51
|
Chang HJ, Mayonove P, Zavala A, De Visch A, Minard P, Cohen-Gonsaud M, Bonnet J. A Modular Receptor Platform To Expand the Sensing Repertoire of Bacteria. ACS Synth Biol 2018; 7:166-175. [PMID: 28946740 PMCID: PMC5880506 DOI: 10.1021/acssynbio.7b00266] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
![]()
Engineered
bacteria promise to revolutionize diagnostics and therapeutics,
yet many applications are precluded by the limited number of detectable
signals. Here we present a general framework to engineer synthetic
receptors enabling bacterial cells to respond to novel ligands. These
receptors are activated via ligand-induced dimerization
of a single-domain antibody fused to monomeric DNA-binding domains
(split-DBDs). Using E. coli as a model system,
we engineer both transmembrane and cytosolic receptors using a VHH
for ligand detection and demonstrate the scalability of our platform
by using the DBDs of two different transcriptional regulators. We
provide a method to optimize receptor behavior by finely tuning protein
expression levels and optimizing interdomain linker regions. Finally,
we show that these receptors can be connected to downstream synthetic
gene circuits for further signal processing. The general nature of
the split-DBD principle and the versatility of antibody-based detection
should support the deployment of these receptors into various hosts
to detect ligands for which no receptor is found in nature.
Collapse
Affiliation(s)
- Hung-Ju Chang
- Centre
de Biochimie Structurale, INSERM U1054, CNRS UMR5048, University of Montpellier, 34090 Montpellier, France
| | - Pauline Mayonove
- Centre
de Biochimie Structurale, INSERM U1054, CNRS UMR5048, University of Montpellier, 34090 Montpellier, France
| | - Agustin Zavala
- Centre
de Biochimie Structurale, INSERM U1054, CNRS UMR5048, University of Montpellier, 34090 Montpellier, France
| | - Angelique De Visch
- Centre
de Biochimie Structurale, INSERM U1054, CNRS UMR5048, University of Montpellier, 34090 Montpellier, France
| | - Philippe Minard
- Institute
for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91191 Gif-sur-Yvette, France
| | - Martin Cohen-Gonsaud
- Centre
de Biochimie Structurale, INSERM U1054, CNRS UMR5048, University of Montpellier, 34090 Montpellier, France
| | - Jerome Bonnet
- Centre
de Biochimie Structurale, INSERM U1054, CNRS UMR5048, University of Montpellier, 34090 Montpellier, France
| |
Collapse
|
52
|
Leong SW, Lim TS, Ismail A, Choong YS. Integration of molecular dynamics simulation and hotspot residues grafting for de novo scFv design against Salmonella Typhi TolC protein. J Mol Recognit 2017; 31:e2695. [PMID: 29230887 DOI: 10.1002/jmr.2695] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 11/13/2017] [Accepted: 11/19/2017] [Indexed: 01/10/2023]
Abstract
With the development of de novo binders for protein targets from non-related scaffolds, many possibilities for therapeutics and diagnostics have been created. In this study, we described the use of de novo design approach to create single-chain fragment variable (scFv) for Salmonella enterica subspecies enterica serovar Typhi TolC protein. Typhoid fever is a global health concern in developing and underdeveloped countries. Rapid typhoid diagnostics will improve disease management and therapy. In this work, molecular dynamics simulation was first performed on a homology model of TolC protein in POPE membrane bilayer to obtain the central structure that was subsequently used as the target for scFv design. Potential hotspot residues capable of anchoring the binders to the target were identified by docking "disembodied" amino acid residues against TolC surface. Next, scFv scaffolds were selected from Protein Data Bank to harbor the computed hotspot residues. The hotspot residues were then incorporated into the scFv scaffold complementarity determining regions. The designs recapitulated binding energy, shape complementarity, and interface surface area of natural protein-antibody interfaces. This approach has yielded 5 designs with high binding affinity against TolC that may be beneficial for the future development of antigen-based detection agents for typhoid diagnostics.
Collapse
Affiliation(s)
- Siew Wen Leong
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Minden, Penang, Malaysia
| | - Theam Soon Lim
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Minden, Penang, Malaysia
| | - Asma Ismail
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Health Campus, Kubang Kerian, Kelantan, Malaysia
| | - Yee Siew Choong
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Minden, Penang, Malaysia
| |
Collapse
|
53
|
Expression and characterization of a recombinant porcinized antibody against the E2 protein of classical swine fever virus. Appl Microbiol Biotechnol 2017; 102:961-970. [DOI: 10.1007/s00253-017-8647-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 11/13/2017] [Accepted: 11/13/2017] [Indexed: 10/18/2022]
|
54
|
Fukuda N, Noi K, Weng L, Kobashigawa Y, Miyazaki H, Wakeyama Y, Takaki M, Nakahara Y, Tatsuno Y, Uchida-Kamekura M, Suwa Y, Sato T, Ichikawa-Tomikawa N, Nomizu M, Fujiwara Y, Ohsaka F, Saitoh T, Maenaka K, Kumeta H, Shinya S, Kojima C, Ogura T, Morioka H. Production of Single-Chain Fv Antibodies Specific for GA-Pyridine, an Advanced Glycation End-Product (AGE), with Reduced Inter-Domain Motion. Molecules 2017; 22:molecules22101695. [PMID: 28994732 PMCID: PMC6151396 DOI: 10.3390/molecules22101695] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 10/08/2017] [Accepted: 10/09/2017] [Indexed: 01/12/2023] Open
Abstract
Due to their lower production cost compared with monoclonal antibodies, single-chain variable fragments (scFvs) have potential for use in several applications, such as for diagnosis and treatment of a range of diseases, and as sensor elements. However, the usefulness of scFvs is limited by inhomogeneity through the formation of dimers, trimers, and larger oligomers. The scFv protein is assumed to be in equilibrium between the closed and open states formed by assembly or disassembly of VH and VL domains. Therefore, the production of an scFv with equilibrium biased to the closed state would be critical to overcome the problem in inhomogeneity of scFv for industrial or therapeutic applications. In this study, we obtained scFv clones stable against GA-pyridine, an advanced glycation end-product (AGE), by using a combination of a phage display system and random mutagenesis. Executing the bio-panning at 37 °C markedly improved the stability of scFvs. We further evaluated the radius of gyration by small-angle X-ray scattering (SAXS), obtained compact clones, and also visualized open.
Collapse
Affiliation(s)
- Natsuki Fukuda
- Department of Analytical and Biophysical Chemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan.
| | - Kentaro Noi
- Department of Molecular Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto 860-0811, Japan.
- CREST, JST, 4-1-8, Honcho, Kawaguchi, Saitama 332-0012, Japan.
| | - Lidong Weng
- Department of Analytical and Biophysical Chemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan.
| | - Yoshihiro Kobashigawa
- Department of Analytical and Biophysical Chemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan.
| | - Hiromi Miyazaki
- Department of Analytical and Biophysical Chemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan.
| | - Yukari Wakeyama
- Department of Analytical and Biophysical Chemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan.
| | - Michiyo Takaki
- Department of Analytical and Biophysical Chemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan.
| | - Yusuke Nakahara
- Department of Analytical and Biophysical Chemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan.
| | - Yuka Tatsuno
- Department of Analytical and Biophysical Chemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan.
| | - Makiyo Uchida-Kamekura
- Department of Analytical and Biophysical Chemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan.
- Graduate School of Environmental Earth Science, Hokkaido University, Kita-10 Nishi-5, Kita-ku, Sapporo 060-0810, Japan.
| | - Yoshiaki Suwa
- Department of Analytical and Biophysical Chemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan.
| | - Takashi Sato
- Department of Analytical and Biophysical Chemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan.
| | - Naoki Ichikawa-Tomikawa
- Graduate School of Environmental Earth Science, Hokkaido University, Kita-10 Nishi-5, Kita-ku, Sapporo 060-0810, Japan.
| | - Motoyoshi Nomizu
- Graduate School of Environmental Earth Science, Hokkaido University, Kita-10 Nishi-5, Kita-ku, Sapporo 060-0810, Japan.
| | - Yukio Fujiwara
- Department of Cell Pathology, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-8556, Japan.
| | - Fumina Ohsaka
- Graduate School of Pharmaceutical Sciences, Hokkaido University, Kita-12 Nishi-6, Kita-ku, Sapporo 060-0812, Japan.
| | - Takashi Saitoh
- Graduate School of Pharmaceutical Sciences, Hokkaido University, Kita-12 Nishi-6, Kita-ku, Sapporo 060-0812, Japan.
| | - Katsumi Maenaka
- Graduate School of Pharmaceutical Sciences, Hokkaido University, Kita-12 Nishi-6, Kita-ku, Sapporo 060-0812, Japan.
| | - Hiroyuki Kumeta
- Global Station of Soft Matter, Global Institution for Collaborative Research and Education, Hokkaido University, Kita-15 Nishi-8, Kita-ku, Sapporo 060-0815, Japan.
| | - Shoko Shinya
- Laboratory of Molecular Biophysics, Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | - Chojiro Kojima
- Laboratory of Molecular Biophysics, Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan.
- Division of Materials Science and Chemical Engineering, Graduate School of Engineering, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan.
| | - Teru Ogura
- Department of Molecular Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto 860-0811, Japan.
- CREST, JST, 4-1-8, Honcho, Kawaguchi, Saitama 332-0012, Japan.
| | - Hiroshi Morioka
- Department of Analytical and Biophysical Chemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan.
| |
Collapse
|
55
|
Identification and verification of hybridoma-derived monoclonal antibody variable region sequences using recombinant DNA technology and mass spectrometry. Mol Immunol 2017; 90:287-294. [PMID: 28865256 DOI: 10.1016/j.molimm.2017.08.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 08/10/2017] [Accepted: 08/16/2017] [Indexed: 11/24/2022]
Abstract
Antibody engineering requires the identification of antigen binding domains or variable regions (VR) unique to each antibody. It is the VR that define the unique antigen binding properties and proper sequence identification is essential for functional evaluation and performance of recombinant antibodies (rAb). This determination can be achieved by sequence analysis of immunoglobulin (Ig) transcripts obtained from a monoclonal antibody (MAb) producing hybridoma and subsequent expression of a rAb. However the polyploidy nature of a hybridoma cell often results in the added expression of aberrant immunoglobulin-like transcripts or even production of anomalous antibodies which can confound production of rAb. An incorrect VR sequence will result in a non-functional rAb and de novo assembly of Ig primary structure without a sequence map is challenging. To address these problems, we have developed a methodology which combines: 1) selective PCR amplification of VR from both the heavy and light chain IgG from hybridoma, 2) molecular cloning and DNA sequence analysis and 3) tandem mass spectrometry (MS/MS) on enzyme digests obtained from the purified IgG. Peptide analysis proceeds by evaluating coverage of the predicted primary protein sequence provided by the initial DNA maps for the VR. This methodology serves to both identify and verify the primary structure of the MAb VR for production as rAb.
Collapse
|
56
|
Generation of a rabbit single-chain fragment variable (scFv) antibody for specific detection of Bradyrhizobium sp. DOA9 in both free-living and bacteroid forms. PLoS One 2017; 12:e0179983. [PMID: 28654662 PMCID: PMC5487062 DOI: 10.1371/journal.pone.0179983] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 06/07/2017] [Indexed: 12/26/2022] Open
Abstract
A simple and reliable method for the detection of specific nitrogen-fixing bacteria in both free-living and bacteroid forms is essential for the development and application of biofertilizer. Traditionally, a polyclonal antibody generated from an immunized rabbit was used for detection. However, the disadvantages of using a polyclonal antibody include limited supply and cross-reactivity to related bacterial strains. This is the first report on the application of phage display technology for the generation of a rabbit recombinant monoclonal antibody for specific detection and monitoring of nitrogen-fixing bacteria in both free-living form and in plant nodules. Bradyrhizobium sp. DOA9, a broad host range soil bacteria, originally isolated from the root nodules of Aeschynomene americana in Thailand was used as a model in this study. A recombinant single-chain fragment variable (scFv) antibody library was constructed from the spleen of a rabbit immunized with DOA9. After three rounds of biopanning, one specific phage-displayed scFv antibody, designated bDOA9rb8, was identified. Specific binding of this antibody was confirmed by phage enzyme-linked immunosorbent assay (phage ELISA). The phage antibody could bind specifically to DOA9 in both free-living cells (pure culture) and bacteroids inside plant nodules. In addition to phage ELISA, specific and robust immunofluorescence staining of both free-living and bacteroid forms could also be observed by confocal-immunofluorescence imaging, without cross-reactivity with other tested bradyrhizobial strains. Moreover, specific binding of free scFv to DOA9 was also demonstrated by ELISA. This recombinant antibody can also be used for the study of the molecular mechanism of plant-microbe interactions in the future.
Collapse
|
57
|
Golay J. Direct targeting of cancer cells with antibodies: What can we learn from the successes and failure of unconjugated antibodies for lymphoid neoplasias? J Autoimmun 2017; 85:6-19. [PMID: 28666691 DOI: 10.1016/j.jaut.2017.06.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 06/11/2017] [Indexed: 12/26/2022]
Abstract
Following approval in 1997 of the anti-CD20 antibody rituximab for the treatment of B-NHL and CLL, many other unconjugated IgG1 MAbs have been tested in pre-clinical and clinical trials for the treatment of lymphoid neoplasms. Relatively few have been approved however and these are directed against a limited number of target antigens (CD20, CD52, CCR4, CD38, CD319). We review here the known biological properties of these antibodies and discuss which factors may have led to their success or may, on the contrary, limit their clinical application. Common factors of the approved MAbs are that the target antigen is expressed at relatively high levels on the neoplastic targets and their mechanism of action is mostly immune-mediated. Indeed most of these MAbs induce ADCC and phagocytosis by macrophages, and many also activate complement, leading to target cell lysis. In contrast direct cell death induction is not a common feature but may enhance efficacy in some cases. Interestingly, a key factor for the success of several MAbs appears to be their capacity to skew immunity towards an anti-tumour mode, by inhibiting/depleting suppressor cells and/or activating immune cells within the microenvironment, independently of FcγRs. We also expose here some of the strategies employed by industry to expand the clinical use of these molecules beyond their original indication. Interestingly, due to the central role of lymphocytes in the control of the immune response, several of the antibodies are now successfully used to treat many different autoimmune diseases and have also been formally approved for some of these new indications. There is little doubt that this trend will continue and that the precise mechanisms of therapeutic MAbs will be further dissected and better understood in the context of both tumour immunology and autoimmunity.
Collapse
Affiliation(s)
- Josée Golay
- Center of Cellular Therapy "G. Lanzani", USC Haematology, Azienda Socio Sanitaria Territoriale Papa Giovanni XXIII, Via Garibaldi 11-13, 24128, Bergamo, Italy.
| |
Collapse
|
58
|
Fernandes CFC, Pereira SDS, Luiz MB, Zuliani JP, Furtado GP, Stabeli RG. Camelid Single-Domain Antibodies As an Alternative to Overcome Challenges Related to the Prevention, Detection, and Control of Neglected Tropical Diseases. Front Immunol 2017. [PMID: 28649245 PMCID: PMC5465246 DOI: 10.3389/fimmu.2017.00653] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Due mainly to properties such as high affinity and antigen specificity, antibodies have become important tools for biomedical research, diagnosis, and treatment of several human diseases. When the objective is to administer them for therapy, strategies are used to reduce the heterologous protein immunogenicity and to improve pharmacokinetic and pharmacodynamic characteristics. Size minimization contributes to ameliorate these characteristics, while preserving the antigen-antibody interaction site. Since the discovery that camelids produce functional antibodies devoid of light chains, studies have proposed the use of single domains for biosensors, monitoring and treatment of tumors, therapies for inflammatory and neurodegenerative diseases, drug delivery, or passive immunotherapy. Despite an expected increase in antibody and related products in the pharmaceutical market over the next years, few research initiatives are related to the development of alternatives for helping to manage neglected tropical diseases (NTDs). In this review, we summarize developments of camelid single-domain antibodies (VHH) in the field of NTDs. Particular attention is given to VHH-derived products, i.e., VHHs fused to nanoparticles, constructed for the development of rapid diagnostic kits; fused to oligomeric matrix proteins for viral neutralization; and conjugated with proteins for the treatment of human parasites. Moreover, paratransgenesis technology using VHHs is an interesting approach to control parasite development in vectors. With enormous biotechnological versatility, facility and low cost for heterologous production, and greater ability to recognize different epitopes, VHHs have appeared as an opportunity to overcome challenges related to the prevention, detection, and control of human diseases, especially NTDs.
Collapse
Affiliation(s)
| | | | - Marcos B Luiz
- Fundação Oswaldo Cruz, Fiocruz Rondônia, Porto Velho, Rondônia, Brazil
| | - Juliana P Zuliani
- Fundação Oswaldo Cruz, Fiocruz Rondônia, Porto Velho, Rondônia, Brazil.,Departamento de Medicina da Universidade Federal de Rondônia, UNIR, Porto Velho, Rondônia, Brazil
| | | | - Rodrigo G Stabeli
- Departamento de Medicina da Universidade Federal de Rondônia, UNIR, Porto Velho, Rondônia, Brazil.,Plataforma Bi-Institucional de Medicina Translacional (Fiocruz-USP), Ribeirão Preto, São Paulo, Brazil
| |
Collapse
|
59
|
Sun F, Wang T, Jiang J, Wang Y, Ma Z, Li Z, Han Y, Pan M, Cai J, Wang M, Zhang J. Engineering a high-affinity humanized anti-CD24 antibody to target hepatocellular carcinoma by a novel CDR grafting design. Oncotarget 2017; 8:51238-51252. [PMID: 28881644 PMCID: PMC5584245 DOI: 10.18632/oncotarget.17228] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 03/23/2017] [Indexed: 01/09/2023] Open
Abstract
Cluster of differentiation 24 (CD24) is a specific surface marker involved in the tumorigenesis and progression of hepatocellular carcinoma (HCC). However, all reported anti-CD24 antibodies are murine ones with inevitable immunogenicity. To address this, a method using both molecular structure and docking-based complementarity determining region (CDR) grafting was employed for humanization. After xenogeneic CDR grafting into a human antibody, three types of canonical residues (in the VL/VH interface core, in the loop foundation, and interaction with loop residues) that support loop conformation and residues involved in the antigen-binding interface were back-mutated. Four engineered antibodies were produced, among which hG7-BM3 has virtually identical 3-D structure and affinity parameters with the parental chimeric antibody cG7. In vitro, hG7-BM3 demonstrated superior immunogenicity and serum stability to cG7. Antibody-dependent cellular cytotoxicity (ADCC), tumor cell internalization and in vivo targeting assays indicate that hG7-BM3 has the potential for development as an antibody-drug conjugate (ADC). We therefore generated the hG7-BM3-VcMMAE conjugate, which was shown to induce tumor cell apoptosis and effectively suppress nude mice bearing HCC xenografts. In conclusion, our study provides new inspiration for antibody humanization and an ADC candidate for laboratory study and clinical applications.
Collapse
Affiliation(s)
- Fumou Sun
- Antibody Engineering Laboratory, State Key Laboratory of Natural Medicines, Department of Molecular Biology, School of Life Science & Technology, China Pharmaceutical University, Nanjing 210009, PR China
| | - Tong Wang
- Antibody Engineering Laboratory, State Key Laboratory of Natural Medicines, Department of Molecular Biology, School of Life Science & Technology, China Pharmaceutical University, Nanjing 210009, PR China
| | - Jiahao Jiang
- Antibody Engineering Laboratory, State Key Laboratory of Natural Medicines, Department of Molecular Biology, School of Life Science & Technology, China Pharmaceutical University, Nanjing 210009, PR China
| | - Yang Wang
- Antibody Engineering Laboratory, State Key Laboratory of Natural Medicines, Department of Molecular Biology, School of Life Science & Technology, China Pharmaceutical University, Nanjing 210009, PR China
| | - Zhaoxiong Ma
- Antibody Engineering Laboratory, State Key Laboratory of Natural Medicines, Department of Molecular Biology, School of Life Science & Technology, China Pharmaceutical University, Nanjing 210009, PR China
| | - Zhaoting Li
- Antibody Engineering Laboratory, State Key Laboratory of Natural Medicines, Department of Molecular Biology, School of Life Science & Technology, China Pharmaceutical University, Nanjing 210009, PR China
| | - Yue Han
- Antibody Engineering Laboratory, State Key Laboratory of Natural Medicines, Department of Molecular Biology, School of Life Science & Technology, China Pharmaceutical University, Nanjing 210009, PR China
| | - Mingzhu Pan
- Antibody Engineering Laboratory, State Key Laboratory of Natural Medicines, Department of Molecular Biology, School of Life Science & Technology, China Pharmaceutical University, Nanjing 210009, PR China
| | - Jialing Cai
- Antibody Engineering Laboratory, State Key Laboratory of Natural Medicines, Department of Molecular Biology, School of Life Science & Technology, China Pharmaceutical University, Nanjing 210009, PR China
| | - Min Wang
- Antibody Engineering Laboratory, State Key Laboratory of Natural Medicines, Department of Molecular Biology, School of Life Science & Technology, China Pharmaceutical University, Nanjing 210009, PR China
| | - Juan Zhang
- Antibody Engineering Laboratory, State Key Laboratory of Natural Medicines, Department of Molecular Biology, School of Life Science & Technology, China Pharmaceutical University, Nanjing 210009, PR China
| |
Collapse
|
60
|
Edgue G, Twyman RM, Beiss V, Fischer R, Sack M. Antibodies from plants for bionanomaterials. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2017; 9. [DOI: 10.1002/wnan.1462] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 01/05/2017] [Accepted: 01/16/2017] [Indexed: 12/25/2022]
Affiliation(s)
- Gueven Edgue
- Department of Molecular Biotechnology; RWTH Aachen University; Aachen Germany
| | | | - Veronique Beiss
- Department of Molecular Biotechnology; RWTH Aachen University; Aachen Germany
| | - Rainer Fischer
- Department of Molecular Biotechnology; RWTH Aachen University; Aachen Germany
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME; Aachen Germany
| | - Markus Sack
- Department of Molecular Biotechnology; RWTH Aachen University; Aachen Germany
| |
Collapse
|
61
|
Tiwari A, Abraham AK, Harrold JM, Zutshi A, Singh P. Optimal Affinity of a Monoclonal Antibody: Guiding Principles Using Mechanistic Modeling. AAPS JOURNAL 2016; 19:510-519. [PMID: 28004347 DOI: 10.1208/s12248-016-0004-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 10/07/2016] [Indexed: 12/21/2022]
Abstract
Affinity optimization of monoclonal antibodies (mAbs) is essential for developing drug candidates with the highest likelihood of clinical success; however, a quantitative approach for setting affinity requirements is often lacking. In this study, we computationally analyzed the in vivo mAb-target binding kinetics to delineate general principles for defining optimal equilibrium dissociation constant ([Formula: see text]) of mAbs against soluble and membrane-bound targets. Our analysis shows that in general [Formula: see text] to achieve 90% coverage for a soluble target is one tenth of its baseline concentration ([Formula: see text]), and is independent of the dosing interval, target turnover rate or the presence of competing ligands. For membrane-bound internalizing targets, it is equal to the ratio of internalization rate of mAb-target complex and association rate constant ([Formula: see text]). In cases where soluble and membrane-bound forms of the target co-exist, [Formula: see text] lies within a range determined by the internalization rate ([Formula: see text]) of the mAb-membrane target complex and the ratio of baseline concentrations of soluble and membrane-bound forms ([Formula: see text]). Finally, to demonstrate practical application of these general rules, we collected target expression and turnover data to project [Formula: see text] for a number of marketed mAbs against soluble (TNFα, RANKL, and VEGF) and membrane-bound targets (CD20, EGFR, and HER2).
Collapse
Affiliation(s)
- Abhinav Tiwari
- Pharmacokinetics, Dynamics and Metabolism, Pfizer, Cambridge, Massachusetts, USA
| | - Anson K Abraham
- Pharmacokinetics, Pharmacodynamics and Drug Metabolism, Merck, West Point, Pennsylvania, USA
| | - John M Harrold
- Department of Pharmacokinetics and Drug Metabolism, Amgen, South San Francisco, California, USA
| | | | - Pratap Singh
- Pharmacokinetics, Dynamics and Metabolism, Pfizer, Cambridge, Massachusetts, USA.
| |
Collapse
|
62
|
Fukuda N, Suwa Y, Uchida M, Kobashigawa Y, Yokoyama H, Morioka H. Role of the mobility of antigen binding site in high affinity antibody elucidated by surface plasmon resonance. J Biochem 2016; 161:37-43. [PMID: 27507818 DOI: 10.1093/jb/mvw050] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 07/20/2016] [Indexed: 11/12/2022] Open
Abstract
Antibody is known to exhibit conformational change in the antigen recognition site after forming the initial complex. This structural change, which is widely known as "induced fit", is believed to be critical for high affinity (Kd of nM range) of antigen-antibody interaction. Elucidation of this 'induced fit' process is essential for rational design of high affinity antibody, while it is prevented by limitation of the available biophysical and biochemical data of the initial complex. Here, we performed kinetic and thermodynamic analysis of the interaction between single-chain variable fragment (denoted as scFv) of 64M5 antibody and a (6-4) photoproduct by using surface plasmon resonance (denoted as SPR). It revealed that the 64M5scFv associates the (6-4) photoproduct at initial step by hydrophobic interactions, and enthalpy-driving interactions, hydrogen bonds and van der Waals interactions, were formed by second step structural rearrangement. Furthermore, mutational analysis revealed that the mobility of the antigen-binding site is critical for the second step. It could be assumed that optimization of the mobility of the antigen recognition site is a clue for rational design of high affinity antibody.
Collapse
Affiliation(s)
- Natsuki Fukuda
- Department of Analytical and Biophysical Chemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Yoshiaki Suwa
- Department of Analytical and Biophysical Chemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Makiyo Uchida
- Department of Analytical and Biophysical Chemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Yoshihiro Kobashigawa
- Department of Analytical and Biophysical Chemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Hideshi Yokoyama
- Labratory of Physical Biochemistry, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Hiroshi Morioka
- Department of Analytical and Biophysical Chemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| |
Collapse
|
63
|
Niesen J, Sack M, Seidel M, Fendel R, Barth S, Fischer R, Stein C. SNAP-Tag Technology: A Useful Tool To Determine Affinity Constants and Other Functional Parameters of Novel Antibody Fragments. Bioconjug Chem 2016; 27:1931-41. [PMID: 27391930 DOI: 10.1021/acs.bioconjchem.6b00315] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Antibody derivatives, such as the single chain fragment variable (scFv), can be developed as diagnostic and therapeutic tools in cancer research, especially in the form of fusion proteins. Such derivatives are easier to produce and modify than monoclonal antibodies (mAbs) and achieve better tissue/tumor penetration. The genetic modification of scFvs is also much more straightforward than the challenging chemical modification of mAbs. Therefore, we constructed two scFvs derived from the approved monoclonal antibodies cetuximab (scFv2112) and panitumumab (scFv1711), both of which are specific for the epidermal growth factor receptor (EGFR), a well-characterized solid tumor antigen. Both scFvs were genetically fused to the SNAP-tag, an engineered version of the human DNA repair enzyme O(6)-alkylguanine DNA alkyltransferase that allows the covalent coupling of benzylguanine (BG)-modified substrates such as fluorescent dyes. The SNAP-tag achieves controllable and irreversible protein modification and is an important tool for experimental studies in vitro and in vivo. The affinity constant of a scFv is a key functional parameter, especially in the context of a fusion protein. Therefore, we developed a method to define the affinity constants of scFv-SNAP fusion proteins by surface plasmon resonance (SPR) spectroscopy. We could confirm that both scFvs retained their functionality after fusion to the SNAP-tag in a variety of procedures and assays, including ELISA, flow cytometry, and confocal microscopy. The experimental procedures described herein, and the new protocol for affinity determination by SPR spectroscopy, are suitable for the preclinical evaluation of diverse antibody formats and derivatives.
Collapse
Affiliation(s)
- Judith Niesen
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME , 52074 Aachen, Germany
| | - Markus Sack
- Institute of Molecular Biotechnology (Biology VII), RWTH Aachen University , 52074 Aachen, Germany
| | - Melanie Seidel
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME , 52074 Aachen, Germany
| | - Rolf Fendel
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME , 52074 Aachen, Germany
| | - Stefan Barth
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME , 52074 Aachen, Germany
| | - Rainer Fischer
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME , 52074 Aachen, Germany.,Institute of Molecular Biotechnology (Biology VII), RWTH Aachen University , 52074 Aachen, Germany
| | - Christoph Stein
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME , 52074 Aachen, Germany
| |
Collapse
|
64
|
Jones ML, Alfaleh MA, Kumble S, Zhang S, Osborne GW, Yeh M, Arora N, Hou JJC, Howard CB, Chin DY, Mahler SM. Targeting membrane proteins for antibody discovery using phage display. Sci Rep 2016; 6:26240. [PMID: 27189586 PMCID: PMC4870581 DOI: 10.1038/srep26240] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 04/28/2016] [Indexed: 12/21/2022] Open
Abstract
A critical factor in the successful isolation of new antibodies by phage display is the presentation of a correctly folded antigen. While this is relatively simple for soluble proteins which can be purified and immobilized onto a plastic surface, membrane proteins offer significant challenges for antibody discovery. Whole cell panning allows presentation of the membrane protein in its native conformation, but is complicated by a low target antigen density, high background of irrelevant antigens and non-specific binding of phage particles to cell surfaces. The method described here uses transient transfection of alternating host cell lines and stringent washing steps to address each of these limitations. The successful isolation of antibodies from a naive scFv library is described for three membrane bound proteins; human CD83, canine CD117 and bat CD11b.
Collapse
Affiliation(s)
- Martina L. Jones
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia Queensland 4072 Australia
| | - Mohamed A. Alfaleh
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia Queensland 4072 Australia
- Faculty of Pharmacy; King Abdulaziz University, 21589 Jeddah, Saudi Arabia
| | - Sumukh Kumble
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia Queensland 4072 Australia
| | - Shuo Zhang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia Queensland 4072 Australia
| | - Geoffrey W. Osborne
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia Queensland 4072 Australia
- Queensland Brain Institute, The University of Queensland, St Lucia Queensland 4072 Australia
| | - Michael Yeh
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia Queensland 4072 Australia
| | - Neetika Arora
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia Queensland 4072 Australia
| | - Jeff Jia Cheng Hou
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia Queensland 4072 Australia
| | - Christopher B. Howard
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia Queensland 4072 Australia
| | - David Y. Chin
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia Queensland 4072 Australia
| | - Stephen M. Mahler
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia Queensland 4072 Australia
| |
Collapse
|
65
|
Direct Delivery of Antigens to Dendritic Cells via Antibodies Specific for Endocytic Receptors as a Promising Strategy for Future Therapies. Vaccines (Basel) 2016; 4:vaccines4020008. [PMID: 27043640 PMCID: PMC4931625 DOI: 10.3390/vaccines4020008] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Revised: 03/15/2016] [Accepted: 03/18/2016] [Indexed: 12/12/2022] Open
Abstract
Dendritic cells (DCs) are the most potent professional antigen presenting cells and are therefore indispensable for the control of immunity. The technique of antibody mediated antigen targeting to DC subsets has been the basis of intense research for more than a decade. Many murine studies have utilized this approach of antigen delivery to various kinds of endocytic receptors of DCs both in vitro and in vivo. Today, it is widely accepted that different DC subsets are important for the induction of select immune responses. Nevertheless, many questions still remain to be answered, such as the actual influence of the targeted receptor on the initiation of the immune response to the delivered antigen. Further efforts to better understand the induction of antigen-specific immune responses will support the transfer of this knowledge into novel treatment strategies for human diseases. In this review, we will discuss the state-of-the-art aspects of the basic principles of antibody mediated antigen targeting approaches. A table will also provide a broad overview of the latest studies using antigen targeting including addressed DC subset, targeted receptors, outcome, and applied coupling techniques.
Collapse
|
66
|
Akiba H, Tsumoto K. Thermodynamics of antibody–antigen interaction revealed by mutation analysis of antibody variable regions. ACTA ACUST UNITED AC 2015; 158:1-13. [DOI: 10.1093/jb/mvv049] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Accepted: 03/11/2015] [Indexed: 01/20/2023]
|
67
|
Kapelski S, Boes A, Spiegel H, de Almeida M, Klockenbring T, Reimann A, Fischer R, Barth S, Fendel R. Fast track antibody V-gene rescue, recombinant expression in plants and characterization of a PfMSP4-specific antibody. Malar J 2015; 14:50. [PMID: 25651860 PMCID: PMC4323031 DOI: 10.1186/s12936-015-0577-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Accepted: 01/25/2015] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Monoclonal antibodies (mAbs) are essential tools in biological research, diagnosis and therapy, and are conventionally produced in murine hybridoma cell lines. Professional applications of mAbs depend on the steady supply of material. Because hybridoma cultures can stop producing the antibody or even die, preservation of the unique epitope specificity of mAbs by rescue of the sequences encoding the antibody variable domains (V regions) is important. The availability of these sequences enables not only the recombinant expression of the original antibody for further applications, but opens the road for antibody engineering towards innovative diagnostic or therapeutic applications. A time- and cost-efficient production system enabling the detailed analysis of the antibodies is an essential requirement in this context. METHODS Sequences were rescued from three hybridoma cell lines, subjected to sequence analysis, subcloned into binary expression vectors and recombinantly expressed as chimeric mAb (constant regions of human IgG1:k1) in Nicotiana benthamiana plants. The properties of the recombinant and the murine mAbs were compared using competition enzyme-linked immunosorbent assay (ELISA) and surface plasmon resonance (SPR) spectroscopy. The recognition of native PfMSP4 by the recombinant mAb was analysed by immunofluorescence staining of Pf 3D7A schizonts and by western blot analysis of merozoite extract. RESULTS The rescued sequences of all three hybridoma cell lines were identical. The recombinant mAb was successfully expressed as IgG in plants at moderate levels (45 mg/kg fresh leaf weight). Preservation of the original epitope was demonstrated in a competition ELISA, using recombinant mAb and the three murine mAbs. EGF_PfMSP4-specific affinities were determined by SPR spectroscopy to 8 nM and 10 nM for the murine or recombinant mAb, respectively. Binding to parasite PfMSP4 was confirmed in an immunofluorescence assay showing a characteristic staining pattern and by western blot analysis using merozoite extract. CONCLUSIONS As demonstrated by the example of an EGF_PfMSP4-specific antibody, the described combination of a simple and efficient hybridoma antibody cloning approach with the flexible, robust and cost-efficient transient expression system suitable to rapidly produce mg-amounts of functional recombinant antibodies provides an attractive method for the generation of mAbs and their derivatives as research tool, novel therapeutics or diagnostics.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal/genetics
- Antibodies, Monoclonal/immunology
- Antibodies, Monoclonal/isolation & purification
- Antibodies, Protozoan/genetics
- Antibodies, Protozoan/immunology
- Antibodies, Protozoan/isolation & purification
- Antigens, Protozoan/immunology
- Blotting, Western
- Enzyme-Linked Immunosorbent Assay
- Gene Expression
- Humans
- Immunoglobulin Variable Region/genetics
- Immunoglobulin Variable Region/immunology
- Immunoglobulin Variable Region/isolation & purification
- Mice, Inbred BALB C
- Microscopy, Fluorescence
- Organisms, Genetically Modified/genetics
- Organisms, Genetically Modified/metabolism
- Protozoan Proteins/immunology
- Recombinant Proteins/genetics
- Recombinant Proteins/immunology
- Recombinant Proteins/isolation & purification
- Surface Plasmon Resonance
- Nicotiana/genetics
- Nicotiana/metabolism
Collapse
Affiliation(s)
- Stephanie Kapelski
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Forckenbeckstraße 6, 52074, Aachen, Germany.
- RWTH Aachen University, Institute for Molecular Biotechnology, Worringer Weg 1, 52074, Aachen, Germany.
- Institute for Applied Medical Engineering at RWTH Aachen University and Hospital, Department of Experimental Medicine and Immunotherapy, Pauwelsstraße 20, 52074, Aachen, Germany.
| | - Alexander Boes
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Forckenbeckstraße 6, 52074, Aachen, Germany.
| | - Holger Spiegel
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Forckenbeckstraße 6, 52074, Aachen, Germany.
| | - Melanie de Almeida
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Forckenbeckstraße 6, 52074, Aachen, Germany.
- RWTH Aachen University, Institute for Molecular Biotechnology, Worringer Weg 1, 52074, Aachen, Germany.
| | - Torsten Klockenbring
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Forckenbeckstraße 6, 52074, Aachen, Germany.
| | - Andreas Reimann
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Forckenbeckstraße 6, 52074, Aachen, Germany.
| | - Rainer Fischer
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Forckenbeckstraße 6, 52074, Aachen, Germany.
- RWTH Aachen University, Institute for Molecular Biotechnology, Worringer Weg 1, 52074, Aachen, Germany.
| | - Stefan Barth
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Forckenbeckstraße 6, 52074, Aachen, Germany.
- Institute for Applied Medical Engineering at RWTH Aachen University and Hospital, Department of Experimental Medicine and Immunotherapy, Pauwelsstraße 20, 52074, Aachen, Germany.
| | - Rolf Fendel
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Forckenbeckstraße 6, 52074, Aachen, Germany.
- RWTH Aachen University, Institute for Molecular Biotechnology, Worringer Weg 1, 52074, Aachen, Germany.
- Institute for Applied Medical Engineering at RWTH Aachen University and Hospital, Department of Experimental Medicine and Immunotherapy, Pauwelsstraße 20, 52074, Aachen, Germany.
| |
Collapse
|
68
|
Deyev SM, Lebedenko EN, Petrovskaya LE, Dolgikh DA, Gabibov AG, Kirpichnikov MP. Man-made antibodies and immunoconjugates with desired properties: function optimization using structural engineering. RUSSIAN CHEMICAL REVIEWS 2015. [DOI: 10.1070/rcr4459] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
69
|
Ahmadzadeh V, Farajnia S, Feizi MAH, Nejad RAK. Antibody humanization methods for development of therapeutic applications. Monoclon Antib Immunodiagn Immunother 2014; 33:67-73. [PMID: 24746146 DOI: 10.1089/mab.2013.0080] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Recombinant antibody technologies are rapidly becoming available and showing considerable clinical success. However, the immunogenicity of murine-derived monoclonal antibodies is restrictive in cancer immunotherapy. Humanized antibodies can overcome these problems and are considered to be a promising alternative therapeutic agent. There are several approaches for antibody humanization. In this article we review various methods used in the antibody humanization process.
Collapse
Affiliation(s)
- Vahideh Ahmadzadeh
- 1 Biotechnology Research Center, Tabriz University of Medical Sciences , Tabriz, Iran
| | | | | | | |
Collapse
|
70
|
Pacher-Zavisin M. Landes Highlights. Bioengineered 2014. [PMCID: PMC3477690 DOI: 10.4161/bioe.22049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
71
|
Abstract
Cytokines, currently known to be more than 130 in number, are small MW (<30 kDa) key signaling proteins that modulate cellular activities in immunity, infection, inflammation and malignancy. Key to understanding their function is recognition of their pleiotropism and often overlapping and functional redundancies. Classified here into 9 main families, most of the 20 approved cytokine preparations (18 different cytokines; 3 pegylated), all in recombinant human (rh) form, are grouped in the hematopoietic growth factor, interferon, platelet-derived growth factor (PDGF) and transforming growth factor β (TGFβ) families. In the hematopoietin family, approved cytokines are aldesleukin (rhIL-2), oprelvekin (rhIL-11), filgrastim and tbo-filgrastim (rhG-CSF), sargramostim (rhGM-CSF), metreleptin (rh-leptin) and the rh-erythropoietins, epoetin and darbepoietin alfa. Anakinra, a recombinant receptor antagonist for IL-1, is in the IL-1 family; recombinant interferons alfa-1, alfa-2, beta-1 and gamma-1 make up the interferon family; palifermin (rhKGF) and becaplermin (rhPDGF) are in the PDGF family; and rhBMP-2 and rhBMP-7 represent the TGFβ family. The main physicochemical features, FDA-approved indications, modes of action and side effects of these approved cytokines are presented. Underlying each adverse events profile is their pleiotropism, potency and capacity to release other cytokines producing cytokine 'cocktails'. Side effects, some serious, occur despite cytokines being endogenous proteins, and this therefore demands caution in attempts to introduce individual members into the clinic. This caution is reflected in the relatively small number of cytokines currently approved by regulatory agencies and by the fact that 14 of the FDA-approved preparations carry warnings, with 10 being black box warnings.
Collapse
|
72
|
Abstract
Immunoconjugates are specific, highly effective, minimally toxic anticancer therapies that are beginning to show promise in the clinic. Immunoconjugates consist of three separate components: an antibody that binds to a cancer cell antigen with high specificity, an effector molecule that has a high capacity to kill the cancer cell, and a linker that will ensure the effector does not separate from the antibody during transit and will reliably release the effector to the cancer cell or tumour stroma. The high affinity antibody-antigen interaction allows specific and selective delivery of a range of effectors, including pharmacologic agents, radioisotopes, and toxins, to cancer cells. Some anticancer molecules are not well tolerated when administered systemically owing to unacceptable toxicity to the host. However, this limitation can be overcome through the linking of such cytotoxins to specific antibodies, which mask the toxic effects of the drug until it reaches its target. Conversely, many unconjugated antibodies are highly specific for a cancer target, but have low therapeutic potential and can be repurposed as delivery vehicles for highly potent effectors. In this Review, we summarize the successes and shortcomings of immunoconjugates, and discuss the future potential for the development of these therapies.
Collapse
|
73
|
Pereira SS, Moreira-Dill LS, Morais MSS, Prado NDR, Barros ML, Koishi AC, Mazarrotto GACA, Gonçalves GM, Zuliani JP, Calderon LA, Soares AM, Pereira da Silva LH, Duarte dos Santos CN, Fernandes CFC, Stabeli RG. Novel camelid antibody fragments targeting recombinant nucleoprotein of Araucaria hantavirus: a prototype for an early diagnosis of Hantavirus Pulmonary Syndrome. PLoS One 2014; 9:e108067. [PMID: 25243411 PMCID: PMC4171512 DOI: 10.1371/journal.pone.0108067] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Accepted: 08/25/2014] [Indexed: 01/11/2023] Open
Abstract
In addition to conventional antibodies, camelids produce immunoglobulins G composed exclusively of heavy chains in which the antigen binding site is formed only by single domains called VHH. Their particular characteristics make VHHs interesting tools for drug-delivery, passive immunotherapy and high-throughput diagnosis. Hantaviruses are rodent-borne viruses of the Bunyaviridae family. Two clinical forms of the infection are known. Hemorrhagic Fever with Renal Syndrome (HFRS) is present in the Old World, while Hantavirus Pulmonary Syndrome (HPS) is found on the American continent. There is no specific treatment for HPS and its diagnosis is carried out by molecular or serological techniques, using mainly monoclonal antibodies or hantavirus nucleoprotein (N) to detect IgM and IgG in patient serum. This study proposes the use of camelid VHHs to develop alternative methods for diagnosing and confirming HPS. Phage display technology was employed to obtain VHHs. After immunizing one Lama glama against the recombinant N protein (prNΔ85) of a Brazilian hantavirus strain, VHH regions were isolated to construct an immune library. VHHs were displayed fused to the M13KO7 phage coat protein III and the selection steps were performed on immobilized prNΔ85. After selection, eighty clones recognized specifically the N protein. These were sequenced, grouped based mainly on the CDRs, and five clones were analyzed by western blot (WB), surface plasmon resonance (SPR) device, and ELISA. Besides the ability to recognize prNΔ85 by WB, all selected clones showed affinity constants in the nanomolar range. Additionaly, the clone KC329705 is able to detect prNΔ85 in solution, as well as the native viral antigen. Findings support the hypothesis that selected VHHs could be a powerful tool in the development of rapid and accurate HPS diagnostic assays, which are essential to provide supportive care to patients and reduce the high mortality rate associated with hantavirus infections.
Collapse
Affiliation(s)
| | | | | | | | - Marcos L. Barros
- Fundação Oswaldo Cruz, Fiocruz Rondônia, Porto Velho, RO, Brazil
| | | | | | | | - Juliana P. Zuliani
- Fundação Oswaldo Cruz, Fiocruz Rondônia, Porto Velho, RO, Brazil
- Departamento de Medicina, Universidade Federal de Rondônia, UNIR, Porto Velho, RO, Brazil
| | - Leonardo A. Calderon
- Fundação Oswaldo Cruz, Fiocruz Rondônia, Porto Velho, RO, Brazil
- Departamento de Medicina, Universidade Federal de Rondônia, UNIR, Porto Velho, RO, Brazil
| | | | | | | | - Carla F. C. Fernandes
- Fundação Oswaldo Cruz, Fiocruz Rondônia, Porto Velho, RO, Brazil
- Centro de Pesquisa em Medicina Tropical, CEPEM, Porto Velho, RO, Brazil
- * E-mail: (RGS); (CFCF)
| | - Rodrigo G. Stabeli
- Fundação Oswaldo Cruz, Fiocruz Rondônia, Porto Velho, RO, Brazil
- Departamento de Medicina, Universidade Federal de Rondônia, UNIR, Porto Velho, RO, Brazil
- * E-mail: (RGS); (CFCF)
| |
Collapse
|
74
|
Engineering venom's toxin-neutralizing antibody fragments and its therapeutic potential. Toxins (Basel) 2014; 6:2541-67. [PMID: 25153256 PMCID: PMC4147596 DOI: 10.3390/toxins6082541] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Revised: 07/16/2014] [Accepted: 08/04/2014] [Indexed: 11/24/2022] Open
Abstract
Serum therapy remains the only specific treatment against envenoming, but anti-venoms are still prepared by fragmentation of polyclonal antibodies isolated from hyper-immunized horse serum. Most of these anti-venoms are considered to be efficient, but their production is tedious, and their use may be associated with adverse effects. Recombinant antibodies and smaller functional units are now emerging as credible alternatives and constitute a source of still unexploited biomolecules capable of neutralizing venoms. This review will be a walk through the technologies that have recently been applied leading to novel antibody formats with better properties in terms of homogeneity, specific activity and possible safety.
Collapse
|
75
|
Feige MJ, Buchner J. Principles and engineering of antibody folding and assembly. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2014; 1844:2024-2031. [PMID: 24931831 DOI: 10.1016/j.bbapap.2014.06.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Revised: 06/04/2014] [Accepted: 06/06/2014] [Indexed: 11/20/2022]
Abstract
Antibodies are uniquely suited to serve essential roles in the human immune defense as they combine several specific functions in one hetero-oligomeric protein. Their constant regions activate effector functions and their variable domains provide a stable framework that allows incorporation of highly diverse loop sequences. The combination of non-germline DNA recombination and mutation together with heavy and light chain assembly allows developing variable regions that specifically recognize essentially any antigen they may encounter. However, this diversity also requires tailor-made mechanisms to guarantee that folding and association of antibodies is carefully this diversity also requires tailor-made mechanisms to guarantee that folding and association of antibodies is carefully controlled before the protein is secreted from a plasma cell. Accordingly, the generic immunoglobulin fold β-barrel structure of antibody domains has been fine-tuned during evolution to fit the different requirements. Work over the past decades has identified important aspects of the folding and assembly of antibody domains and chains revealing domain specific variations of a general scheme. The most striking is the folding of an intrinsically disordered antibody domain in the context of its partner domain as the basis for antibody assembly and its control on the molecular level in the cell. These insights have not only allowed a better understanding of the antibody folding process but also provide a wealth of opportunities for rational optimization of antibody molecules. In this review, we summarize current concepts of antibody folding and assembly and discuss how they can be utilized to engineer antibodies with improved performance for different applications. This article is part of a Special Issue entitled: Recent advances in the molecular engineering of antibodies.
Collapse
Affiliation(s)
- Matthias J Feige
- Department of Tumor Cell Biology, St. Jude Children's Research Hospital, Memphis 38105, TN, USA.
| | - Johannes Buchner
- CIPSM at the Department of Chemistry, Technische Universität München, 85748 Garching, Germany.
| |
Collapse
|
76
|
Glassy MC, Gupta R. Technical and ethical limitations in making human monoclonal antibodies (an overview). Methods Mol Biol 2014; 1060:9-36. [PMID: 24037834 DOI: 10.1007/978-1-62703-586-6_2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
In the broadest sense there are no longer any technical limitations to making human mAbs. Biological issues involving the type and nature of either a synthetic or a natural antibody, advantages of various B cell immunological compartments, and various assays needed to qualitate and quantitate mAbs have essentially been solved. If the target antigen is known then procedures to optimize antibody development can be readily planned out and implemented. When the antigen or target is unknown and specificity is the driving force in generating a human mAb then considerations about the nature and location of the B cell making the sought after antibody become important. And, therefore, the person the B cell is obtained from can be an ethical challenge and a limitation. For the sources of B cells special considerations must be taken to insure the anonymity and privacy of the patient. In many cases informed consent is adequate for antibody development as well as using discarded tissues. After the antibody has been generated then manufacturing technical issues become important that greatly depend upon the amounts of mAb required. For kilogram quantities then special considerations for manufacturing that include FDA guidelines will be necessary.
Collapse
Affiliation(s)
- Mark C Glassy
- Integrated Medical Sciences Association Foundation, San Diego, CA, USA
| | | |
Collapse
|
77
|
Kuramochi T, Igawa T, Tsunoda H, Hattori K. Humanization and simultaneous optimization of monoclonal antibody. Methods Mol Biol 2014; 1060:123-137. [PMID: 24037839 DOI: 10.1007/978-1-62703-586-6_7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Antibody humanization is an essential technology for reducing the potential risk of immunogenicity associated with animal-derived antibodies and has been applied to a majority of the therapeutic antibodies on the market. For developing an antibody molecule as a pharmaceutical at the current biotechnology level, however, other properties also have to be considered in parallel with humanization in antibody generation and optimization. This section describes the critical properties of therapeutic antibodies that should be sufficiently qualified, including immunogenicity, binding affinity, physiochemical stability, expression in host cells and pharmacokinetics, and the basic methodologies of antibody engineering involved. By simultaneously optimizing the antibody molecule in the light of these properties, it should prove possible to shorten the research and development period necessary to identify a highly qualified clinical candidate and consequently accelerate the start of the clinical trial.
Collapse
Affiliation(s)
- T Kuramochi
- Research Division, Chugai Pharmaceutical Co., Ltd., Gotemba, Shizuoka, Japan
| | | | | | | |
Collapse
|
78
|
Turki I, Hammami A, Kharmachi H, Mousli M. Engineering of a recombinant trivalent single-chain variable fragment antibody directed against rabies virus glycoprotein G with improved neutralizing potency. Mol Immunol 2013; 57:66-73. [PMID: 24091293 DOI: 10.1016/j.molimm.2013.08.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Revised: 08/14/2013] [Accepted: 08/18/2013] [Indexed: 10/26/2022]
Abstract
Human and equine rabies immunoglobulins are currently available for passive immunization against rabies. However, these are hampered by the limited supply and some drawbacks. Advances in antibody engineering have led to overcome issues of clinical applications and to improve the protective efficacy. In the present study, we report the generation of a trivalent single-chain Fv (scFv50AD1-Fd), that recognizes the rabies virus glycoprotein, genetically fused to the trimerization domain of the bacteriophage T4 fibritin, termed 'foldon' (Fd). scFv50AD1-Fd was expressed as soluble recombinant protein in bacterial periplasmic space and purified through affinity chromatography. The molecular integrity and stability were analyzed by polyacrylamide gradient-gel electrophoresis, size-exclusion chromatography and incubation in human sera. The antigen-binding properties of the trimeric scFv were analyzed by direct and competitive-ELISA. Its apparent affinity constant was estimated at 1.4 ± 0.25 × 10(9)M(-1) and was 75-fold higher than its monovalent scFv (1.9 ± 0.68 × 10(7)M(-1)). The scFv50AD1-Fd neutralized rabies virus in a standard in vitro and in vivo neutralization assay. We showed a high neutralization activity up to 75-fold compared with monovalent format and the WHO standard serum. The gain in avidity resulting from multivalency along with an improved biological activity makes the trivalent scFv50AD1-Fd construct an important reagent for rabies protection. The antibody engineering approach presented here may serve as a strategy for designing a new generation of anti-rabies for passive immunotherapy.
Collapse
Affiliation(s)
- Imène Turki
- Laboratoire de Parasitologie Médicale, Biotechnologies et Biomolécules, Institut Pasteur de Tunis, LR11-IPT06, 13 Place Pasteur - BP74, 1002 Tunis-Belvédère, Tunisia
| | | | | | | |
Collapse
|
79
|
|