly well defined mechanistically, but the discrimination of endogenous inflammatory triggers remains unclear. Tenascin-C, a matrix protein induced upon tissue damage and expressed by tumors, activates toll-like receptor 4 (TLR4)-mediated sterile inflammation. Here we map three sites within tenascin-C that directly and cooperatively interact with TLR4. We also identify a conserved inflammatory epitope in related proteins from diverse families, and demonstrate that its presence targets molecules for TLR detection, while its absence enables escape of innate immune surveillance. These data reveal a unique molecular code that defines endogenous proteins as inflammatory stimuli by marking them for recognition by TLRs.
Collapse
Affiliation(s)
- Lorena Zuliani-Alvarez
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Roosevelt Drive, Headington, Oxford, OX3 7FY, UK
| | - Anna M Marzeda
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Roosevelt Drive, Headington, Oxford, OX3 7FY, UK
| | - Claire Deligne
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Roosevelt Drive, Headington, Oxford, OX3 7FY, UK
| | - Anja Schwenzer
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Roosevelt Drive, Headington, Oxford, OX3 7FY, UK
| | - Fiona E McCann
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Roosevelt Drive, Headington, Oxford, OX3 7FY, UK
| | - Brian D Marsden
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Roosevelt Drive, Headington, Oxford, OX3 7FY, UK.,Structural Genomics Consortium, Nuffield Department of Clinical Medicine, University of Oxford, Roosevelt Drive, Headington, Oxford, OX3 7DQ, UK
| | - Anna M Piccinini
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Roosevelt Drive, Headington, Oxford, OX3 7FY, UK.,School of Pharmacy, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Kim S Midwood
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Roosevelt Drive, Headington, Oxford, OX3 7FY, UK.
| |
Collapse
|
66
|
Brady AF, Demirdas S, Fournel-Gigleux S, Ghali N, Giunta C, Kapferer-Seebacher I, Kosho T, Mendoza-Londono R, Pope MF, Rohrbach M, Van Damme T, Vandersteen A, van Mourik C, Voermans N, Zschocke J, Malfait F. The Ehlers-Danlos syndromes, rare types. AMERICAN JOURNAL OF MEDICAL GENETICS PART C-SEMINARS IN MEDICAL GENETICS 2017; 175:70-115. [PMID: 28306225 DOI: 10.1002/ajmg.c.31550] [Citation(s) in RCA: 139] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The Ehlers-Danlos syndromes comprise a clinically and genetically heterogeneous group of heritable connective tissue disorders, which are characterized by joint hypermobility, skin hyperextensibility, and tissue friability. In the Villefranche Nosology, six subtypes were recognized: The classical, hypermobile, vascular, kyphoscoliotic, arthrochalasis, and dermatosparaxis subtypes of EDS. Except for the hypermobile subtype, defects had been identified in fibrillar collagens or in collagen-modifying enzymes. Since 1997, a whole spectrum of novel, clinically overlapping, rare EDS-variants have been delineated and genetic defects have been identified in an array of other extracellular matrix genes. Advances in molecular testing have made it possible to now identify the causative mutation for many patients presenting these phenotypes. The aim of this literature review is to summarize the current knowledge on the rare EDS subtypes and highlight areas for future research. © 2017 Wiley Periodicals, Inc.
Collapse
|
67
|
Rabkin SW. The Role Matrix Metalloproteinases in the Production of Aortic Aneurysm. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2017; 147:239-265. [PMID: 28413030 DOI: 10.1016/bs.pmbts.2017.02.002] [Citation(s) in RCA: 131] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Matrix metalloproteinases (MMPs) have been implicated in the pathogenesis of aortic aneurysm because the histology of thoracic aortic aneurysm (TAA) and abdominal aortic aneurysm (AAA) is characterized by the loss of smooth muscle cells in the aortic media and the destruction of extracellular matrix (ECM). Furthermore, AAA have evidence of inflammation and the cellular elements involved in inflammation such as macrophages can produce and/or activate MMPs This chapter focuses on human aortic aneurysm that are not due to specific known genetic causes because this type of aneurysm is the more common type. This chapter will also focus on MMP protein expression rather than on genetic data which may not necessarily translate to increased MMP protein expression. There are supporting data that certain MMPs are increased in the aortic wall. For TAA, it is most notably MMP-1, -9, -12, and -14 and MMP-2 when a bicuspid aortic valve is present. For AAA, it is MMP-1, -2, -3, -9, -12, and -13. The data are weaker or insufficient for the other MMPs. Several studies of gene polymorphisms support MMP-9 for TAA and MMP-3 for AAA as potentially important factors. The signaling pathways in the aorta that can lead to MMP activation include JNK, JAK/stat, osteopontin, and AMP-activated protein kinase alpha2. Substrates in the human vasculature for MMP-3, MMP-9, or MMP-14 include collagen, elastin, ECM glycoprotein, and proteoglycans. Confirmed and potential substrates for MMPs, maintain aortic size and function so that a reduction in their content relative to other components of the aortic wall may produce a failure to maintain aortic size leading to dilatation and aneurysm formation.
Collapse
|
68
|
Bierbaum S, Hintze V, Scharnweber D. 2.8 Artificial Extracellular Matrices to Functionalize Biomaterial Surfaces ☆. COMPREHENSIVE BIOMATERIALS II 2017:147-178. [DOI: 10.1016/b978-0-12-803581-8.10206-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
69
|
Chen W, Perritt AF, Morissette R, Dreiling JL, Bohn MF, Mallappa A, Xu Z, Quezado M, Merke DP. Ehlers-Danlos Syndrome Caused by Biallelic TNXB Variants in Patients with Congenital Adrenal Hyperplasia. Hum Mutat 2016; 37:893-7. [PMID: 27297501 DOI: 10.1002/humu.23028] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 06/01/2016] [Indexed: 01/13/2023]
Abstract
Some variants that cause autosomal-recessive congenital adrenal hyperplasia (CAH) also cause hypermobility type Ehlers-Danlos syndrome (EDS) due to the monoallelic presence of a chimera disrupting two flanking genes: CYP21A2, encoding 21-hydroxylase, necessary for cortisol and aldosterone biosynthesis, and TNXB, encoding tenascin-X, an extracellular matrix protein. Two types of CAH tenascin-X (CAH-X) chimeras have been described with a total deletion of CYP21A2 and characteristic TNXB variants. CAH-X CH-1 has a TNXB exon 35 120-bp deletion resulting in haploinsufficiency, and CAH-X CH-2 has a TNXB exon 40 c.12174C>G (p.Cys4058Trp) variant resulting in a dominant-negative effect. We present here three patients with biallelic CAH-X and identify a novel dominant-negative chimera termed CAH-X CH-3. Compared with monoallelic CAH-X, biallelic CAH-X results in a more severe phenotype with skin features characteristic of classical EDS. We present evidence for disrupted tenascin-X function and computational data linking the type of TNXB variant to disease severity.
Collapse
Affiliation(s)
- Wuyan Chen
- PreventionGenetics, Marshfield, Wisconsin
| | - Ashley F Perritt
- National Institutes of Health Clinical Center, Bethesda, Maryland
| | | | | | - Markus-Frederik Bohn
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California
| | - Ashwini Mallappa
- National Institutes of Health Clinical Center, Bethesda, Maryland
| | - Zhi Xu
- National Institutes of Health, , National Institute on Aging, Baltimore, Maryland
| | - Martha Quezado
- Laboratory of Pathology, National Cancer Institute, Bethesda, Maryland
| | - Deborah P Merke
- National Institutes of Health Clinical Center, Bethesda, Maryland.,The Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, Maryland
| |
Collapse
|
70
|
Cohen C, Leal MF, Belangero PS, Figueiredo EA, Smith MC, Andreoli CV, de Castro Pochini A, Cohen M, Ejnisman B, Faloppa F. The roles of Tenascin C and Fibronectin 1 in adhesive capsulitis: a pilot gene expression study. Clinics (Sao Paulo) 2016; 71:325-31. [PMID: 27438566 PMCID: PMC4930668 DOI: 10.6061/clinics/2016(06)07] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 03/21/2016] [Indexed: 01/06/2023] Open
Abstract
OBJECTIVES We evaluated mRNA expression levels of genes that encode TGF-β1; the TGF-β1 receptor; the collagen-modifying enzymes LOX, PLOD1, and PLOD2; and the extracellular matrix proteins COMP, FN1, TNC and TNXB in synovial/capsule specimens from patients with idiopathic adhesive capsulitis. Possible associations between the measured mRNA levels and clinical parameters were also investigated. METHODS We obtained glenohumeral joint synovium/capsule specimens from 9 patients with idiopathic adhesive capsulitis who had not shown improvement in symptoms after 5 months of physiotherapy. Adhesive capsulitis was confirmed in all patients by magnetic resonance imaging. We also obtained specimens from 8 control patients who had underwent surgery for acute acromioclavicular joint dislocation and who had radiological indication of glenohumeral capsule alteration based on arthroscopic evaluation. mRNA expression in the synovium/capsule specimens was analyzed by quantitative reverse transcription PCR. The B2M and HPRT1 genes were used as references to normalize target gene expression in the shoulder tissue samples. RESULTS The synovium/capsule samples from the patients with adhesive capsulitis had significantly higher TNC and FN1 expression than those from the controls. Additionally, symptom duration directly correlated with expression of TGFβ1 receptor I. CONCLUSION Elevated levels of TNC and FN1 expression may be a marker of capsule injury. Upregulation of TGFβ1 receptor I seems to be dependent on symptom duration; therefore, TGFβ signaling may be involved in adhesive capsulitis. As such, TNC, FN1 and TGFβ1 receptor I may also play roles in adhesive capsulitis by contributing to capsule inflammation and fibrosis.
Collapse
Affiliation(s)
- Carina Cohen
- Universidade Federal de São Paulo, Departamento de Ortopedia e Traumatologia
- #contributed equally to this work
| | - Mariana Ferreira Leal
- Universidade Federal de São Paulo, Departamento de Ortopedia e Traumatologia
- Departamento de Morfologia e Genética, Disciplina de Genética, São Paulo/SP, Brazil
- E-mail:
| | | | | | | | | | | | - Moises Cohen
- Universidade Federal de São Paulo, Departamento de Ortopedia e Traumatologia
| | - Benno Ejnisman
- Universidade Federal de São Paulo, Departamento de Ortopedia e Traumatologia
| | - Flávio Faloppa
- Universidade Federal de São Paulo, Departamento de Ortopedia e Traumatologia
| |
Collapse
|
71
|
Yamada K, Watanabe A, Takeshita H, Matsumoto KI. A method for quantification of serum tenascin-X by nano-LC/MS/MS. Clin Chim Acta 2016; 459:94-100. [PMID: 27236034 DOI: 10.1016/j.cca.2016.05.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Revised: 05/21/2016] [Accepted: 05/21/2016] [Indexed: 01/02/2023]
Abstract
BACKGROUND Complete deficiency of an extracellular matrix tenascin-X (TNX) leads to a classical type of Ehlers-Danlos syndrome (EDS). TNX haploinsufficiency is a cause of hypermobility type of EDS. Human TNX is also present in a serum form (sTNX) with a molecular size of 140kDa. In this study, we established a method for quantification of sTNX using nano-liquid chromatography tandem mass spectrometry (LC/MS/MS) with selected/multiple reaction monitoring. METHODS Twelve abundant protein-depleted sera were reduced, alkylated, and digested with Lys-C and trypsin. Subsequently, the digests were fractionated by strong cation exchange chromatography. Optimal and validated transitions of precursor and product ions of the peptides from sTNX were developed on a triple quadrupole mass spectrometer. RESULTS Serum concentrations of sTNX of healthy individuals were quantified as an average of 144ng/ml. However, sTNX was not detected by this method in serum from a patient with a classical type of EDS in whom sTNX was not found by Western blot analysis. The limit of quantification (LOQ) of sTNX by nano-LC/MS/MS method was 2.8pg whereas the detection sensitivity of sTNX by Western blot analysis was 19pg. The nano-LC/MS/MS method is more sensitive than Western blot analysis. CONCLUSIONS The quantification method will be useful for diagnosis and risk stratification of EDS caused by TNX deficiency and haploinsufficiency.
Collapse
Affiliation(s)
- Kazuo Yamada
- Department of Biosignaling and Radioisotope Experiment, Interdisciplinary Center for Science Research, Organization for Research and Academic Information, Shimane University, Enya-cho, Izumo, Shimane 693-8501, Japan; Department of Legal Medicine, Faculty of Medicine, Shimane University, Enya-cho, Izumo, Shimane 693-8501, Japan
| | - Atsushi Watanabe
- Division of Clinical Genetics, Nippon Medical School Hospital, 1-1-5 Sendagi, Bunkyo-ku, Tokyo 113-8603, Japan; Department of Biochemistry and Molecular Biology, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo 113-8603, Japan
| | - Haruo Takeshita
- Department of Legal Medicine, Faculty of Medicine, Shimane University, Enya-cho, Izumo, Shimane 693-8501, Japan
| | - Ken-Ichi Matsumoto
- Department of Biosignaling and Radioisotope Experiment, Interdisciplinary Center for Science Research, Organization for Research and Academic Information, Shimane University, Enya-cho, Izumo, Shimane 693-8501, Japan.
| |
Collapse
|
72
|
Zoppi N, Chiarelli N, Cinquina V, Ritelli M, Colombi M. GLUT10 deficiency leads to oxidative stress and non-canonical αvβ3 integrin-mediated TGFβ signalling associated with extracellular matrix disarray in arterial tortuosity syndrome skin fibroblasts. Hum Mol Genet 2015; 24:6769-87. [PMID: 26376865 PMCID: PMC4634379 DOI: 10.1093/hmg/ddv382] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Accepted: 09/11/2015] [Indexed: 12/13/2022] Open
Abstract
Arterial tortuosity syndrome (ATS) is an autosomal recessive connective tissue disorder caused by loss-of-function mutations in SLC2A10, which encodes facilitative glucose transporter 10 (GLUT10). The role of GLUT10 in ATS pathogenesis remains an enigma, and the transported metabolite(s), i.e. glucose and/or dehydroascorbic acid, have not been clearly elucidated. To discern the molecular mechanisms underlying the ATS aetiology, we performed gene expression profiling and biochemical studies on skin fibroblasts. Transcriptome analyses revealed the dysregulation of several genes involved in TGFβ signalling and extracellular matrix (ECM) homeostasis as well as the perturbation of specific pathways that control both the cell energy balance and the oxidative stress response. Biochemical and functional studies showed a marked increase in ROS-induced lipid peroxidation sustained by altered PPARγ function, which contributes to the redox imbalance and the compensatory antioxidant activity of ALDH1A1. ATS fibroblasts also showed activation of a non-canonical TGFβ signalling due to TGFBRI disorganization, the upregulation of TGFBRII and connective tissue growth factor, and the activation of the αvβ3 integrin transduction pathway, which involves p125FAK, p60Src and p38 MAPK. Stable GLUT10 expression in patients' fibroblasts normalized redox homeostasis and PPARγ activity, rescued canonical TGFβ signalling and induced partial ECM re-organization. These data add new insights into the ATS dysregulated biological pathways and definition of the pathomechanisms involved in this disorder.
Collapse
Affiliation(s)
- Nicoletta Zoppi
- Division of Biology and Genetics, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Nicola Chiarelli
- Division of Biology and Genetics, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Valeria Cinquina
- Division of Biology and Genetics, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Marco Ritelli
- Division of Biology and Genetics, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Marina Colombi
- Division of Biology and Genetics, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| |
Collapse
|
73
|
Morissette R, Chen W, Perritt AF, Dreiling JL, Arai AE, Sachdev V, Hannoush H, Mallappa A, Xu Z, McDonnell NB, Quezado M, Merke DP. Broadening the Spectrum of Ehlers Danlos Syndrome in Patients With Congenital Adrenal Hyperplasia. J Clin Endocrinol Metab 2015; 100:E1143-52. [PMID: 26075496 PMCID: PMC4525000 DOI: 10.1210/jc.2015-2232] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
CONTEXT The contiguous gene deletion syndrome (CAH-X) was described in a subset (7%) of congenital adrenal hyperplasia (CAH) patients with a TNXA/TNXB chimera, resulting in deletions of CYP21A2, encoding 21-hydroxylase necessary for cortisol biosynthesis, and TNXB, encoding the extracellular matrix glycoprotein tenascin-X (TNX). This TNXA/TNXB chimera is characterized by a 120-bp deletion in exon 35 and results in TNXB haploinsufficiency, disrupted TGF-β signaling, and an Ehlers Danlos syndrome phenotype. OBJECTIVE The objective of the study was to determine the genetic status of TNXB and resulting protein defects in CAH patients with a CAH-X phenotype but not the previously described TNXA/TNXB chimera. Design, Settings, Participants, and Intervention: A total of 246 unrelated CAH patients were screened for TNXB defects. Genetic defects were investigated by Southern blotting, multiplex ligation-dependent probe amplification, Sanger, and next-generation sequencing. Dermal fibroblasts and tissue were used for immunoblotting, immunohistochemical, and coimmunoprecipitation experiments. MAIN OUTCOME MEASURES The genetic and protein status of tenascin-X in phenotypic CAH-X patients was measured. RESULTS Seven families harbor a novel TNXB missense variant c.12174C>G (p.C4058W) and a clinical phenotype consistent with hypermobility-type Ehlers Danlos syndrome. Fourteen CAH probands carry previously described TNXA/TNXB chimeras, and seven unrelated patients carry the novel TNXB variant, resulting in a CAH-X prevalence of 8.5%. This highly conserved pseudogene-derived variant in the TNX fibrinogen-like domain is predicted to be deleterious and disulfide bonded, results in reduced dermal elastin and fibrillin-1 staining and altered TGF-β1 binding, and represents a novel TNXA/TNXB chimera. Tenascin-X protein expression was normal in dermal fibroblasts, suggesting a dominant-negative effect. CONCLUSIONS CAH-X syndrome is commonly found in CAH due to 21-hydroxylase deficiency and may result from various etiological mechanisms.
Collapse
|