51
|
Guturi KKN, Sarkar M, Bhowmik A, Das N, Ghosh MK. DEAD-box protein p68 is regulated by β-catenin/transcription factor 4 to maintain a positive feedback loop in control of breast cancer progression. Breast Cancer Res 2014; 16:496. [PMID: 25499975 PMCID: PMC4308923 DOI: 10.1186/s13058-014-0496-5] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Accepted: 12/04/2014] [Indexed: 01/28/2023] Open
Abstract
INTRODUCTION Nuclear accumulation of β-catenin is important for cancer development and it is found to overlap with p68 (DDX5) immunoreactivity in most breast cancers, as indicated by both clinical investigations and studies in cell lines. In this study, we aim to investigate the regulation of p68 gene expression through β-catenin/transcription factor 4 (TCF4) signaling in breast cancer. METHODS Formalin-fixed paraffin-embedded sections derived from normal human breast and breast cancer samples were used for immunohistochemical analysis. Protein and mRNA expressions were determined by immunoblotting and quantitative RT-PCR respectively. Promoter activity of p68 was checked using luciferase assay. Occupancy of several factors on the p68 promoter was evaluated using chromatin immunoprecipitation. Finally, a syngeneic mouse model of breast cancer was used to assess physiological significance. RESULTS We demonstrated that β-catenin can directly induce transcription of p68 promoter or indirectly through regulation of c-Myc in both human and mouse breast cancer cells. Moreover, by chromatin immunoprecipitation assay, we have found that both β-catenin and TCF4 occupy the endogenous p68 promoter, which is further enhanced by Wnt signaling. Furthermore, we have also established a positive feedback regulation for the expression of TCF4 by p68. To the best of our knowledge, this is the first report on β-catenin/TCF4-mediated p68 gene regulation, which plays an important role in epithelial to mesenchymal transition, as shown in vitro in breast cancer cell lines and in vivo in an animal breast tumour model. CONCLUSIONS Our findings indicate that Wnt/β-catenin signaling plays an important role in breast cancer progression through p68 upregulation.
Collapse
Affiliation(s)
- Kiran Kumar Naidu Guturi
- Signal Transduction in Cancer and Stem Cells Laboratory, Cancer Biology and Inflammatory Disorder Division, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology (CSIR-IICB), 4 Raja S C Mullick Road, Jadavpur, Kolkata, 700032, India.
| | - Moumita Sarkar
- Signal Transduction in Cancer and Stem Cells Laboratory, Cancer Biology and Inflammatory Disorder Division, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology (CSIR-IICB), 4 Raja S C Mullick Road, Jadavpur, Kolkata, 700032, India.
| | - Arijit Bhowmik
- Signal Transduction in Cancer and Stem Cells Laboratory, Cancer Biology and Inflammatory Disorder Division, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology (CSIR-IICB), 4 Raja S C Mullick Road, Jadavpur, Kolkata, 700032, India.
| | - Nilanjana Das
- Signal Transduction in Cancer and Stem Cells Laboratory, Cancer Biology and Inflammatory Disorder Division, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology (CSIR-IICB), 4 Raja S C Mullick Road, Jadavpur, Kolkata, 700032, India.
| | - Mrinal Kanti Ghosh
- Signal Transduction in Cancer and Stem Cells Laboratory, Cancer Biology and Inflammatory Disorder Division, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology (CSIR-IICB), 4 Raja S C Mullick Road, Jadavpur, Kolkata, 700032, India.
| |
Collapse
|
52
|
Pang JMB, Deb S, Takano EA, Byrne DJ, Jene N, Boulghourjian A, Holliday A, Millar E, Lee CS, O'Toole SA, Dobrovic A, Fox SB. Methylation profiling of ductal carcinoma in situ and its relationship to histopathological features. Breast Cancer Res 2014; 16:423. [PMID: 25331261 PMCID: PMC4303108 DOI: 10.1186/s13058-014-0423-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Accepted: 07/30/2014] [Indexed: 12/14/2022] Open
Abstract
Introduction DNA methylation is a well-studied biomarker in invasive breast cancer, but its role in ductal carcinoma in situ (DCIS) is less well characterized. The aims of this study are to assess the methylation profile in DCIS for a panel of well-characterized genes that are frequently methylated in breast cancer, to investigate the relationship of methylation with pathological features, and to perform a proof-of-principle study to evaluate the practicality of methylation as a biomarker in diagnostic DCIS material. Methods Promoter CpG island methylation for a panel of 11 breast cancer-related genes was performed by methylation-sensitive high resolution melting (MS-HRM). Formalin-fixed, paraffin-embedded (FFPE) biopsies from 72 samples of pure DCIS (DCIS occurring in the absence of synchronous invasive carcinoma), 10 samples of mixed DCIS (DCIS adjacent to invasive carcinoma), and 18 samples of normal breast epithelium adjacent to a DCIS lesion were micro-dissected prior to DNA extraction. Results Methylation was seen for all the tested genes except BRCA1. RASSF1A was the most frequently methylated gene (90% of DCIS samples) and its methylation was associated with comedo necrosis (p = 0.018). Cluster analysis based on the methylation profile revealed four groups, the highly methylated cluster being significantly associated with high nuclear grade, HER2 amplification, negative estrogen receptor (ER) α status, and negative progesterone receptor (PgR) status, (p = 0.038, p = 0.018, p <0.001, p = 0.001, respectively). Methylation of APC (p = 0.017), CDH13 (p = 0.017), and RARβ (p <0.001) was associated with negative ERα status. Methylation of CDH13 (p <0.001), and RARβ (p = 0.001) was associated with negative PgR status. Methylation of APC (p = 0.013) and CDH13 (p = 0.026) was associated with high nuclear grade. Methylation of CDH13 (p = 0.009), and RARβ (p = 0.042) was associated with HER2-amplification. Conclusions DNA methylation can be assessed in FFPE-derived samples using suitable methodologies. Methylation of a panel of genes that are known to be methylated in invasive breast cancer was able to classify DCIS into distinct groups and was differentially associated with phenotypic features in DCIS. Electronic supplementary material The online version of this article (doi:10.1186/s13058-014-0423-9) contains supplementary material, which is available to authorized users.
Collapse
|
53
|
Ligand-independent canonical Wnt activity in canine mammary tumor cell lines associated with aberrant LEF1 expression. PLoS One 2014; 9:e98698. [PMID: 24887235 PMCID: PMC4041801 DOI: 10.1371/journal.pone.0098698] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Accepted: 05/06/2014] [Indexed: 11/19/2022] Open
Abstract
Pet dogs very frequently develop spontaneous mammary tumors and have been suggested as a good model organism for breast cancer research. In order to obtain an insight into underlying signaling mechanisms during canine mammary tumorigenesis, in this study we assessed the incidence and the mechanism of canonical Wnt activation in a panel of 12 canine mammary tumor cell lines. We show that a subset of canine mammary cell lines exhibit a moderate canonical Wnt activity that is dependent on Wnt ligands, similar to what has been described in human breast cancer cell lines. In addition, three of the tested canine mammary cell lines have a high canonical Wnt activity that is not responsive to inhibitors of Wnt ligand secretion. Tumor cell lines with highly active canonical Wnt signaling often carry mutations in key members of the Wnt signaling cascade. These cell lines, however, carry no mutations in the coding regions of intracellular Wnt pathway components (APC, β-catenin, GSK3β, CK1α and Axin1) and have a functional β-catenin destruction complex. Interestingly, however, the cell lines with high canonical Wnt activity specifically overexpress LEF1 mRNA and the knock-down of LEF1 significantly inhibits TCF-reporter activity. In addition, LEF1 is overexpressed in a subset of canine mammary carcinomas, implicating LEF1 in ligand-independent activation of canonical Wnt signaling in canine mammary tumors. We conclude that canonical Wnt activation may be a frequent event in canine mammary tumors both through Wnt ligand-dependent and novel ligand–independent mechanisms.
Collapse
|
54
|
Monteiro J, Gaspar C, Richer W, Franken PF, Sacchetti A, Joosten R, Idali A, Brandao J, Decraene C, Fodde R. Cancer stemness in Wnt-driven mammary tumorigenesis. Carcinogenesis 2013; 35:2-13. [PMID: 23955540 DOI: 10.1093/carcin/bgt279] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Wnt signaling plays a central role in mammary stem cell (MaSC) homeostasis and in breast cancer. In particular, epigenetic alterations at different members of the Wnt pathway have been identified among triple-negative, basal-like breast cancers. Previously, we developed a mouse model for metaplastic breast adenocarcinoma, a subtype of triple-negative breast cancer, by targeting a hypomorphic mutations in the endogenous Apc gene (Apc (1572T/+)). Here, by employing the CD24 and CD29 cell surface antigens, we have identified a subpopulation of mammary cancer stem cells (MaCSCs) from Apc (1572T/+) capable of self-renewal and differentiation both in vivo and in vitro. Moreover, immunohistochemical analysis of micro- and macrolung metastases and preliminary intravenous transplantation assays suggest that the MaCSCs underlie metastasis at distant organ sites. Expression profiling of the normal and tumor cell subpopulations encompassing MaSCs and CSCs revealed that the normal stem cell compartment is more similar to tumor cells than to their own differentiated progenies. Accordingly, Wnt signaling appears to be active in both the normal and cancer stem cell compartments, although at different levels. By comparing normal with cancer mouse mammary compartments, we identified a MaCSC gene signature able to predict outcome in breast cancer in man. Overall, our data indicate that constitutive Wnt signaling activation affects self-renewal and differentiation of MaSCs leading to metaplasia and basal-like adenocarcinomas.
Collapse
Affiliation(s)
- Joana Monteiro
- Department of Pathology, Josephine Nefkens Institute, Erasmus MC 3000 CA Rotterdam, The Netherlands and
| | | | | | | | | | | | | | | | | | | |
Collapse
|
55
|
Green JL, La J, Yum KW, Desai P, Rodewald LW, Zhang X, Leblanc M, Nusse R, Lewis MT, Wahl GM. Paracrine Wnt signaling both promotes and inhibits human breast tumor growth. Proc Natl Acad Sci U S A 2013; 110:6991-6. [PMID: 23559372 PMCID: PMC3637696 DOI: 10.1073/pnas.1303671110] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Wnt signaling in mouse mammary development and tumorigenesis has been heavily studied and characterized, but its role in human breast cancer remains elusive. Although Wnt inhibitors are in early clinical development, it is unclear whether they will be of therapeutic benefit to breast cancer patients, and subsequently, to which ones. To address this, we generated a panel of Wnt reporting human breast cancer cell lines and identified a previously unrecognized enrichment for the ability to respond to Wnt in the basal B or claudin-low subtype, which has a poor prognosis and no available targeted therapies. By co-injecting Wnt3A expressing human mammary fibroblasts with human breast cancer cell lines into mouse mammary fat pads, we showed that elevated paracrine Wnt signaling was correlated with accelerated tumor growth. Using this heterotypic system and a dual lentiviral reporter system that enables simultaneous real-time measurement of both Wnt-responsive cells and bulk tumor cells, we analyzed the outcome of elevated Wnt signaling in patient-derived xenograft (PDX) models. Interestingly, the PDX models exhibited responses not observed in the cell lines analyzed. Exogenous WNT3A promoted tumor growth in one human epidermal growth factor receptor 2-overexpressing PDX line but inhibited growth in a second PDX line obtained from a patient with triple-negative breast cancer. Tumor suppression was associated with squamous differentiation in the latter. Thus, our work suggests that paracrine Wnt signaling can either fuel or repress the growth of human breast cancers depending on yet to be determined aspects of the molecular pathways they express.
Collapse
Affiliation(s)
- Jennifer L. Green
- Gene Expression Laboratory, The Salk Institute for Biological Studies, La Jolla, CA 92037
- Department of Developmental Biology and
- Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305; and
| | - Justin La
- Gene Expression Laboratory, The Salk Institute for Biological Studies, La Jolla, CA 92037
| | - Kyu W. Yum
- Gene Expression Laboratory, The Salk Institute for Biological Studies, La Jolla, CA 92037
| | - Payal Desai
- Gene Expression Laboratory, The Salk Institute for Biological Studies, La Jolla, CA 92037
| | - Luo-Wei Rodewald
- Gene Expression Laboratory, The Salk Institute for Biological Studies, La Jolla, CA 92037
| | - Xiaomei Zhang
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030
| | - Mathias Leblanc
- Gene Expression Laboratory, The Salk Institute for Biological Studies, La Jolla, CA 92037
| | - Roeland Nusse
- Department of Developmental Biology and
- Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305; and
| | - Michael T. Lewis
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030
| | - Geoffrey M. Wahl
- Gene Expression Laboratory, The Salk Institute for Biological Studies, La Jolla, CA 92037
| |
Collapse
|
56
|
Association of single nucleotide polymorphisms in Wnt signaling pathway genes with breast cancer in Saudi patients. PLoS One 2013; 8:e59555. [PMID: 23516639 PMCID: PMC3597615 DOI: 10.1371/journal.pone.0059555] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2012] [Accepted: 02/15/2013] [Indexed: 12/28/2022] Open
Abstract
Breast cancer is a complex heterogeneous disease involving genetic and epigenetic alterations in genes encoding proteins that are components of various signaling pathways. Candidate gene approach have identified association of genetic variants in the Wnt signaling pathway genes and increased susceptibility to several diseases including breast cancer. Due to the rarity of somatic mutations in key genes of Wnt pathway, we investigated the association of genetic variants in these genes with predisposition to breast cancers. We performed a case-control study to identify risk variants by examining 15 SNPs located in 8 genes associated with Wnt signaling. Genotypic analysis of individual locus showed statistically significant association of five SNPs located in β-catenin, AXIN2, DKK3, SFRP3 and TCF7L2 with breast cancers. Increased risk was observed only with the SNP in β-catenin while the other four SNPs conferred protection against breast cancers. Majority of these associations persisted after stratification of the cases based on estrogen receptor status and age of on-set of breast cancer. The rs7775 SNP in exon 6 of SFRP3 gene that codes for either arginine or glycine exhibited very strong association with breast cancer, even after Bonferroni's correction. Apart from these five variants, rs3923086 in AXIN2 and rs3763511 in DKK4 that did not show any association in the overall population were significantly associated with early on-set and estrogen receptor negative breast cancers, respectively. This is the first study to utilize pathway based approach to identify association of risk variants in the Wnt signaling pathway genes with breast cancers. Confirmation of our findings in larger populations of different ethnicities would provide evidence for the role of Wnt pathway as well as screening markers for early detection of breast carcinomas.
Collapse
|
57
|
van de Stolpe A. On the origin and destination of cancer stem cells: a conceptual evaluation. Am J Cancer Res 2013; 3:107-116. [PMID: 23359140 PMCID: PMC3555199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Accepted: 11/15/2012] [Indexed: 06/01/2023] Open
Abstract
Despite remaining uncertainties and ongoing research it is possible to draw up a model for the role of (cancer) stem cells in both the initiation and progression of cancer towards metastasis. The cancer stem cell of origin and the cancer stem cell are, despite phenotypic similarities, genotypically different entities. Given the right circumstances provided by a combination of genomic changes and biochemical and physical interactions with its microenvironment, an epithelial cancer cell may undergo a phenotypic epithelial mesenchymal transition (EMT) towards a cancer stem cell. This transition conveys upon the cell crucial stem cell-like abilities which facilitate migration into the blood circulation as an individual circulating tumor cell, survive there, and subsequently seed into organ tissue where, once more in close interaction with its microenvironment, the process of clonal self renewal may start, leading to a metastatic tumor. Both in the primary tumor as well as in the metastatic tumor, partial differentiation of the cancer stem cell progeny leads to phenotypic heterogeneity. Throughout this complex process of cancer metastasis similarities with the way stem cells function during embryonic development, including the signaling pathways that mediate these functions, are evident. Deeper insight in the EMT process, plasticity of the resulting cancer stem cells, and the role of cancer stem cells in the metastatic process is expected to lead to novel anti-metastatic cancer therapies. Emerging human in vitro cancer models in the form of "organ-on-a-chip" may contribute valuable novel research tools to achieve this aim.
Collapse
Affiliation(s)
- Anja van de Stolpe
- Department of Molecular Diagnostics, Philips Research, High Tech Campus 11 1.163, 5656 AE Eindhoven, The Netherlands
| |
Collapse
|
58
|
SOX15 is a candidate tumor suppressor in pancreatic cancer with a potential role in Wnt/β-catenin signaling. Oncogene 2013; 33:279-88. [PMID: 23318427 DOI: 10.1038/onc.2012.595] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2012] [Revised: 10/23/2012] [Accepted: 11/02/2012] [Indexed: 12/19/2022]
Abstract
Pancreatic cancer is among the top five deadliest cancers in developed countries. Better knowledge of the molecular mechanisms contributing to its tumorigenesis is imperative to improve patient prognosis. Identification of novel tumor suppressor genes (TSGs) in pancreatic cancer will reveal new mechanisms of pathway deregulation and will ultimately help improve our understanding of this aggressive disease. According to Knudson's two-hit model, TSGs are classically disrupted by two concerted genetic events. In this study, we combined DNA methylation profiling with copy number and mRNA expression profiling to identify novel TSGs in a set of 20 pancreatic cancer cell lines. These data sets were integrated for each of ∼12 000 genes in each cell line enabling the elucidation of those genes that undergo DNA hypermethylation, copy-number loss and mRNA downregulation simultaneously in multiple cell lines. Using this integrative genomics strategy, we identified SOX15 (sex determining region Y-box 15) as a candidate TSG in pancreatic cancer. Expression of SOX15 in pancreatic cancer cell lines with undetectable expression resulted in reduced viability of cancer cells both in vitro and in vivo demonstrating its tumor suppressive capability. We also found reduced expression, homozygous deletion and aberrant DNA methylation of SOX15 in clinical pancreatic tumor data sets. Furthermore, we deduced a novel role for SOX15 in suppressing the Wnt/β-catenin signaling pathway, which we hypothesize is a pathway through which SOX15 may exert its tumor suppressive effects in pancreatic cancer.
Collapse
|
59
|
Abstract
Since the initial discovery of the oncogenic activity of WNT1 in mouse mammary glands, our appreciation for the complex roles for WNT signalling pathways in cancer has increased dramatically. WNTs and their downstream effectors regulate various processes that are important for cancer progression, including tumour initiation, tumour growth, cell senescence, cell death, differentiation and metastasis. Although WNT signalling pathways have been difficult to target, improved drug-discovery platforms and new technologies have facilitated the discovery of agents that can alter WNT signalling in preclinical models, thus setting the stage for clinical trials in humans.
Collapse
Affiliation(s)
- Jamie N Anastas
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, Washington 98109, USA
| | | |
Collapse
|
60
|
Abstract
Breast cancer incidence is rising worldwide with an increase in aggressive neoplasias in young women. Possible factors involved include lifestyle changes, notably diet that is known to make an impact on gene transcription. However, among dietary factors, there is sufficient support for only greater body weight and alcohol consumption whereas numerous studies revealing an impact of specific diets and nutrients on breast cancer risk show conflicting results. Also, little information is available from middle- and low-income countries. The diversity of gene expression profiles found in breast cancers indicates that transcription control is critical for the outcome of the disease. This suggests the need for studies on nutrients that affect epigenetic mechanisms of transcription, such as DNA methylation and post-translational modifications of histones. In the present review, a new examination of the relationship between diet and breast cancer based on transcription control is proposed in light of epidemiological, animal and clinical studies. The mechanisms underlying the impact of diets on breast cancer development and factors that impede reaching clear conclusions are discussed. Understanding the interaction between nutrition and epigenetics (gene expression control via chromatin structure) is critical in light of the influence of diet during early stages of mammary gland development on breast cancer risk, suggesting a persistent effect on gene expression as shown by the influence of certain nutrients on DNA methylation. Successful development of breast cancer prevention strategies will require appropriate models, identification of biological markers for rapid assessment of preventive interventions, and coordinated worldwide research to discern the effects of diet.
Collapse
|
61
|
Muñoz P, Iliou MS, Esteller M. Epigenetic alterations involved in cancer stem cell reprogramming. Mol Oncol 2012; 6:620-36. [PMID: 23141800 PMCID: PMC5528346 DOI: 10.1016/j.molonc.2012.10.006] [Citation(s) in RCA: 120] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Accepted: 10/17/2012] [Indexed: 02/07/2023] Open
Abstract
Current hypotheses suggest that tumors originate from cells that carry out a process of "malignant reprogramming" driven by genetic and epigenetic alterations. Multiples studies reported the existence of stem-cell-like cells that acquire the ability to self-renew and are able to generate the bulk of more differentiated cells that form the tumor. This population of cancer cells, called cancer stem cells (CSC), is responsible for sustaining the tumor growth and, under determined conditions, can disseminate and migrate to give rise to secondary tumors or metastases to distant organs. Furthermore, CSCs have shown to be more resistant to anti-tumor treatments than the non-stem cancer cells, suggesting that surviving CSCs could be responsible for tumor relapse after therapy. These important properties have raised the interest in understanding the mechanisms that govern the generation and maintenance of this special population of cells, considered to lie behind the on/off switches of gene expression patterns. In this review, we summarize the most relevant epigenetic alterations, from DNA methylation and histone modifications to the recently discovered miRNAs that contribute to the regulation of cancer stem cell features in tumor progression, metastasis and response to chemotherapy.
Collapse
Affiliation(s)
- Purificación Muñoz
- Cancer Epigenetics and Biology Program, Bellvitge Biomedical Research Institute, Barcelona, Spain
| | | | | |
Collapse
|
62
|
Lu W, Lin C, King TD, Chen H, Reynolds RC, Li Y. Silibinin inhibits Wnt/β-catenin signaling by suppressing Wnt co-receptor LRP6 expression in human prostate and breast cancer cells. Cell Signal 2012; 24:2291-6. [PMID: 22820499 DOI: 10.1016/j.cellsig.2012.07.009] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2012] [Revised: 07/10/2012] [Accepted: 07/16/2012] [Indexed: 02/07/2023]
Abstract
Silibinin is a natural compound isolated from milk thistle seed extracts, and has traditionally been used as a hepatoprotectant. A number of studies have also established the cancer therapeutic and chemopreventive role of silibinin in both in vitro and in vivo models. The low density lipoprotein receptor-related protein-6 (LRP6) is an essential Wnt co-receptor for the Wnt/β-catenin pathway and represents a promising target for cancer prevention and therapy. In the present study, we found that silibinin was able to repress endogenous LRP6 expression and block Wnt3A-induced LRP6 phosphorylation and Wnt/β-catenin signaling activation in HEK293 cells. Importantly, silibinin was also able to suppress endogenous LRP6 expression and phosphorylation and block Wnt/β-catenin signaling in prostate cancer PC-3 and DU-145 cells and breast cancer MDA-MB-231 and T-47D cells. Mechanistically, silibinin inhibited LRP6 promoter activity and decreased LRP6 mRNA levels in prostate and breast cancer cells. Finally, we demonstrated that silibinin displayed anticancer activity with IC(50) values comparable to those shown to suppress LRP6 expression and Wnt/β-catenin signaling activities in prostate and breast cancer cells. Our data indicate that silibinin is a novel small molecule Wnt/β-catenin signaling inhibitor by suppressing Wnt co-receptor LRP6 expression at the transcription level, and that the anti-cancer activity of silibinin is associated with its inhibitory effect on Wnt/LRP6 signaling.
Collapse
Affiliation(s)
- Wenyan Lu
- Department of Biochemistry and Molecular Biology, Drug Discovery Division, Southern Research Institute, Birmingham, AL 35205, USA
| | | | | | | | | | | |
Collapse
|
63
|
Wnt pathway inhibition via the targeting of Frizzled receptors results in decreased growth and tumorigenicity of human tumors. Proc Natl Acad Sci U S A 2012; 109:11717-22. [PMID: 22753465 DOI: 10.1073/pnas.1120068109] [Citation(s) in RCA: 463] [Impact Index Per Article: 35.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The Wnt/β-catenin pathway, which signals through the Frizzled (Fzd) receptor family and several coreceptors, has long been implicated in cancer. Here we demonstrate a therapeutic approach to targeting the Wnt pathway with a monoclonal antibody, OMP-18R5. This antibody, initially identified by binding to Frizzled 7, interacts with five Fzd receptors through a conserved epitope within the extracellular domain and blocks canonical Wnt signaling induced by multiple Wnt family members. In xenograft studies with minimally passaged human tumors, this antibody inhibits the growth of a range of tumor types, reduces tumor-initiating cell frequency, and exhibits synergistic activity with standard-of-care chemotherapeutic agents.
Collapse
|
64
|
Sun XF, Li L, Li XJ, Shen W. Methylation pattern of oncogene HRAS gene promoter region and its clinical relevance to urocystic tumorigenesis. Mol Biol Rep 2012; 39:8431-7. [PMID: 22707223 DOI: 10.1007/s11033-012-1696-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2012] [Accepted: 06/06/2012] [Indexed: 12/31/2022]
Abstract
The HRAS gene encodes a protein with a molecular weight of 21 kDa (P21) called H-Ras that is involved primarily in regulating cell growth, division and apoptosis. Through a process known as signal transduction, the H-Ras protein relays signals from outside of the cell to the cell's nucleus. These signals instruct the cell to grow or divide. HRAS is in the Ras family of oncogenes. When mutated, oncogenes have the potential to cause normal cells to become cancerous cells. Considering the upsurge of evidences that abnormality in CpG methylation of the oncogene promoter region can cause cancer, we want to understand the relationships between the methylation status of the HRAS promoter region and bladder cancer. To investigate the methylation pattern of HRAS gene transcriptional regulation region (TRR), bisulfite-sequencing PCR-based sequencing analysis was performed among 15 bladder cancer tissues and 5 normal bladder tissues. Analysis of HRAS gene TRR methylation showed that the methylation level of HRAS has clinical relevance (P = 0.0049, by unpaired Student's t test) with bladder cancer. Furthermore, the unpaired Student's t test analysis showed the extremely significant relationship between tumor and normal at CpG site of the 3rd (P < 0.0001), 28th (P = 0.0006), and significant association between tumor and methylation at CpG site of the 12th (P = 0.0024). Abnormal methylation of the HRAS gene may be an early event during urocystic tumorigenesis and may be further used as a cancer biomarker in bladder tissue for early diagnosis and a potential therapeutic target.
Collapse
Affiliation(s)
- Xiao-Feng Sun
- Laboratory of Germ Cell Biology, Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, China
| | | | | | | |
Collapse
|
65
|
Hernandez-Vargas H, Sincic N, Ouzounova M, Herceg Z. Epigenetic signatures in stem cells and cancer stem cells. Epigenomics 2012; 1:261-80. [PMID: 22122702 DOI: 10.2217/epi.09.19] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The physiological properties of pluripotency in stem cells and the processes of cell specialization are governed by epigenetic mechanisms, as they are inheritable but not dependent on the cell genotype. There is cumulating evidence demonstrating the presence of cells with stem cell properties within tumors, suggesting that these cells are responsible for tumor growth and heterogeneity. As epigenetic control of self-renewal and pluripotency is a hallmark of stem cells, there is increased interest in studying similar epigenetic mechanisms governing these stemness properties in cancer stem cells. Here we will review the evidence supporting a role for epigenetic mechanisms in the induction of cancer stem cells, with an emphasis on the epigenetic regulatory networks involved in the establishment of normal self-renewal and pluripotency, and their potential deregulation in cancer. We will also discuss the data supporting the plasticity of these mechanisms and its potential therapeutic implications.
Collapse
Affiliation(s)
- Hector Hernandez-Vargas
- Epigenetics Group, International Agency for Research on Cancer, 150 cours Albert-Thomas, Lyon cedex 08, France
| | | | | | | |
Collapse
|
66
|
Hallett RM, Kondratyev MK, Giacomelli AO, Nixon AML, Girgis-Gabardo A, Ilieva D, Hassell JA. Small molecule antagonists of the Wnt/β-catenin signaling pathway target breast tumor-initiating cells in a Her2/Neu mouse model of breast cancer. PLoS One 2012; 7:e33976. [PMID: 22470504 PMCID: PMC3314694 DOI: 10.1371/journal.pone.0033976] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2011] [Accepted: 02/20/2012] [Indexed: 12/18/2022] Open
Abstract
Background Recent evidence suggests that human breast cancer is sustained by a minor subpopulation of breast tumor-initiating cells (BTIC), which confer resistance to anticancer therapies and consequently must be eradicated to achieve durable breast cancer cure. Methods/Findings To identify signaling pathways that might be targeted to eliminate BTIC, while sparing their normal stem and progenitor cell counterparts, we performed global gene expression profiling of BTIC- and mammary epithelial stem/progenitor cell- enriched cultures derived from mouse mammary tumors and mammary glands, respectively. Such analyses suggested a role for the Wnt/Beta-catenin signaling pathway in maintaining the viability and or sustaining the self-renewal of BTICs in vitro. To determine whether the Wnt/Beta-catenin pathway played a role in BTIC processes we employed a chemical genomics approach. We found that pharmacological inhibitors of Wnt/β-catenin signaling inhibited sphere- and colony-formation by primary breast tumor cells and primary mammary epithelial cells, as well as by tumorsphere- and mammosphere-derived cells. Serial assays of self-renewal in vitro revealed that the Wnt/Beta-catenin signaling inhibitor PKF118–310 irreversibly affected BTIC, whereas it functioned reversibly to suspend the self-renewal of mammary epithelial stem/progenitor cells. Incubation of primary tumor cells in vitro with PKF118–310 eliminated their capacity to subsequently seed tumor growth after transplant into syngeneic mice. Administration of PKF118–310 to tumor-bearing mice halted tumor growth in vivo. Moreover, viable tumor cells harvested from PKF118–310 treated mice were unable to seed the growth of secondary tumors after transplant. Conclusions These studies demonstrate that inhibitors of Wnt/β-catenin signaling eradicated BTIC in vitro and in vivo and provide a compelling rationale for developing such antagonists for breast cancer therapy.
Collapse
Affiliation(s)
| | | | | | | | | | | | - John A. Hassell
- Department of Biochemistry and Biomedical Sciences, Centre for Functional Genomics, McMaster University, Hamilton, Ontario, Canada
- * E-mail:
| |
Collapse
|
67
|
Hallett RM, Kondratyev MK, Giacomelli AO, Nixon AML, Girgis-Gabardo A, Ilieva D, Hassell JA. Small molecule antagonists of the Wnt/β-catenin signaling pathway target breast tumor-initiating cells in a Her2/Neu mouse model of breast cancer. PLoS One 2012. [PMID: 22470504 DOI: 10.1371/journal.pone.0033976pone-d-11-22474] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Recent evidence suggests that human breast cancer is sustained by a minor subpopulation of breast tumor-initiating cells (BTIC), which confer resistance to anticancer therapies and consequently must be eradicated to achieve durable breast cancer cure. METHODS/FINDINGS To identify signaling pathways that might be targeted to eliminate BTIC, while sparing their normal stem and progenitor cell counterparts, we performed global gene expression profiling of BTIC- and mammary epithelial stem/progenitor cell- enriched cultures derived from mouse mammary tumors and mammary glands, respectively. Such analyses suggested a role for the Wnt/Beta-catenin signaling pathway in maintaining the viability and or sustaining the self-renewal of BTICs in vitro. To determine whether the Wnt/Beta-catenin pathway played a role in BTIC processes we employed a chemical genomics approach. We found that pharmacological inhibitors of Wnt/β-catenin signaling inhibited sphere- and colony-formation by primary breast tumor cells and primary mammary epithelial cells, as well as by tumorsphere- and mammosphere-derived cells. Serial assays of self-renewal in vitro revealed that the Wnt/Beta-catenin signaling inhibitor PKF118-310 irreversibly affected BTIC, whereas it functioned reversibly to suspend the self-renewal of mammary epithelial stem/progenitor cells. Incubation of primary tumor cells in vitro with PKF118-310 eliminated their capacity to subsequently seed tumor growth after transplant into syngeneic mice. Administration of PKF118-310 to tumor-bearing mice halted tumor growth in vivo. Moreover, viable tumor cells harvested from PKF118-310 treated mice were unable to seed the growth of secondary tumors after transplant. CONCLUSIONS These studies demonstrate that inhibitors of Wnt/β-catenin signaling eradicated BTIC in vitro and in vivo and provide a compelling rationale for developing such antagonists for breast cancer therapy.
Collapse
Affiliation(s)
- Robin M Hallett
- Department of Biochemistry and Biomedical Sciences, Centre for Functional Genomics, McMaster University, Hamilton, Ontario, Canada
| | | | | | | | | | | | | |
Collapse
|
68
|
King TD, Suto MJ, Li Y. The Wnt/β-catenin signaling pathway: a potential therapeutic target in the treatment of triple negative breast cancer. J Cell Biochem 2012; 113:13-8. [PMID: 21898546 PMCID: PMC10924801 DOI: 10.1002/jcb.23350] [Citation(s) in RCA: 215] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Breast cancer continues to be a serious health problem particularly in developed countries. Of particular concern is triple negative breast cancer (TNBC) which does not respond well to standard hormone therapy and is associated with poor overall patient prognosis. Recent studies indicate that Wnt/β-catenin signaling is particularly activated in TNBC, such that the Wnt receptor frizzled-7 (FZD7) and the Wnt co-receptor LRP6 were found to be up regulated in TNBC. In addition, it has been demonstrated that transcriptional knockdown of LRP6 or FZD7 in TNBC cells suppressed tumor growth in vivo. Furthermore, salinomycin, a selective breast cancer stem cell killer, was recently demonstrated to be an inhibitor of Wnt/β-catenin signaling by inducing LRP6 degradation. Therefore, the Wnt/β-catenin signaling pathway and particularly the Wnt receptors on the cell surface may serve as novel therapeutic targets for the treatment of TNBC.
Collapse
Affiliation(s)
- Taj D. King
- Department of Biochemistry and Molecular Biology, Drug Discovery Division, Southern Research Institute, 2000 Ninth Avenue South, Birmingham, AL 35205, USA
| | - Mark J. Suto
- Department of Biochemistry and Molecular Biology, Drug Discovery Division, Southern Research Institute, 2000 Ninth Avenue South, Birmingham, AL 35205, USA
| | - Yonghe Li
- Department of Biochemistry and Molecular Biology, Drug Discovery Division, Southern Research Institute, 2000 Ninth Avenue South, Birmingham, AL 35205, USA
| |
Collapse
|
69
|
Liu JB, Qiang FL, Dong J, Cai J, Zhou SH, Shi MX, Chen KP, Hu ZB. Plasma DNA methylation of Wnt antagonists predicts recurrence of esophageal squamous cell carcinoma. World J Gastroenterol 2011; 17:4917-21. [PMID: 22171134 PMCID: PMC3235636 DOI: 10.3748/wjg.v17.i44.4917] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2011] [Revised: 08/06/2011] [Accepted: 08/13/2011] [Indexed: 02/06/2023] Open
Abstract
AIM: To detect the effects of plasma DNA methylation of Wnt antagonists/inhibitors on recurrence of esophageal squamous cell carcinoma (ESCC).
METHODS: We used methylation-specific polymerase chain reaction to detect hypermethylation of the promoter of four Wnt antagonists/inhibitors (SFRP-1, WIF-1, DKK-3 and RUNX3) using DNA from the plasma of ESCC patients (n = 81) and analyzed the association between promoter hypermethylation of Wnt pathway modulator genes and the two-year recurrence of ESCC.
RESULTS: Hypermethylation of SFRP-1, DKK-3 and RUNX-3 was significantly associated with an increased risk of ESCC recurrence (P = 0.001, 0.003 and 0.001 for SFRP-1, DKK-3 and RUNX3, respectively). Patients carrying two to three methylated genes had a significantly elevated risk of recurrence compared with those not carrying methylated genes (odds ratio = 15.69, 95% confidential interval: 2.97-83). The area under the receiver operating characteristic curve (AUC) was 77.1 for ESCC recurrence prediction (sensitivity = 66.67 and specificity = 83.3). When combining methylated genes and the clinical stage, the AUC was 83.69, with a sensitivity of 76.19 and a specificity of 83.3.
CONCLUSION: The status of promoter hypermethylation of Wnt antagonists/inhibitors in plasma may serve as a non-invasive prognostic biomarker for ESCC.
Collapse
|
70
|
Dai W, Teodoridis JM, Zeller C, Graham J, Hersey J, Flanagan JM, Stronach E, Millan DW, Siddiqui N, Paul J, Brown R. Systematic CpG islands methylation profiling of genes in the wnt pathway in epithelial ovarian cancer identifies biomarkers of progression-free survival. Clin Cancer Res 2011; 17:4052-62. [PMID: 21459799 PMCID: PMC3431504 DOI: 10.1158/1078-0432.ccr-10-3021] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Wnt pathways control key biological processes that potentially impact on tumor progression and patient survival. We aimed to evaluate DNA methylation at promoter CpG islands (CGI) of Wnt pathway genes in ovarian tumors at presentation and identify biomarkers of patient progression-free survival (PFS). EXPERIMENTAL DESIGN Epithelial ovarian tumors (screening study n = 120, validation study n = 61), prospectively collected through a cohort study, were analyzed by differential methylation hybridization at 302 loci spanning 189 promoter CGIs at 137 genes in Wnt pathways. The association of methylation and PFS was examined by Cox proportional hazards model. RESULTS DNA methylation is associated with PFS at 20 of 302 loci (P < 0.05, n = 111), with 5 loci significant at false discovery rate (FDR) less than 10%. A total of 11 of 20 loci retain significance in an independent validation cohort (n = 48, P ≤ 0.05, FDR ≤ 10%), and 7 of these loci, at FZD4, DVL1, NFATC3, ROCK1, LRP5, AXIN1, and NKD1 genes, are independent from clinical parameters (adjusted P < 0.05). Increased methylation at these loci associates with increased hazard of disease progression. A multivariate Cox model incorporates only NKD1 and DVL1, identifying two groups differing in PFS [HR = 2.09; 95% CI (1.39-3.15); permutation test P < 0.005]. Methylation at DVL1 and NFATC3 show significant association with response. Consistent with their epigenetic regulation, reduced expression of FZD4, DVL1, and ROCK1 is an indicator of early-disease relapse in an independent ovarian tumor cohort (n = 311, adjusted P < 0.05). CONCLUSION The data highlight the importance of epigenetic regulation of multiple promoter CGIs of Wnt pathway genes in ovarian cancer and identify methylation at NKD1 and DVL1 as independent predictors of PFS.
Collapse
Affiliation(s)
- Wei Dai
- Epigenetics Unit, Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital, Du Cane Road, London, UK W12 0NN
| | - Jens M. Teodoridis
- Epigenetics Unit, Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital, Du Cane Road, London, UK W12 0NN
| | - Constanze Zeller
- Epigenetics Unit, Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital, Du Cane Road, London, UK W12 0NN
| | - Janet Graham
- Epigenetics Unit, Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital, Du Cane Road, London, UK W12 0NN
| | - Jenny Hersey
- Section of Medicine, Institute for Cancer Research, Sutton UK SM2 5NG
| | - James M. Flanagan
- Epigenetics Unit, Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital, Du Cane Road, London, UK W12 0NN
| | - Euan Stronach
- Ovarian Cancer Action Research Centre, Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital, Du Cane Road, London, UK W12 0NN
| | - David W. Millan
- Department of Pathology, Glasgow Royal Infirmary, Castle Street, Glasgow, G4 OSF
| | - Nadeem Siddiqui
- Department of Gynaecology, Glasgow Royal Infirmary, Glasgow, UK G31 2ER
| | - Jim Paul
- Cancer Research UK Clinical Trials Unit, Glasgow, The Beatson West of Scotland Cancer Centre, Level 0, 1053 Gt. Western Road, Glasgow, UK G12 0YN
| | - Robert Brown
- Epigenetics Unit, Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital, Du Cane Road, London, UK W12 0NN
- Section of Medicine, Institute for Cancer Research, Sutton UK SM2 5NG
| |
Collapse
|
71
|
Eichhoff OM, Weeraratna A, Zipser MC, Denat L, Widmer DS, Xu M, Kriegl L, Kirchner T, Larue L, Dummer R, Hoek KS. Differential LEF1 and TCF4 expression is involved in melanoma cell phenotype switching. Pigment Cell Melanoma Res 2011; 24:631-42. [PMID: 21599871 DOI: 10.1111/j.1755-148x.2011.00871.x] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Recent observations suggest that melanoma cells drive disease progression by switching back and forth between phenotypic states of proliferation and invasion. Phenotype switching has been linked to changes in Wnt signalling, and we therefore looked for cell phenotype-specific differences in the levels and activity of β-catenin and its LEF/TCF co-factors. We found that while cytosolic β-catenin distribution is phenotype-specific (membrane-associated in proliferative cells and cytosolic in invasive cells), its nuclear distribution and activity is not. Instead, the expression patterns of two β-catenin co-factors, LEF1 and TCF4, are both phenotype-specific and inversely correlated. LEF1 is preferentially expressed by differentiated/proliferative phenotype cells and TCF4 by dedifferentiated/invasive phenotype cells. Knock-down experiments confirmed that these co-factors are important for the phenotype-specific expression of M-MITF, WNT5A and other genes and that LEF1 suppresses TCF4 expression independently of β-catenin. Our data show that melanoma cell phenotype switching behaviour is regulated by differential LEF1/TCF4 activity.
Collapse
Affiliation(s)
- Ossia M Eichhoff
- Department of Dermatology, University Hospital of Zürich, Zürich, Switzerland
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
72
|
Bioinformatic analyses identifies novel protein-coding pharmacogenomic markers associated with paclitaxel sensitivity in NCI60 cancer cell lines. BMC Med Genomics 2011; 4:18. [PMID: 21314952 PMCID: PMC3050680 DOI: 10.1186/1755-8794-4-18] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2010] [Accepted: 02/11/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Paclitaxel is a microtubule-stabilizing drug that has been commonly used in treating cancer. Due to genetic heterogeneity within patient populations, therapeutic response rates often vary. Here we used the NCI60 panel to identify SNPs associated with paclitaxel sensitivity. Using the panel's GI50 response data available from Developmental Therapeutics Program, cell lines were categorized as either sensitive or resistant. PLINK software was used to perform a genome-wide association analysis of the cellular response to paclitaxel with the panel's SNP-genotype data on the Affymetrix 125 k SNP array. FastSNP software helped predict each SNP's potential impact on their gene product. mRNA expression differences between sensitive and resistant cell lines was examined using data from BioGPS. Using Haploview software, we investigated for haplotypes that were more strongly associated with the cellular response to paclitaxel. Ingenuity Pathway Analysis software helped us understand how our identified genes may alter the cellular response to paclitaxel. RESULTS 43 SNPs were found significantly associated (FDR<0.005) with paclitaxel response, with 10 belonging to protein-coding genes (CFTR, ROBO1, PTPRD, BTBD12, DCT, SNTG1, SGCD, LPHN2, GRIK1, ZNF607). SNPs in GRIK1, DCT, SGCD and CFTR were predicted to be intronic enhancers, altering gene expression, while SNPs in ZNF607 and BTBD12 cause conservative missense mutations. mRNA expression analysis supported these findings as GRIK1, DCT, SNTG1, SGCD and CFTR showed significantly (p<0.05) increased expression among sensitive cell lines. Haplotypes found in GRIK1, SGCD, ROBO1, LPHN2, and PTPRD were more strongly associated with response than their individual SNPs. CONCLUSIONS Our study has taken advantage of available genotypic data and its integration with drug response data obtained from the NCI60 panel. We identified 10 SNPs located within protein-coding genes that were not previously shown to be associated with paclitaxel response. As only five genes showed differential mRNA expression, the remainder would not have been detected solely based on expression data. The identified haplotypes highlight the role of utilizing SNP combinations within genomic loci of interest to improve the risk determination associated with drug response. These genetic variants represent promising biomarkers for predicting paclitaxel response and may play a significant role in the cellular response to paclitaxel.
Collapse
|
73
|
Griffiths EA, Gore SD, Hooker C, McDevitt MA, Karp JE, Smith BD, Mohammad HP, Ye Y, Herman JG, Carraway HE. Acute myeloid leukemia is characterized by Wnt pathway inhibitor promoter hypermethylation. Leuk Lymphoma 2010; 51:1711-9. [PMID: 20795789 DOI: 10.3109/10428194.2010.496505] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Nuclear localization of non-phosphorylated, active beta-catenin is a measure of Wnt pathway activation and is associated with adverse outcome in patients with acute myeloid leukemia (AML). While genetic alterations of the Wnt pathway are infrequent in AML, inhibitors of this pathway are silenced by promoter methylation in other malignanices. Leukemia cell lines were examined for Wnt pathway inhibitor methylation and total beta-catenin levels, and had frequent methylation of Wnt inhibitors and upregulated beta-catenin by Western blot and immunofluorescence. One hundred sixty-nine AML samples were examined for methylation of Wnt inhibitor genes. Diagnostic samples from 72 patients with normal cytogenetics who received standard high-dose induction chemotherapy were evaluated for associations between methylation and event-free or overall survival. Extensive methylation of Wnt pathway inhibitor genes was observed in cell lines, and 89% of primary AML samples had at least one methylated gene: DKK1 (16%), DKK3 (8%), RUNX3 (27%), sFRP1 (34%), sFRP2 (66%), sFRP4 (9%), sFRP5 (54%), SOX17 (29%), and WIF1 (32%). In contrast to epithelial tumors, methylation of APC (2%) and RASSF1A (0%) was rare. In patients with AML with normal cytogenetics, sFRP2 and sFRP5 methylation at the time of diagnosis was associated with an increased risk of relapse, and sFRP2 methylation was associated with an increased risk for death. In patients with AML: (a) there is a high frequency of Wnt pathway inhibitor methylation; (b) Wnt pathway inhibitor methylation is distinct from that observed in epithelial malignancies; and (c) methylation of sFRP2 and sFRP5 may predict adverse clinical outcome in patients with normal karyotype AML.
Collapse
Affiliation(s)
- Elizabeth A Griffiths
- Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD 21231, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
74
|
Klemm F, Bleckmann A, Siam L, Chuang H, Rietkötter E, Behme D, Schulz M, Schaffrinski M, Schindler S, Trümper L, Kramer F, Beissbarth T, Stadelmann C, Binder C, Pukrop T. β-catenin-independent WNT signaling in basal-like breast cancer and brain metastasis. Carcinogenesis 2010; 32:434-42. [DOI: 10.1093/carcin/bgq269] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
75
|
Aypar U, Morgan WF, Baulch JE. Radiation-induced genomic instability: Are epigenetic mechanisms the missing link? Int J Radiat Biol 2010; 87:179-91. [DOI: 10.3109/09553002.2010.522686] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
76
|
Wend P, Holland JD, Ziebold U, Birchmeier W. Wnt signaling in stem and cancer stem cells. Semin Cell Dev Biol 2010; 21:855-63. [PMID: 20837152 DOI: 10.1016/j.semcdb.2010.09.004] [Citation(s) in RCA: 151] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2010] [Accepted: 09/06/2010] [Indexed: 10/19/2022]
Abstract
Canonical Wnt signaling supports the formation and maintenance of stem and cancer stem cells. Recent studies have elucidated epigenetic mechanisms that control pluripotency and stemness, and allow a first assessment how embryonic and tissue stem cells are generated and maintained, and how Wnt signaling might be involved. The core of this review highlights the roles of Wnt signaling in stem and cancer stem cells of tissues such as skin, intestine and mammary gland. Lastly, we refer to the characterization of novel and powerful inhibitors of canonical Wnt signaling and describe attempts to bring these compounds into preclinical and clinical studies.
Collapse
Affiliation(s)
- Peter Wend
- Max-Delbrück Center for Molecular Medicine, Berlin, Germany
| | | | | | | |
Collapse
|
77
|
Varley KE, Mitra RD. Bisulfite Patch PCR enables multiplexed sequencing of promoter methylation across cancer samples. Genome Res 2010; 20:1279-87. [PMID: 20627893 DOI: 10.1101/gr.101212.109] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Aberrant DNA methylation frequently occurs at gene promoters during cancer progression. It is important to identify these loci because they are often misregulated and drive tumorigenesis. Bisulfite sequencing is the most direct and highest resolution assay for identifying aberrant promoter methylation. Recently, genomic capture methods have been combined with next-generation sequencing to enable genome-scale surveys of methylation in individual samples. However, it is challenging to validate candidate loci identified by these approaches because an efficient method to bisulfite sequence more than 50 differentially methylated loci across a large number of samples does not exist. To address this problem, we developed Bisulfite Patch PCR, which enables highly multiplexed bisulfite PCR and sequencing across many samples. Using this method, we successfully amplified 100% of 94 targeted gene promoters simultaneously in the same reaction. By incorporating sample-specific DNA barcodes into the amplicons, we analyzed 48 samples in a single run of the 454 Life Sciences (Roche) FLX sequencer. The method requires small amounts of starting DNA (250 ng) and does not require a shotgun library construction. The method was highly specific; 90% of sequencing reads aligned to targeted loci. The targeted promoters were from genes that are frequently mutated in breast and colon cancer, and the samples included breast and colon tumor and adjacent normal tissue. This approach allowed us to identify nine gene promoters that exhibit tumor-specific DNA methylation defects that occur frequently in colon and breast cancer. We also analyzed single nucleotide polymorphisms to observe DNA methylation that accumulated on specific alleles during tumor development. This method is broadly applicable for studying DNA methylation across large numbers of patient samples using next-generation sequencing.
Collapse
Affiliation(s)
- Katherine Elena Varley
- Department of Genetics, Center for Genome Sciences, Washington University School of Medicine, St. Louis, Missouri 63108, USA
| | | |
Collapse
|
78
|
Huang KT, Dobrovic A, Yan M, Karim RZ, Lee CS, Lakhani SR, Fox SB. DNA methylation profiling of phyllodes and fibroadenoma tumours of the breast. Breast Cancer Res Treat 2010; 124:555-65. [PMID: 20563638 DOI: 10.1007/s10549-010-0970-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2010] [Accepted: 05/21/2010] [Indexed: 12/21/2022]
Abstract
Phyllodes tumours and cellular fibroadenomas are both fibroepithelial tumours of the breast. Phyllodes tumours, unlike fibroadenomas, have the ability to recur and metastasise. Although these lesions can be distinguished by their stromal cellularity, mitotic index, presence or absence of stromal overgrowth and cellular atypia, there is overlap and not infrequently a definitive diagnosis cannot be made, particularly on biopsy. We sought to evaluate whether DNA promoter methylation profiling using selected genes known to be methylated in cancer would allow us to learn more about the biology of these tumours, and whether it could identify methylation markers that could differentiate phyllodes tumours from fibroadenomas and/or distinguish phyllodes tumours of different grades. Methylation-sensitive high resolution melting (MS-HRM) was used to screen promoter DNA methylation changes in 86 phyllodes tumours (15 benign, 28 borderline, 43 malignant) and 26 fibroadenomas. A panel of 11 genes (RASSF1A, TWIST1, APC, WIF1, MGMT, MAL, RARβ, CDKN2A, CDH1, TP73 and MLH1) was tested. Methylation status was correlated with histology and with clinicopathological parameters. Five of the gene promoters showed some methylation in a proportion of phyllodes tumours; RASSF1A, 45.3%; TWIST1, 10.7%; APC, 4.1%; WIF1, 2.9% and MGMT, 1.3%. Only two genes showed any methylation in fibroadenomas usually at background levels; RASSF1A, 53.8% and MGMT, 8.3%. No CDKN2A methylation was observed in either tumour type, contrary to previous reports. Overall, the methylation patterns differed little from that which might be seen in normal cells. However, significant levels of methylation of RASSF1A (24.4%) and TWIST1 (7.1%) was observed in some phyllodes tumours. Elevated RASSF1A and/or TWIST1 methylation was significantly associated with phyllodes tumours compared with fibroadenomas (P = 0.02), TWIST1 methylation correlated with increasing malignancy in phyllodes tumours (P < 0.001). In conclusion, assessment of methylation of RASSF1A and TWIST1 may aid in the diagnosis of phyllodes tumours. The absence of frequent methylation in fibroadenomas supports a non-neoplastic origin.
Collapse
Affiliation(s)
- Katie T Huang
- Molecular Pathology Research and Development Laboratory, Department of Pathology, Peter MacCallum Cancer Centre, Melbourne, VIC, 3002, Australia
| | | | | | | | | | | | | |
Collapse
|
79
|
Ahmed H. Promoter methylation in prostate cancer and its application for the early detection of prostate cancer using serum and urine samples. BIOMARKERS IN CANCER 2010; 2:17-33. [PMID: 24179382 PMCID: PMC2908742 DOI: 10.4137/bic.s3187] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Prostate cancer is the second most common cancer and the second leading cause of
cancer death in men. However, prostate cancer can be effectively treated and
cured, if it is diagnosed in its early stages when the tumor is still confined
to the prostate. Combined with the digital rectal examination, the PSA test has
been widely used to detect prostate cancer. But, the PSA screening method for
early detection of prostate cancer is not reliable due to the high prevalence of
false positive and false negative results. Epigenetic alterations including
hypermethylation of gene promoters are believed to be the early events in
neoplastic progression and thus these methylated genes can serve as biomarkers
for the detection of cancer from clinical specimens. This review discusses DNA
methylation of several gene promoters during prostate carcinogenesis and
evaluates the usefulness of monitoring methylated DNA sequences, such as
GSTP1, RASSF1A, RARβ2 and galectin-3, for early detection
of prostate cancer in tissue biopsies, serum and urine.
Collapse
Affiliation(s)
- Hafiz Ahmed
- Department of Biochemistry and Molecular Biology, Program in Oncology, Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| |
Collapse
|
80
|
Lustberg MB, Ramaswamy B. Epigenetic targeting in breast cancer: therapeutic impact and future direction. ACTA ACUST UNITED AC 2010; 22:369-81. [PMID: 19890494 DOI: 10.1358/dnp.2009.22.7.1405072] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Breast carcinogenesis is a multistep process involving both genetic and epigenetic changes. Epigenetics is defined as a reversible and heritable change in gene expression that is not accompanied by alteration in gene sequence. DNA methylation and histone modifications are the two major epigenetic changes that influence gene expression in cancer. The interaction between methylation and histone modification is intricately orchestrated by the formation of repressor complexes. Several genes involved in proliferation, antiapoptosis, invasion and metastasis have been shown to be methylated in various malignant and premalignant breast neoplasms. The histone deacetylase inhibitors (HDi) have emerged as an important class of drugs to be used synergistically with other systemic therapies in the treatment of breast cancer. Since epigenetic changes are potentially reversible processes, much effort has been directed toward understanding this mechanism with the goal of finding novel therapies as well as more refined diagnostic and prognostic tools in breast cancer.
Collapse
Affiliation(s)
- M B Lustberg
- Division of Hematology and Oncology, Comprehensive Cancer Center, The Ohio State University Medical Center, USA
| | | |
Collapse
|
81
|
Korkola J, Gray JW. Breast cancer genomes--form and function. Curr Opin Genet Dev 2010; 20:4-14. [PMID: 20060285 DOI: 10.1016/j.gde.2009.11.005] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2009] [Revised: 11/25/2009] [Accepted: 11/27/2009] [Indexed: 01/23/2023]
Abstract
This review summarizes advances in our understanding of the genomic and epigenomic abnormalities in breast cancers that are being revealed by the increasingly powerful suite of genomic analysis technologies. It summarizes the remarkable genomic heterogeneity that characterizes the disease, describes mechanisms that shape cancer genomes as they evolve toward metastasis, summarizes important recurrent aberrations that exist in spite of the genomic chaos and that contribute to breast cancer pathophysiology, and describes the use of preclinical models to identify drugs that will be effective against subsets of breast cancers carrying specific genomic and epigenomic abnormalities.
Collapse
Affiliation(s)
- James Korkola
- Life Sciences Division, Lawrence Berkeley National Laboratory, One Cyclotron Road, MS977-250, Berkeley, CA 94127, United States
| | | |
Collapse
|
82
|
Chow KHM, Sun RWY, Lam JB, Li CKL, Xu A, Ma DL, Abagyan R, Wang Y, Che CM. A Gold(III) Porphyrin Complex with Antitumor Properties Targets the Wnt/β-catenin Pathway. Cancer Res 2009; 70:329-37. [DOI: 10.1158/0008-5472.can-09-3324] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
83
|
Xu X, Gammon MD, Zhang Y, Cho YH, Wetmur JG, Bradshaw PT, Garbowski G, Hibshoosh H, Teitelbaum SL, Neugut AI, Santella RM, Chen J. Gene promoter methylation is associated with increased mortality among women with breast cancer. Breast Cancer Res Treat 2009; 121:685-92. [PMID: 19921426 DOI: 10.1007/s10549-009-0628-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2009] [Accepted: 10/30/2009] [Indexed: 01/08/2023]
Abstract
To better understand breast cancer etiology and progression, we explored the association between promoter methylation status of three breast cancer-related genes (BRCA1, APC, and p16) and survival in a large cohort of women with breast cancer. About 800 archived tumor tissues were collected from women diagnosed with a first primary invasive or in situ breast cancer in 1996-1997. The vital status of the participants was followed through the end of year 2005 with a mean follow-up time of 8.0 years. Promoter methylation was assessed by methylation-specific PCR (for BRCA1) and MethyLight (for APC and p16). The association of promoter methylation and breast cancer mortality was evaluated by Cox-proportional hazards models. Methylated promoters were found in 59.0, 48.4, and 3.6% of the tumor samples for BRCA1, APC, and p16, respectively. Breast cancer-specific mortality was strongly associated with promoter methylation of p16 [HR and 95% CI: 3.53 (1.83-6.78)], whereas the associations with of BRCA1 and APC were less pronounced [HR and 95% CI: 1.81 (1.18-2.78) and 1.46 (0.98-2.17), respectively]. Similar associations were observed with all-cause mortality. As the number of methylated genes increased, the risk of breast cancer-specific mortality also increased in a dose-dependent manner (P, trend = 0.01). Importantly, even with our results stratified by hormone receptor status, promoter methylation of the three genes remained predictive of mortality. Our results suggest that promoter methylation could be promising epigenetic markers to be considered for breast cancer survival.
Collapse
Affiliation(s)
- Xinran Xu
- Department of Preventive Medicine, Mount Sinai School of Medicine, New York, NY, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
84
|
Crea F, Danesi R, Farrar WL. Cancer stem cell epigenetics and chemoresistance. Epigenomics 2009; 1:63-79. [DOI: 10.2217/epi.09.4] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Cancer stem cells (CSCs) are thought to sustain cancer progression, metastasis and recurrence after therapy. There is in vitro and in vivo evidence supporting the idea that CSCs are highly chemoresistant. Epigenetic gene regulation is crucial for both stem cell biology and chemoresistance. In this review, we summarize current data on epigenetic mechanisms of chemoresistance in cancer stem cells. We propose a model integrating classical CSC pathways (Wnt, Hedgehog and Notch), epigenetic effectors (Polycomb) and drug resistance genes (ABCG2, CD44). Moreover, we analyze the potential of epigenetic drugs to reverse CSC chemoresistance. In the future, CSC epigenomic profiling could help to dissect specific chemoresistance pathways, and have a significant clinical impact for patient stratification and rational design of therapeutic regimens.
Collapse
|
85
|
Taneja P, Frazier DP, Kendig RD, Maglic D, Sugiyama T, Kai F, Taneja NK, Inoue K. MMTV mouse models and the diagnostic values of MMTV-like sequences in human breast cancer. Expert Rev Mol Diagn 2009; 9:423-40. [PMID: 19580428 DOI: 10.1586/erm.09.31] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Mouse mammary tumor virus (MMTV) long terminal repeat (LTR)-driven transgenic mice are excellent models for breast cancer as they allow for the targeted expression of various oncogenes and growth factors in neoplastic transformation of mammary glands. Numerous MMTV-LTR-driven transgenic mouse models of breast cancer have been created in the past three decades, including MMTV-neu/ErbB2, cyclin D1, cyclin E, Ras, Myc, int-1 and c-rel. These transgenic mice develop mammary tumors with different latency, histology and invasiveness, reflecting the oncogenic pathways activated by the transgene. Recently, homologous sequences of the env gene of MMTV have been identified in approximately 40% of human breast cancers, but not in normal breast or other types of cancers, suggesting possible involvement of mammary tumor virus in human breast carcinogenesis. Accumulating evidence demonstrates the association of MMTV provirus with progesterone receptor, p53 mutations and advanced-stage breast cancer. Thus, the detection of MMTV-like sequences may have diagnostic value to predict the clinical outcome of breast cancer patients.
Collapse
Affiliation(s)
- Pankaj Taneja
- The Department of Pathology, Wake Forest University Health Sciences, Medical Center Boulevard, Winston-Salem, NC 27157, USA
| | | | | | | | | | | | | | | |
Collapse
|
86
|
Ellis L, Atadja PW, Johnstone RW. Epigenetics in cancer: targeting chromatin modifications. Mol Cancer Ther 2009; 8:1409-20. [PMID: 19509247 DOI: 10.1158/1535-7163.mct-08-0860] [Citation(s) in RCA: 323] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Posttranslational modifications to histones affect chromatin structure and function resulting in altered gene expression and changes in cell behavior. Aberrant gene expression and altered epigenomic patterns are major features of cancer. Epigenetic changes including histone acetylation, histone methylation, and DNA methylation are now thought to play important roles in the onset and progression of cancer in numerous tumor types. Indeed dysregulated epigenetic modifications, especially in early neoplastic development, may be just as significant as genetic mutations in driving cancer development and growth. The reversal of aberrant epigenetic changes has therefore emerged as a potential strategy for the treatment of cancer. A number of compounds targeting enzymes that regulate histone acetylation, histone methylation, and DNA methylation have been developed as epigenetic therapies, with some demonstrating efficacy in hematological malignancies and solid tumors. This review highlights the roles of epigenetic modifications to histones and DNA in tumorigenesis and emerging epigenetic therapies being developed for the treatment of cancer.
Collapse
Affiliation(s)
- Leigh Ellis
- Peter MacCallum Cancer Center, St. Andrews Place, East Melbourne 3002, Australia
| | | | | |
Collapse
|
87
|
Epigenetic gene regulation in stem cells and correlation to cancer. Differentiation 2009; 78:1-17. [PMID: 19443100 DOI: 10.1016/j.diff.2009.04.002] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2008] [Revised: 04/03/2009] [Accepted: 04/06/2009] [Indexed: 01/08/2023]
Abstract
Through the classic study of genetics, much has been learned about the regulation and progression of human disease. Specifically, cancer has been defined as a disease driven by genetic alterations, including mutations in tumor-suppressor genes and oncogenes, as well as chromosomal abnormalities. However, the study of normal human development has identified that in addition to classical genetics, regulation of gene expression is also modified by 'epigenetic' alterations including chromatin remodeling and histone variants, DNA methylation, the regulation of polycomb group proteins, and the epigenetic function of non-coding RNA. These changes are modifications inherited during both meiosis and mitosis, yet they do not result in alterations of the actual DNA sequence. A number of biological questions are directly influenced by epigenetics, such as how does a cell know when to divide, differentiate or remain quiescent, and more importantly, what happens when these pathways become altered? Do these alterations lead to the development and/or progression of cancer? This review will focus on summarizing the limited current literature involving epigenetic alterations in the context of human cancer stems cells (CSCs). The extent to which epigenetic changes define cell fate, identity, and phenotype are still under intense investigation, and many questions remain largely unanswered. Before discussing epigenetic gene silencing in CSCs, the different classifications of stem cells and their properties will be introduced. This will be followed by an introduction to the different epigenetic mechanisms. Finally, there will be a discussion of the current knowledge of epigenetic modifications in stem cells, specifically what is known from rodent systems and established cancer cell lines, and how they are leading us to understand human stem cells.
Collapse
|
88
|
Klarmann GJ, Hurt EM, Mathews LA, Zhang X, Duhagon MA, Mistree T, Thomas SB, Farrar WL. Invasive prostate cancer cells are tumor initiating cells that have a stem cell-like genomic signature. Clin Exp Metastasis 2009; 26:433-46. [PMID: 19221883 DOI: 10.1007/s10585-009-9242-2] [Citation(s) in RCA: 141] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2008] [Accepted: 01/24/2009] [Indexed: 12/12/2022]
Abstract
Development of metastasis is a leading cause of cancer-induced death. Acquisition of an invasive tumor cell phenotype suggests loss of cell adhesion and basement membrane breakdown during a process termed epithelial-to-mesenchymal transition (EMT). Recently, cancer stem cells (CSC) were discovered to mediate solid tumor initiation and progression. Prostate CSCs are a subpopulation of CD44(+) cells within the tumor that give rise to differentiated tumor cells and also self-renew. Using both primary and established prostate cancer cell lines, we tested the assumption that CSCs are more invasive. The ability of unsorted cells and CD44-positive and -negative subpopulations to undergo Matrigel invasion and EMT was evaluated, and the gene expression profiles of these cells were analyzed by microarray and a subset confirmed using QRT-PCR. Our data reveal that a subpopulation of CD44(+) CSC-like cells invade Matrigel through an EMT, while in contrast, CD44(-) cells are non-invasive. Furthermore, the genomic profile of the invasive cells closely resembles that of CD44(+)CD24(-) prostate CSCs and shows evidence for increased Hedgehog signaling. Finally, invasive cells from DU145 and primary prostate cancer cells are more tumorigenic in NOD/SCID mice compared with non-invasive cells. Our data strongly suggest that basement membrane invasion, an early and necessary step in metastasis development, is mediated by these potential cancer stem cells.
Collapse
Affiliation(s)
- George J Klarmann
- Cancer Stem Cell Section, Laboratory of Cancer Prevention, SAIC-Frederick Inc., National Cancer Institute at Frederick, Frederick, MD 21702, USA
| | | | | | | | | | | | | | | |
Collapse
|
89
|
Xin F, Li M, Balch C, Thomson M, Fan M, Liu Y, Hammond SM, Kim S, Nephew KP. Computational analysis of microRNA profiles and their target genes suggests significant involvement in breast cancer antiestrogen resistance. Bioinformatics 2009; 25:430-4. [PMID: 19091772 PMCID: PMC2642642 DOI: 10.1093/bioinformatics/btn646] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2008] [Revised: 12/09/2008] [Accepted: 12/12/2008] [Indexed: 12/19/2022] Open
Abstract
MOTIVATION Recent evidence shows significant involvement of microRNAs (miRNAs) in the initiation and progression of numerous cancers; however, the role of these in tumor drug resistance remains unknown. RESULTS By comparing global miRNA and mRNA expression patterns, we examined the role of miRNAs in resistance to the 'pure antiestrogen' fulvestrant, using fulvestrant-resistant MCF7-FR cells and their drug-sensitive parental estrogen receptor (ER)-positive MCF7 cells. We identified 14 miRNAs downregulated in MCF7-FR cells and then used both TargetScan and PITA to predict potential target genes. We found a negative correlation between expression of these miRNAs and their predicted target mRNA transcripts. In genes regulated by multiple miRNAs or having multiple miRNA-targeting sites, an even stronger negative correlation was found. Pathway analyses predicted these miRNAs to regulate specific cancer-associated signal cascades. These results suggest a significant role for miRNA-regulated gene expression in the onset of breast cancer antiestrogen resistance, and an improved understanding of this phenomenon could lead to better therapies for this often fatal condition.
Collapse
Affiliation(s)
- Fuxiao Xin
- School of Informatics, Indiana University, Bloomington, IN 47405, USA
| | | | | | | | | | | | | | | | | |
Collapse
|