51
|
Friese OV, Smith JN, Brown PW, Rouse JC. Practical approaches for overcoming challenges in heightened characterization of antibody-drug conjugates with new methodologies and ultrahigh-resolution mass spectrometry. MAbs 2018; 10:335-345. [PMID: 29393747 DOI: 10.1080/19420862.2018.1433973] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
Antibody-drug conjugation strategies are continuously evolving as researchers work to improve the safety and efficacy of the molecules. However, as a part of process and product development, confirmation of the resulting innovative structures requires new, specialized mass spectrometry (MS) approaches and methods, as compared to those already established for antibody-drug conjugates (ADCs) and the heightened characterization practices used for monoclonal antibodies (mAbs), in order to accurately elucidate the resulting conjugate forms, which can sometimes have labile chemical bonds and more extreme chemical properties like hydrophobic patches. Here, we discuss practical approaches for characterization of ADCs using new methodologies and ultrahigh-resolution MS, and provide specific examples of these approaches. Denaturing conditions of typical liquid chromatography (LC)/MS analyses impede the successful detection of intact, 4-chain ADCs generated via cysteine site-directed chemistry approaches where hinge region disulfide bonds are partially reduced. However, this class of ADCs is detected intact reliably under non-denaturing size-exclusion chromatography/MS conditions, also referred to as native MS. For ADCs with acid labile linkers such as one used for conjugation of calicheamicin, careful selection of mobile phase composition is critical to the retention of intact linker-payload during LC/MS analysis. Increasing the pH of the mobile phase prevented cleavage of a labile bond in the linker moiety, and resulted in retention of the intact linker-payload. In-source fragmentation also was observed with typical electrospray ionization (ESI) source parameters during intact ADC mass analysis for a particular surface-accessible linker-payload moiety conjugated to the heavy chain C-terminal tag, LLQGA (via transglutaminase chemistry). Optimization of additional ESI source parameters such as cone voltages, gas pressures and ion transfer parameters led to minimal fragmentation and optimal sensitivity. Ultrahigh-resolution (UHR) MS, combined with reversed phase-ultrahigh performance (RP-UHP)LC and use of the FabRICATOR® enzyme, provides a highly resolving, antibody subunit-domain mapping method that allows rapid confirmation of integrity and the extent of conjugation. For some ADCs, the hydrophobic nature of the linker-payload hinders chromatographic separation of the modified subunit/domains or causes very late elution/poor recovery. As an alternative to the traditionally used C4 UHPLC column chemistry, a diphenyl column resulted in the complete recovery of modified subunit/domains. For ADCs based on maleimide chemistry, control of pH during proteolytic digestion is critical to minimize ring-opening. The optimum pH to balance digestion efficiency and one that does not cause ring opening needed to be established for successful peptide mapping.
Collapse
Affiliation(s)
- Olga V Friese
- a Biotherapeutics Pharm. Sci. , Pfizer WRD , St Louis , MO , USA
| | | | - Paul W Brown
- a Biotherapeutics Pharm. Sci. , Pfizer WRD , St Louis , MO , USA
| | - Jason C Rouse
- b Biotherapeutics Pharm. Sci. , Pfizer WRD , Andover , MA , USA
| |
Collapse
|
52
|
Avilés P, Domínguez JM, Guillén MJ, Muñoz-Alonso MJ, Mateo C, Rodriguez-Acebes R, Molina-Guijarro JM, Francesch A, Martínez-Leal JF, Munt S, Galmarini CM, Cuevas C. MI130004, a Novel Antibody-Drug Conjugate Combining Trastuzumab with a Molecule of Marine Origin, Shows Outstanding In Vivo Activity against HER2-Expressing Tumors. Mol Cancer Ther 2018; 17:786-794. [PMID: 29440297 DOI: 10.1158/1535-7163.mct-17-0795] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 11/07/2017] [Accepted: 02/01/2018] [Indexed: 11/16/2022]
Abstract
In the search for novel payloads to design new antibody-drug conjugates (ADC), marine compounds represent an interesting opportunity given their unique chemical features. PM050489 is a marine compound that binds β-tubulin at a new site and disrupts the microtubule network, hence leading to mitotic aberrations and cell death. PM050489 has been conjugated to trastuzumab via Cys residues through a noncleavable linker, and the resulting ADC, named MI130004, has been studied. Analysis of MI130004 delivered data consistent with the presence of two molecules of PM050489 per antibody molecule, likely bound to both sides of the intermolecular disulfide bond connecting the antibody light and heavy chains. The antitumor activity of MI130004 was analyzed in vitro and in vivo in different cell lines of diverse tumor origin (breast, ovary, and gastric cancer) expressing different levels of HER2. MI130004 showed very high in vitro potency and good selectivity for tumor cells that overexpressed HER2. At the cellular level, MI130004 impaired tubulin polymerization, causing disorganization and disintegration of the microtubule network, which ultimately led to mitotic failure, mirroring the effect of its payload. Treatment with MI130004 in mice carrying histologically diverse tumors expressing HER2 induced a long-lasting antitumor effect with statistically significant inhibition of tumor growth coupled with increases in median survival time compared with vehicle or trastuzumab. These results strongly suggest that MI130004 is endowed with remarkable anticancer activity and confirm the extraordinary potential of marine compounds for the design of new ADCs. Mol Cancer Ther; 17(4); 786-94. ©2018 AACR.
Collapse
Affiliation(s)
- Pablo Avilés
- Research Department, PharmaMar S.A., Colmenar Viejo, Madrid, Spain
| | | | | | | | - Cristina Mateo
- Research Department, PharmaMar S.A., Colmenar Viejo, Madrid, Spain
| | | | | | - Andrés Francesch
- Research Department, PharmaMar S.A., Colmenar Viejo, Madrid, Spain
| | | | - Simon Munt
- Research Department, PharmaMar S.A., Colmenar Viejo, Madrid, Spain
| | | | - Carmen Cuevas
- Research Department, PharmaMar S.A., Colmenar Viejo, Madrid, Spain
| |
Collapse
|
53
|
Buecheler JW, Winzer M, Weber C, Gieseler H. High-throughput oxidation screen of antibody-drug conjugates by analytical protein A chromatography following IdeS digest. ACTA ACUST UNITED AC 2018; 70:625-635. [PMID: 29380379 DOI: 10.1111/jphp.12873] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 11/29/2017] [Indexed: 12/12/2022]
Abstract
OBJECTIVES Oxidation of protein therapeutics is a major chemical degradation pathway which may impact bioactivity, serum half-life and stability. Therefore, oxidation is a relevant parameter which has to be monitored throughout formulation development. Methods such as HIC, RPLC and LC/MS achieve a separation of oxidized and non-oxidized species by differences in hydrophobicity. Antibody-drug conjugates (ADC) although are highly more complex due to the heterogeneity in linker, drug, drug-to-antibody ratio (DAR) and conjugation site. The analytical protein A chromatography can provide a simple and fast alternative to these common methods. METHODS A miniature analytical protein A chromatography method in combination with an IdeS digest was developed to analyse ADCs. The IdeS digest efficiency of an IgG1 was monitored using SEC-HPLC and non-reducing SDS-PAGE. An antibody-fluorescent dye conjugate was conjugated at different dye-to-antibody ratios as model construct to mimic an ADC. KEY FINDINGS With IdeS, an almost complete digest of a model IgG1 can be achieved (digested protein amount >98%). This enables subsequent analytical protein A chromatography, which consequently eliminates any interference of payload with the stationary phase. CONCLUSION A novel high-throughput method for an interchain cysteine-linked ADC oxidation screens during formulation development was developed.
Collapse
Affiliation(s)
- Jakob W Buecheler
- Division of Pharmaceutics, Friedrich-Alexander-University (FAU) Erlangen-Nürnberg, Erlangen, Germany.,Merck KGaA, Darmstadt, Germany
| | | | | | | |
Collapse
|
54
|
Ding W, Qiu D, Bolgar MS, Miller SA. Improving Mass Spectral Quality of Monoclonal Antibody Middle-Up LC-MS Analysis by Shifting the Protein Charge State Distribution. Anal Chem 2018; 90:1560-1565. [DOI: 10.1021/acs.analchem.7b04423] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Wei Ding
- Chemical and Synthetic
Development, Bristol-Myers Squibb, One Squibb Drive, New Brunswick, New Jersey 08903, United States
| | - Difei Qiu
- Chemical and Synthetic
Development, Bristol-Myers Squibb, One Squibb Drive, New Brunswick, New Jersey 08903, United States
| | - Mark S. Bolgar
- Chemical and Synthetic
Development, Bristol-Myers Squibb, One Squibb Drive, New Brunswick, New Jersey 08903, United States
| | - Scott A. Miller
- Chemical and Synthetic
Development, Bristol-Myers Squibb, One Squibb Drive, New Brunswick, New Jersey 08903, United States
| |
Collapse
|
55
|
Wagh A, Song H, Zeng M, Tao L, Das TK. Challenges and new frontiers in analytical characterization of antibody-drug conjugates. MAbs 2018; 10:222-243. [PMID: 29293399 DOI: 10.1080/19420862.2017.1412025] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Antibody-drug conjugates (ADCs) are a growing class of biotherapeutics in which a potent small molecule is linked to an antibody. ADCs are highly complex and structurally heterogeneous, typically containing numerous product-related species. One of the most impactful steps in ADC development is the identification of critical quality attributes to determine product characteristics that may affect safety and efficacy. However, due to the additional complexity of ADCs relative to the parent antibodies, establishing a solid understanding of the major quality attributes and determining their criticality are a major undertaking in ADC development. Here, we review the development challenges, especially for reliable detection of quality attributes, citing literature and new data from our laboratories, highlight recent improvements in major analytical techniques for ADC characterization and control, and discuss newer techniques, such as two-dimensional liquid chromatography, that have potential to be included in analytical control strategies.
Collapse
Affiliation(s)
- Anil Wagh
- a Molecular & Analytical Development , Bristol-Myers Squibb , New Jersey , USA
| | - Hangtian Song
- a Molecular & Analytical Development , Bristol-Myers Squibb , New Jersey , USA
| | - Ming Zeng
- a Molecular & Analytical Development , Bristol-Myers Squibb , New Jersey , USA
| | - Li Tao
- a Molecular & Analytical Development , Bristol-Myers Squibb , New Jersey , USA
| | - Tapan K Das
- a Molecular & Analytical Development , Bristol-Myers Squibb , New Jersey , USA
| |
Collapse
|
56
|
Källsten M, Hartmann R, Artemenko K, Lind SB, Lehmann F, Bergquist J. Qualitative analysis of antibody–drug conjugates (ADCs): an experimental comparison of analytical techniques of cysteine-linked ADCs. Analyst 2018; 143:5487-5496. [DOI: 10.1039/c8an01178h] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Four different cysteine linked antibody-drug conjugates (ADCs) consisting of Trastuzumab-vc-MMAE were analysed with four common analytical techniques with respect to drug-to-antibody ratio (DAR) and molecular weight.
Collapse
Affiliation(s)
- Malin Källsten
- Department of Chemistry-BMC
- Analytical Chemistry
- Uppsala University
- Uppsala
- Sweden
| | - Rafael Hartmann
- Department of Medicinal Chemistry
- Organic Pharmaceutical Chemistry
- BMC
- Uppsala University
- SE-751 23 Uppsala
| | | | - Sara Bergström Lind
- Department of Chemistry-BMC
- Analytical Chemistry
- Uppsala University
- Uppsala
- Sweden
| | | | - Jonas Bergquist
- Department of Chemistry-BMC
- Analytical Chemistry
- Uppsala University
- Uppsala
- Sweden
| |
Collapse
|
57
|
Immunoprecipitation middle-up LC–MS for in vivo drug-to-antibody ratio determination for antibody–drug conjugates. Bioanalysis 2017; 9:1535-1549. [DOI: 10.4155/bio-2017-0148] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Aim: Drug-to-antibody ratio (DAR) determination is critical for development of antibody–drug conjugates (ADCs). This work presents a middle-up LC–MS approach for DAR analysis using prelabeled capture beads and in-house fabricated slit-plates. Methodology & Results: Cysteine, engineered cysteine and disulfide-linked ADCs, each with two different linker payloads, were immunocaptured and digested to scFc and F(ab′)2 fragments. At this point, disulfide-linked ADCs were analyzed while cysteine and engineered cysteine ADCs were reduced to LC and Fd′ fragments for analysis. Results were precise, accurate and sensitive, allowing DAR to be determined out to 21 days. Conclusion: This work describes a method that is easily implemented, amenable to high-throughput analysis and does not require specialized reagents or equipment.
Collapse
|
58
|
Bobály B, D’Atri V, Beck A, Guillarme D, Fekete S. Analysis of recombinant monoclonal antibodies in hydrophilic interaction chromatography: A generic method development approach. J Pharm Biomed Anal 2017. [DOI: 10.1016/j.jpba.2017.06.016] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
59
|
Tang Y, Tang F, Yang Y, Zhao L, Zhou H, Dong J, Huang W. Real-Time Analysis on Drug-Antibody Ratio of Antibody-Drug Conjugates for Synthesis, Process Optimization, and Quality Control. Sci Rep 2017; 7:7763. [PMID: 28798339 PMCID: PMC5552727 DOI: 10.1038/s41598-017-08151-2] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 07/07/2017] [Indexed: 12/21/2022] Open
Abstract
Drug-antibody ratio (DAR) of antibody-drug conjugates (ADCs) is important for their therapeutic efficacy and pharmacokinetics, therefore control on DAR in synthesis process is a key for ADC quality control. Although various analytical methods were reported, the real-time monitoring on DAR is still a challenge because time-consuming sample preparation is usually needed during the analysis. Antibody deglycosylation of ADC simplifies DAR measurement, however long-time PNGaseF digestion for deglycosylation hampers the real-time detection. Here, we report a rapid DAR analysis within 15 min by robust deglycosylation treatment and LC-MS detection that enables real-time DAR monitoring for optimization on ADC synthetic process. With this approach, we were able to screen suitable conjugation conditions efficiently and afford the ADCs with expected DARs. To the best of our knowledge, this is the first report on real-time DAR analysis of ADCs for conjugation optimization and quality control, compatible with random lysine-linked ADCs, glycosite-specific ADCs, and the complicated dual-payload ADCs.
Collapse
Affiliation(s)
- Yubo Tang
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China.,CAS Key Laboratory of Receptor Research, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Pudong, Shanghai, China, 201203
| | - Feng Tang
- CAS Key Laboratory of Receptor Research, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Pudong, Shanghai, China, 201203
| | - Yang Yang
- CAS Key Laboratory of Receptor Research, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Pudong, Shanghai, China, 201203
| | - Lei Zhao
- CAS Key Laboratory of Receptor Research, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Pudong, Shanghai, China, 201203
| | - Hu Zhou
- CAS Key Laboratory of Receptor Research, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Pudong, Shanghai, China, 201203
| | - Jinhua Dong
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| | - Wei Huang
- CAS Key Laboratory of Receptor Research, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Pudong, Shanghai, China, 201203.
| |
Collapse
|
60
|
Bobály B, Fleury-Souverain S, Beck A, Veuthey JL, Guillarme D, Fekete S. Current possibilities of liquid chromatography for the characterization of antibody-drug conjugates. J Pharm Biomed Anal 2017; 147:493-505. [PMID: 28688616 DOI: 10.1016/j.jpba.2017.06.022] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 06/12/2017] [Accepted: 06/13/2017] [Indexed: 12/19/2022]
Abstract
Antibody Drug Conjugates (ADCs) are innovative biopharmaceuticals gaining increasing attention over the last two decades. The concept of ADCs lead to new therapy approaches in numerous oncological indications as well in infectious diseases. Currently, around 60 CECs are in clinical trials indicating the expanding importance of this class of protein therapeutics. ADCs show unprecedented intrinsic heterogeneity and address new quality attributes which have to be assessed. Liquid chromatography is one of the most frequently used analytical method for the characterization of ADCs. This review summarizes recent results in the chromatographic characterization of ADCs and supposed to provide a general overview on the possibilities and limitations of current approaches for the evaluation of drug load distribution, determination of average drug to antibody ratio (DARav), and for the analysis of process/storage related impurities. Hydrophobic interaction chromatography (HIC), reversed phase liquid chromatography (RPLC), size exclusion chromatography (SEC) and multidimensional separations are discussed focusing on the analysis of marketed ADCs. Fundamentals and aspects of method development are illustrated with applications for each technique. Future perspectives in hydrophilic interaction chromatography (HILIC), HIC, SEC and ion exchange chromatography (IEX) are also discussed.
Collapse
Affiliation(s)
- Balázs Bobály
- School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, CMU - Rue Michel Servet 1, 1211 Geneva 4, Switzerland
| | | | - Alain Beck
- Institut de Recherche Pierre Fabre, Centre d'Immunologie, 5 Avenue Napoléon III, BP 60497, 74160 Saint-Julien-en-Genevois, France
| | - Jean-Luc Veuthey
- School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, CMU - Rue Michel Servet 1, 1211 Geneva 4, Switzerland
| | - Davy Guillarme
- School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, CMU - Rue Michel Servet 1, 1211 Geneva 4, Switzerland
| | - Szabolcs Fekete
- School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, CMU - Rue Michel Servet 1, 1211 Geneva 4, Switzerland.
| |
Collapse
|
61
|
Bobaly B, D'Atri V, Goyon A, Colas O, Beck A, Fekete S, Guillarme D. Protocols for the analytical characterization of therapeutic monoclonal antibodies. II - Enzymatic and chemical sample preparation. J Chromatogr B Analyt Technol Biomed Life Sci 2017; 1060:325-335. [PMID: 28666223 DOI: 10.1016/j.jchromb.2017.06.036] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 06/15/2017] [Accepted: 06/18/2017] [Indexed: 01/06/2023]
Abstract
The analytical characterization of therapeutic monoclonal antibodies and related proteins usually incorporates various sample preparation methodologies. Indeed, quantitative and qualitative information can be enhanced by simplifying the sample, thanks to the removal of sources of heterogeneity (e.g. N-glycans) and/or by decreasing the molecular size of the tested protein by enzymatic or chemical fragmentation. These approaches make the sample more suitable for chromatographic and mass spectrometric analysis. Structural elucidation and quality control (QC) analysis of biopharmaceutics are usually performed at intact, subunit and peptide levels. In this paper, general sample preparation approaches used to attain peptide, subunit and glycan level analysis are overviewed. Protocols are described to perform tryptic proteolysis, IdeS and papain digestion, reduction as well as deglycosylation by PNGase F and EndoS2 enzymes. Both historical and modern sample preparation methods were compared and evaluated using rituximab and trastuzumab, two reference therapeutic mAb products approved by Food and Drug Administration (FDA) and European Medicines Agency (EMA). The described protocols may help analysts to develop sample preparation methods in the field of therapeutic protein analysis.
Collapse
Affiliation(s)
- Balazs Bobaly
- School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, Centre Médical Universitaire (CMU), Rue Michel-Servet 1, 1206, Geneva, Switzerland
| | - Valentina D'Atri
- School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, Centre Médical Universitaire (CMU), Rue Michel-Servet 1, 1206, Geneva, Switzerland
| | - Alexandre Goyon
- School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, Centre Médical Universitaire (CMU), Rue Michel-Servet 1, 1206, Geneva, Switzerland
| | - Olivier Colas
- Institut de Recherche Pierre Fabre, Centre d'Immunologie, 5 Avenue Napoléon III, BP 60497, 74160, Saint-Julien-en-Genevois, France
| | - Alain Beck
- Institut de Recherche Pierre Fabre, Centre d'Immunologie, 5 Avenue Napoléon III, BP 60497, 74160, Saint-Julien-en-Genevois, France
| | - Szabolcs Fekete
- School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, Centre Médical Universitaire (CMU), Rue Michel-Servet 1, 1206, Geneva, Switzerland
| | - Davy Guillarme
- School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, Centre Médical Universitaire (CMU), Rue Michel-Servet 1, 1206, Geneva, Switzerland.
| |
Collapse
|
62
|
Wagner-Rousset E, Fekete S, Morel-Chevillet L, Colas O, Corvaïa N, Cianférani S, Guillarme D, Beck A. Development of a fast workflow to screen the charge variants of therapeutic antibodies. J Chromatogr A 2017; 1498:147-154. [DOI: 10.1016/j.chroma.2017.02.065] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Revised: 01/13/2017] [Accepted: 02/26/2017] [Indexed: 12/20/2022]
|
63
|
Abdollahpour-Alitappeh M, Lotfinia M, Razavi-Vakhshourpour S, Jahandideh S, Najminejad H, Sineh Sepehr K, Moazami R, Shams E, Habibi-Anbouhi M, Abolhassani M. Evaluation of Factors Influencing Antibody Reduction for Development of Antibody Drug Conjugates. IRANIAN BIOMEDICAL JOURNAL 2017; 21:270-4. [PMID: 28410549 PMCID: PMC5459942 DOI: 10.18869/acadpub.ibj.21.4.270] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Background Reduction/alkylation is one of the leading strategies for the development of antibody drug conjugates (ADCs). Precise control of the reduction process would not only yield a defined number of free thiols per antibody but also result in development of more homogenous conjugates. Methods In the present study, we investigated the effect of various dithiothreitol (DTT) concentrations, temperature conditions, and DTT exposure times on antibody reduction. After antibody reduction, the Ellman's test and SDS-PAGE analysis were used to evaluate free thiols produced and confirm the reduction process, respectively. Results DTT concentration seems to be a potential factor in the reduction process. Concentrations of 0.1, 1, 5, 10, 20, 50, and 100 mM DTT at 37°C for 30 minutes resulted in approximately 0.4, 1.2, 5.4, 7, 8, 8, and 8 thiols per antibody, respectively. Conclusion Optimized site-specific conjugation can provide better process control and reproducibility for the development of disulfide-based ADCs.
Collapse
Affiliation(s)
| | - Majid Lotfinia
- Department of Biochemistry, Pasteur Institute of Iran, Tehran, Iran
| | | | - Saeed Jahandideh
- Department of Biochemistry, Pasteur Institute of Iran, Tehran, Iran
| | - Hamid Najminejad
- Hybridoma Lab., Department OF Immunology, Pasteur Institute of Iran, Tehran, Iran
| | - Koushan Sineh Sepehr
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Moazami
- Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Elnaz Shams
- Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | | | - Mohsen Abolhassani
- Hybridoma Lab., Department OF Immunology, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
64
|
Beck A, Goetsch L, Dumontet C, Corvaïa N. Strategies and challenges for the next generation of antibody-drug conjugates. Nat Rev Drug Discov 2017; 16:315-337. [PMID: 28303026 DOI: 10.1038/nrd.2016.268] [Citation(s) in RCA: 1498] [Impact Index Per Article: 187.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Antibody-drug conjugates (ADCs) are one of the fastest growing classes of oncology therapeutics. After half a century of research, the approvals of brentuximab vedotin (in 2011) and trastuzumab emtansine (in 2013) have paved the way for ongoing clinical trials that are evaluating more than 60 further ADC candidates. The limited success of first-generation ADCs (developed in the early 2000s) informed strategies to bring second-generation ADCs to the market, which have higher levels of cytotoxic drug conjugation, lower levels of naked antibodies and more-stable linkers between the drug and the antibody. Furthermore, lessons learned during the past decade are now being used in the development of third-generation ADCs. In this Review, we discuss strategies to select the best target antigens as well as suitable cytotoxic drugs; the design of optimized linkers; the discovery of bioorthogonal conjugation chemistries; and toxicity issues. The selection and engineering of antibodies for site-specific drug conjugation, which will result in higher homogeneity and increased stability, as well as the quest for new conjugation chemistries and mechanisms of action, are priorities in ADC research.
Collapse
Affiliation(s)
- Alain Beck
- Institut de Recherche Pierre Fabre, Centre d'Immunologie Pierre Fabre, 5 Avenue Napoleon III, 74160 Saint Julien en Genevois, France
| | - Liliane Goetsch
- Institut de Recherche Pierre Fabre, Centre d'Immunologie Pierre Fabre, 5 Avenue Napoleon III, 74160 Saint Julien en Genevois, France
| | - Charles Dumontet
- Cancer Research Center of Lyon (CRCL), INSERM, 1052/CNRS, 69000 Lyon, France.,University of Lyon, 69000 Lyon, France.,Hospices Civils de Lyon, 69000 Lyon, France
| | - Nathalie Corvaïa
- Institut de Recherche Pierre Fabre, Centre d'Immunologie Pierre Fabre, 5 Avenue Napoleon III, 74160 Saint Julien en Genevois, France
| |
Collapse
|
65
|
Abstract
Methionine oxidation is a common posttranslational modification (PTM) of monoclonal antibodies (mAbs). Oxidation can reduce the in-vivo half-life, efficacy and stability of the product. Peptide mapping is commonly used to monitor the levels of oxidation, but this is a relatively time-consuming method. A high-throughput, automated subunit mass analysis method was developed to monitor antibody methionine oxidation. In this method, samples were treated with IdeS, EndoS and dithiothreitol to generate three individual IgG subunits (light chain, Fd’ and single chain Fc). These subunits were analyzed by reversed phase-ultra performance liquid chromatography coupled with an online quadrupole time-of-flight mass spectrometer and the levels of oxidation on each subunit were quantitated based on the deconvoluted mass spectra using the UNIFI software. The oxidation results obtained by subunit mass analysis correlated well with the results obtained by peptide mapping. Method qualification demonstrated that this subunit method had excellent repeatability and intermediate precision. In addition, UNIFI software used in this application allows automated data acquisition and processing, which makes this method suitable for high-throughput process monitoring and product characterization. Finally, subunit mass analysis revealed the different patterns of Fc methionine oxidation induced by chemical and photo stress, which makes it attractive for investigating the root cause of oxidation.
Collapse
Affiliation(s)
- Izabela Sokolowska
- a Large Molecules Analytical Development , Pharmaceutical Development & Manufacturing Sciences, Janssen Research & Development, LLC , Malvern , PA , USA
| | - Jingjie Mo
- a Large Molecules Analytical Development , Pharmaceutical Development & Manufacturing Sciences, Janssen Research & Development, LLC , Malvern , PA , USA
| | - Jia Dong
- a Large Molecules Analytical Development , Pharmaceutical Development & Manufacturing Sciences, Janssen Research & Development, LLC , Malvern , PA , USA
| | - Michael J Lewis
- a Large Molecules Analytical Development , Pharmaceutical Development & Manufacturing Sciences, Janssen Research & Development, LLC , Malvern , PA , USA
| | - Ping Hu
- a Large Molecules Analytical Development , Pharmaceutical Development & Manufacturing Sciences, Janssen Research & Development, LLC , Malvern , PA , USA
| |
Collapse
|
66
|
Optimization of non-linear gradient in hydrophobic interaction chromatography for the analytical characterization of antibody-drug conjugates. J Chromatogr A 2017; 1481:82-91. [DOI: 10.1016/j.chroma.2016.12.047] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 11/25/2016] [Accepted: 12/15/2016] [Indexed: 11/18/2022]
|
67
|
Su D, Ng C, Khosraviani M, Yu SF, Cosino E, Kaur S, Xu K. Custom-Designed Affinity Capture LC-MS F(ab′)2 Assay for Biotransformation Assessment of Site-Specific Antibody Drug Conjugates. Anal Chem 2016; 88:11340-11346. [DOI: 10.1021/acs.analchem.6b03410] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Dian Su
- Genentech, Inc. 1 DNA Way, South San Francisco, California 94080, United States
| | - Carl Ng
- Genentech, Inc. 1 DNA Way, South San Francisco, California 94080, United States
| | | | - Shang-Fan Yu
- Genentech, Inc. 1 DNA Way, South San Francisco, California 94080, United States
| | - Ely Cosino
- Genentech, Inc. 1 DNA Way, South San Francisco, California 94080, United States
| | - Surinder Kaur
- Genentech, Inc. 1 DNA Way, South San Francisco, California 94080, United States
| | - Keyang Xu
- Genentech, Inc. 1 DNA Way, South San Francisco, California 94080, United States
| |
Collapse
|
68
|
Parr MK, Montacir O, Montacir H. Physicochemical characterization of biopharmaceuticals. J Pharm Biomed Anal 2016; 130:366-389. [DOI: 10.1016/j.jpba.2016.05.028] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2016] [Revised: 05/16/2016] [Accepted: 05/17/2016] [Indexed: 12/26/2022]
|
69
|
Multiple heart-cutting and comprehensive two-dimensional liquid chromatography hyphenated to mass spectrometry for the characterization of the antibody-drug conjugate ado-trastuzumab emtansine. J Chromatogr B Analyt Technol Biomed Life Sci 2016; 1032:119-130. [DOI: 10.1016/j.jchromb.2016.04.040] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 04/19/2016] [Accepted: 04/22/2016] [Indexed: 01/25/2023]
|
70
|
Upton R, Bell L, Guy C, Caldwell P, Estdale S, Barran PE, Firth D. Orthogonal Assessment of Biotherapeutic Glycosylation: A Case Study Correlating N-Glycan Core Afucosylation of Herceptin with Mechanism of Action. Anal Chem 2016; 88:10259-10265. [PMID: 27620140 DOI: 10.1021/acs.analchem.6b02994] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
In the development of therapeutic antibodies and biosimilars, an appropriate biopharmaceutical CMC control strategy that connects critical quality attributes with mechanism of action should enable product assessment at an early stage of development in order to mitigate risk. Here we demonstrate a new analytical workflow using trastuzumab which comprises "middle-up" analysis using a combination of IdeS and the endoglycosidases EndoS and EndoS2 to comprehensively map the glycan content. Enzymatic cleavage between the two N-acetyl glucosamine residues of the chitobiose core of N-glycans significantly simplifies the oligosaccharide component enabling facile distinction of GlcNAc from GlcNAc with core fucose. This approach facilitates quantitative determination of total Fc-glycan core-afucosylation, which was in turn correlated with receptor binding affinity by surface plasmon resonance and in vitro ADCC potency with a cell based bioassay. The strategy also quantifies Fc-glycan occupancy and the relative contribution from high mannose glycans.
Collapse
Affiliation(s)
- Rosie Upton
- Manchester Institute of Biotechnology, Michael Barber Centre for Collaborative Mass Spectrometry, University of Manchester , 131 Princess Street, Manchester, M1 7DN, United Kingdom
| | - Leonard Bell
- Covance Laboratories Ltd. , Otley Road, Harrogate, HG3 1PY, United Kingdom
| | - Colin Guy
- Covance Laboratories Ltd. , Otley Road, Harrogate, HG3 1PY, United Kingdom
| | - Paul Caldwell
- Covance Laboratories Ltd. , Otley Road, Harrogate, HG3 1PY, United Kingdom
| | - Sian Estdale
- Covance Laboratories Ltd. , Otley Road, Harrogate, HG3 1PY, United Kingdom
| | - Perdita E Barran
- Manchester Institute of Biotechnology, Michael Barber Centre for Collaborative Mass Spectrometry, University of Manchester , 131 Princess Street, Manchester, M1 7DN, United Kingdom
| | - David Firth
- Covance Laboratories Ltd. , Otley Road, Harrogate, HG3 1PY, United Kingdom
| |
Collapse
|
71
|
Liu T, Guo H, Zhu L, Zheng Y, Xu J, Guo Q, Zhang D, Qian W, Dai J, Guo Y, Hou S, Wang H. Fast Characterization of Fc-Containing Proteins by Middle-Down Mass Spectrometry Following IdeS Digestion. Chromatographia 2016. [DOI: 10.1007/s10337-016-3173-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
72
|
Implementation of USP antibody standard for system suitability in capillary electrophoresis sodium dodecyl sulfate (CE-SDS) for release and stability methods. J Pharm Biomed Anal 2016; 128:447-454. [DOI: 10.1016/j.jpba.2016.06.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 06/03/2016] [Accepted: 06/06/2016] [Indexed: 11/20/2022]
|
73
|
Bobaly B, Beck A, Veuthey JL, Guillarme D, Fekete S. Impact of organic modifier and temperature on protein denaturation in hydrophobic interaction chromatography. J Pharm Biomed Anal 2016; 131:124-132. [PMID: 27589029 DOI: 10.1016/j.jpba.2016.08.019] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 08/23/2016] [Accepted: 08/25/2016] [Indexed: 01/16/2023]
Abstract
The goal of this study was to better understand the chromatographic conditions in which monoclonal antibodies (mAbs) of broad hydrophobicity scale and a cysteine conjugated antibody-drug conjugate (ADCs), namely brentuximab-vedotin, could denaturate. For this purpose, some experiments were carried out in HIC conditions using various organic modifier in natures and proportions, different mobile phase temperatures and also different pHs. Indeed, improper analytical conditions in hydrophobic interaction chromatography (HIC) may create reversed-phase (RP) like harsh conditions and therefore protein denaturation. In terms of organic solvents, acetonitrile (ACN) and isopropanol (IPA) were tested with proportions ranging from 0 to 40%. It appeared that IPA was a less denaturating solvent than ACN, but should be used in a reasonable range (10-15%). Temperature should also be kept reasonable (below 40°C), to limit denaturation under HIC conditions. However, the combined increase of temperature and organic content induced denaturation of protein biopharmaceuticals in all cases. Indeed, above 30-40°C and 10-15% organic modifier in mobile phase B, heavy chain (HC) and light chain (LC) fragments dissociated. Mobile phase pH was also particularly critical and denaturation was significant even under moderately acidic conditions (pH of 5.4). Today, HIC is widely used for measuring drug-to-antibody ratio (DAR) of ADCs, which is a critical quality attribute of such samples. Here, we demonstrated that the estimation of average DAR can be dependent on the amount of organic modifier in the mobile phase under HIC conditions, due to the better recovery of the most hydrophobic proteins in presence of organic solvent (IPA). So, special care should be taken when measuring the average DAR of ADCs in HIC.
Collapse
Affiliation(s)
- Balázs Bobaly
- School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, Boulevard d'Yvoy 20, 1211 Geneva 4, Switzerland
| | - Alain Beck
- Center of Immunology Pierre Fabre, 5 Avenue Napoléon III, BP 60497, 74160 Saint-Julien-en-Genevois, France(1)
| | - Jean-Luc Veuthey
- School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, Boulevard d'Yvoy 20, 1211 Geneva 4, Switzerland
| | - Davy Guillarme
- School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, Boulevard d'Yvoy 20, 1211 Geneva 4, Switzerland
| | - Szabolcs Fekete
- School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, Boulevard d'Yvoy 20, 1211 Geneva 4, Switzerland.
| |
Collapse
|
74
|
Liu B, Guo H, Zhang J, Xue J, Yang Y, Qin T, Xu J, Guo Q, Zhang D, Qian W, Li B, Hou S, Dai J, Guo Y, Wang H. In-Depth Characterization of a Pro-Antibody-Drug Conjugate by LC-MS. Mol Pharm 2016; 13:2702-10. [PMID: 27377124 DOI: 10.1021/acs.molpharmaceut.6b00280] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Pro-antibody-drug conjugate (PDC) is a hybrid structural format of immunoconjugate, where the structural complexity of pro-antibody and intrinsic heterogeneity of ADCs impose a prominent analytical challenge to the in-depth characterization of PDCs. In the present study, we successfully prepared and characterized PanP-DM1 as a model of PDCs, which is an anti-EGFR pro-antibody following conjugation with DM1 at lysine residues. The drug-to-antibody ratio (DAR) of PanP-DM1 was determined by LC-MS after deglycosylation, and verified by UV/vis spectroscopy. Following reduction or IdeS digestion, the pro-antibody fragments linked with DM1 were investigated by middle-down mass spectrometry. Furthermore, more than 20 modified lysine conjugation sites were determined by peptide mapping after trypsin digestion. Additionally, more than ten glycoforms of PanP-DM1 were also identified and quantified. In summary, critical quality attributes (CQAs) of PDCs including DAR, drug load distribution, and conjugation sites were fully characterized, which would contribute to the development of other PDCs for cancer treatment.
Collapse
Affiliation(s)
- Boning Liu
- School of Bioscience and Bioengineering, South China University of Technology , 381 Wushan Road, Guangzhou 510641, China.,International Joint Cancer Institute, Second Military Medical University , 800 Xiangyin Road, Shanghai 200433, China.,State Key Laboratory of Antibody Medicine and Targeted Therapy, Shanghai Key Laboratory of Cell Engineering , 99 Libing Road, Shanghai 201203, China
| | - Huaizu Guo
- State Key Laboratory of Antibody Medicine and Targeted Therapy, Shanghai Key Laboratory of Cell Engineering , 99 Libing Road, Shanghai 201203, China.,Shanghai Zhangjiang Biotechnology Co. , 99 Libing Road, Shanghai 201203, China
| | - Junjie Zhang
- School of Bioscience and Bioengineering, South China University of Technology , 381 Wushan Road, Guangzhou 510641, China.,International Joint Cancer Institute, Second Military Medical University , 800 Xiangyin Road, Shanghai 200433, China.,State Key Laboratory of Antibody Medicine and Targeted Therapy, Shanghai Key Laboratory of Cell Engineering , 99 Libing Road, Shanghai 201203, China
| | - Jingya Xue
- State Key Laboratory of Antibody Medicine and Targeted Therapy, Shanghai Key Laboratory of Cell Engineering , 99 Libing Road, Shanghai 201203, China.,Shanghai Zhangjiang Biotechnology Co. , 99 Libing Road, Shanghai 201203, China.,School of Life Sciences, Fudan University , 220 Handan Road, Shanghai 200433, China
| | - Yun Yang
- State Key Laboratory of Antibody Medicine and Targeted Therapy, Shanghai Key Laboratory of Cell Engineering , 99 Libing Road, Shanghai 201203, China.,School of Life Basic Medical Sciences, Xin Xiang Medical University , 601 Jinsui Road, Xinxiang 453003, China
| | - Ting Qin
- School of Bioscience and Bioengineering, South China University of Technology , 381 Wushan Road, Guangzhou 510641, China.,International Joint Cancer Institute, Second Military Medical University , 800 Xiangyin Road, Shanghai 200433, China.,State Key Laboratory of Antibody Medicine and Targeted Therapy, Shanghai Key Laboratory of Cell Engineering , 99 Libing Road, Shanghai 201203, China
| | - Jin Xu
- State Key Laboratory of Antibody Medicine and Targeted Therapy, Shanghai Key Laboratory of Cell Engineering , 99 Libing Road, Shanghai 201203, China.,Shanghai Zhangjiang Biotechnology Co. , 99 Libing Road, Shanghai 201203, China
| | - Qingcheng Guo
- International Joint Cancer Institute, Second Military Medical University , 800 Xiangyin Road, Shanghai 200433, China.,State Key Laboratory of Antibody Medicine and Targeted Therapy, Shanghai Key Laboratory of Cell Engineering , 99 Libing Road, Shanghai 201203, China
| | - Dapeng Zhang
- International Joint Cancer Institute, Second Military Medical University , 800 Xiangyin Road, Shanghai 200433, China.,State Key Laboratory of Antibody Medicine and Targeted Therapy, Shanghai Key Laboratory of Cell Engineering , 99 Libing Road, Shanghai 201203, China
| | - Weizhu Qian
- State Key Laboratory of Antibody Medicine and Targeted Therapy, Shanghai Key Laboratory of Cell Engineering , 99 Libing Road, Shanghai 201203, China.,Shanghai Zhangjiang Biotechnology Co. , 99 Libing Road, Shanghai 201203, China
| | - Bohua Li
- International Joint Cancer Institute, Second Military Medical University , 800 Xiangyin Road, Shanghai 200433, China.,State Key Laboratory of Antibody Medicine and Targeted Therapy, Shanghai Key Laboratory of Cell Engineering , 99 Libing Road, Shanghai 201203, China
| | - Sheng Hou
- International Joint Cancer Institute, Second Military Medical University , 800 Xiangyin Road, Shanghai 200433, China.,State Key Laboratory of Antibody Medicine and Targeted Therapy, Shanghai Key Laboratory of Cell Engineering , 99 Libing Road, Shanghai 201203, China
| | - Jianxin Dai
- International Joint Cancer Institute, Second Military Medical University , 800 Xiangyin Road, Shanghai 200433, China.,State Key Laboratory of Antibody Medicine and Targeted Therapy, Shanghai Key Laboratory of Cell Engineering , 99 Libing Road, Shanghai 201203, China
| | - Yajun Guo
- School of Bioscience and Bioengineering, South China University of Technology , 381 Wushan Road, Guangzhou 510641, China.,State Key Laboratory of Antibody Medicine and Targeted Therapy, Shanghai Key Laboratory of Cell Engineering , 99 Libing Road, Shanghai 201203, China.,School of Pharmacy, Liaocheng University , 1 Hunan Road, Liaocheng 252000, China
| | - Hao Wang
- International Joint Cancer Institute, Second Military Medical University , 800 Xiangyin Road, Shanghai 200433, China.,State Key Laboratory of Antibody Medicine and Targeted Therapy, Shanghai Key Laboratory of Cell Engineering , 99 Libing Road, Shanghai 201203, China.,School of Pharmacy, Liaocheng University , 1 Hunan Road, Liaocheng 252000, China
| |
Collapse
|
75
|
Chromatography-based methods for determining molar extinction coefficients of cytotoxic payload drugs and drug antibody ratios of antibody drug conjugates. J Chromatogr A 2016; 1455:133-139. [DOI: 10.1016/j.chroma.2016.05.086] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 05/24/2016] [Accepted: 05/25/2016] [Indexed: 01/02/2023]
|
76
|
Excoffier M, Janin-Bussat MC, Beau-Larvor C, Troncy L, Corvaia N, Beck A, Klinguer-Hamour C. A new anti-human Fc method to capture and analyze ADCs for characterization of drug distribution and the drug-to-antibody ratio in serum from pre-clinical species. J Chromatogr B Analyt Technol Biomed Life Sci 2016; 1032:149-154. [PMID: 27267073 DOI: 10.1016/j.jchromb.2016.05.037] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 05/20/2016] [Accepted: 05/23/2016] [Indexed: 01/18/2023]
Abstract
Antibody-drug conjugates (ADCs) are becoming a major class of oncology therapeutics. They combine monoclonal antibody specificity for over-expressed tumor antigens and the high cytoxicity of small molecular drugs (SMDs) and can therefore selectively kill tumor cells while minimizing toxicity to normal cells. Nevertheless, the premature deconjugation of ADCs in the circulation may trigger off target toxicity in patients. The released free drug level must be low in circulation for an extended period of time as well as the de-conjugation rate to ensure an acceptable therapeutic window. As a result, the assessment of the stability of the linker between payload and mAb in the systemic circulation is of paramount importance before entering in clinical trial. Here we report a new universal method to immunocapture and analyze by LC-MS the stability and distribution of ADCs in sera from relevant preclinical species (mouse, rat and cynomolgus monkey). Furthermore we demonstrated that this workflow can be applied to both ADCs with cleavable and non cleavable linkers. Last but not least, the results obtained in cynomolgus serum using immunoprecipitation and LC-MS analysis were cross validated using an ELISA orthogonal method. As the ligand used for immunoprecipitation is targeting the Fc part of mAb (CaptureSelect™ Human IgG-Fc PK Biotin), this protocol can be applied to analyze the stability of virtually all ADCs in sera for preclinical studies without the need to prepare specific molecular tools.
Collapse
Affiliation(s)
- Mélissa Excoffier
- Centre d'Immunologie Pierre Fabre, 5 Avenue Napoléon IIIBP 60497, 74164 Saint-Julien-en-Genevois, France
| | - Marie-Claire Janin-Bussat
- Centre d'Immunologie Pierre Fabre, 5 Avenue Napoléon IIIBP 60497, 74164 Saint-Julien-en-Genevois, France
| | - Charlotte Beau-Larvor
- Centre d'Immunologie Pierre Fabre, 5 Avenue Napoléon IIIBP 60497, 74164 Saint-Julien-en-Genevois, France
| | - Lysiane Troncy
- Centre d'Immunologie Pierre Fabre, 5 Avenue Napoléon IIIBP 60497, 74164 Saint-Julien-en-Genevois, France
| | - Nathalie Corvaia
- Centre d'Immunologie Pierre Fabre, 5 Avenue Napoléon IIIBP 60497, 74164 Saint-Julien-en-Genevois, France
| | - Alain Beck
- Centre d'Immunologie Pierre Fabre, 5 Avenue Napoléon IIIBP 60497, 74164 Saint-Julien-en-Genevois, France.
| | - Christine Klinguer-Hamour
- Centre d'Immunologie Pierre Fabre, 5 Avenue Napoléon IIIBP 60497, 74164 Saint-Julien-en-Genevois, France.
| |
Collapse
|
77
|
Stoll D, Danforth J, Zhang K, Beck A. Characterization of therapeutic antibodies and related products by two-dimensional liquid chromatography coupled with UV absorbance and mass spectrometric detection. J Chromatogr B Analyt Technol Biomed Life Sci 2016; 1032:51-60. [PMID: 27267072 DOI: 10.1016/j.jchromb.2016.05.029] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 05/14/2016] [Accepted: 05/20/2016] [Indexed: 01/08/2023]
Abstract
The development of analytical tools for the characterization of large biomolecules is an emerging and rapidly evolving area. This development activity is motivated largely by the current trend involving the increase in development and use of large biomolecules for therapeutic uses. Given the inherent complexity of these biomolecules, which arises from their sheer size and possibilities for chemical modification as well as changes over time (e.g., through modification in solution, aggregation), two-dimensional liquid chromatography (2D-LC) has attracted considerable interest as an analytical tool to address the challenges faced in characterizing these materials. The immediate potential benefits of 2D-LC over conventional one-dimensional liquid chromatography in this context include: (1) higher overall resolving power; (2) complementary information gained from two dimensions of separation in a single analysis; and (3) enabling indirect coupling of separation modes that are inherently incompatible with mass spectrometric (MS) detection (e.g., ion-exchange, because of high-salt eluents) to MS through a more compatible second dimension separation such as reversed-phase LC. In this review we summarize the work in this area, most of which has occurred in the past five years. Although the future is bright for further development in this area, some challenges have already been addressed through new 2D-LC methods. These include: (1) deep characterization of monoclonal antibodies to understand charge heterogeneity, glycosylation patterns, and other modifications; (2) characterization of antibody-drug conjugates to understand the extent and localization of small molecule conjugation; (3) detailed study of excipients in protein drug formulations; and (4) detection of host-cell proteins on biotherapeutic molecule preparations. We fully expect that in the near future we will see this list expanded, and that continued development will lead to methods with further improved performance metrics.
Collapse
Affiliation(s)
- Dwight Stoll
- Gustavus Adolphus College, Department of Chemistry, St. Peter, MN, USA.
| | - John Danforth
- Gustavus Adolphus College, Department of Chemistry, St. Peter, MN, USA
| | - Kelly Zhang
- Genentech, 1 DNA Way, South San Francisco, CA 94080, USA
| | - Alain Beck
- Center of Immunology Pierre Fabre, 5 Avenue Napoléon III, BP 60497, 74160 Saint-Julien-en-Genevois, France
| |
Collapse
|
78
|
Huang RYC, Chen G. Characterization of antibody-drug conjugates by mass spectrometry: advances and future trends. Drug Discov Today 2016; 21:850-5. [PMID: 27080148 DOI: 10.1016/j.drudis.2016.04.004] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 03/16/2016] [Accepted: 04/05/2016] [Indexed: 12/31/2022]
Abstract
Antibody-drug conjugates (ADCs) are emerging modalities in the pharmaceutical industry. The unique target-specific binding of antibody allows targeted delivery of cytotoxic small molecules to cancer cells, and thus expands the therapeutic window. However, in-depth characterization of ADCs is complex because it involves the characterization of antibody, conjugated molecules and antibody conjugates as a whole. In this review, we describe the practical use of mass spectrometry for ADC characterization including qualitative and quantitative analysis. Technical advances, limitations and future trends will also be discussed.
Collapse
Affiliation(s)
- Richard Y-C Huang
- Bioanalytical and Discovery Analytical Sciences, Research and Development, Bristol-Myers Squibb, Route 206 & Province Line Road, Princeton, NJ 08543, USA
| | - Guodong Chen
- Bioanalytical and Discovery Analytical Sciences, Research and Development, Bristol-Myers Squibb, Route 206 & Province Line Road, Princeton, NJ 08543, USA.
| |
Collapse
|
79
|
Li Y, Fu T, Liu T, Guo H, Guo Q, Xu J, Zhang D, Qian W, Dai J, Li B, Guo Y, Hou S, Wang H. Characterization of alanine to valine sequence variants in the Fc region of nivolumab biosimilar produced in Chinese hamster ovary cells. MAbs 2016; 8:951-60. [PMID: 27050807 DOI: 10.1080/19420862.2016.1172150] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Nivolumab is a therapeutic fully human IgG4 antibody to programmed death 1 (PD-1). In this study, a nivolumab biosimilar, which was produced in our laboratory, was analyzed and characterized. Sequence variants that contain undesired amino acid sequences may cause concern during biosimilar bioprocess development. We found that low levels of sequence variants were detected in the heavy chain of the nivolumab biosimilar by ultra performance liquid chromatography (UPLC) and tandem mass spectrometry. It was further identified with UPLC-MS/MS by IdeS or trypsin digestion. The sequence variant was confirmed through addition of synthetic mutant peptide. Subsequently, the mixing base signal of normal and mutant sequence was detected through DNA sequencing. The relative levels of mutant A424V in the Fc region of the heavy chain have been detected and demonstrated to be 12.25% and 13.54%, via base peak intensity (BPI) and UV chromatography of the tryptic peptide mapping, respectively. A424V variant was also quantified by real-time PCR (RT-PCR) at the DNA and RNA level, which was 19.2% and 16.8%, respectively. The relative content of the mutant was consistent at the DNA, RNA and protein level, indicating that the A424V mutation may have little influence at transcriptional or translational levels. These results demonstrate that orthogonal state-of-the-art techniques such as LC- UV- MS and RT-PCR should be implemented to characterize recombinant proteins and cell lines for development of biosimilars. Our study suggests that it is important to establish an integrated and effective analytical method to monitor and characterize sequence variants during antibody drug development, especially for antibody biosimilar products.
Collapse
Affiliation(s)
- Yantao Li
- a International Joint Cancer Institute, Second Military Medical University , Shanghai , China.,b State Key Laboratory of Antibody Medicine and Targeted Therapy , Shanghai , China
| | - Tuo Fu
- a International Joint Cancer Institute, Second Military Medical University , Shanghai , China.,b State Key Laboratory of Antibody Medicine and Targeted Therapy , Shanghai , China
| | - Tao Liu
- a International Joint Cancer Institute, Second Military Medical University , Shanghai , China.,b State Key Laboratory of Antibody Medicine and Targeted Therapy , Shanghai , China
| | - Huaizu Guo
- b State Key Laboratory of Antibody Medicine and Targeted Therapy , Shanghai , China.,c Shanghai Zhangjiang Biotechnology Co
| | - Qingcheng Guo
- a International Joint Cancer Institute, Second Military Medical University , Shanghai , China.,b State Key Laboratory of Antibody Medicine and Targeted Therapy , Shanghai , China
| | - Jin Xu
- b State Key Laboratory of Antibody Medicine and Targeted Therapy , Shanghai , China.,c Shanghai Zhangjiang Biotechnology Co
| | - Dapeng Zhang
- a International Joint Cancer Institute, Second Military Medical University , Shanghai , China.,b State Key Laboratory of Antibody Medicine and Targeted Therapy , Shanghai , China
| | - Weizhu Qian
- b State Key Laboratory of Antibody Medicine and Targeted Therapy , Shanghai , China.,c Shanghai Zhangjiang Biotechnology Co
| | - Jianxin Dai
- a International Joint Cancer Institute, Second Military Medical University , Shanghai , China.,b State Key Laboratory of Antibody Medicine and Targeted Therapy , Shanghai , China
| | - Bohua Li
- a International Joint Cancer Institute, Second Military Medical University , Shanghai , China.,b State Key Laboratory of Antibody Medicine and Targeted Therapy , Shanghai , China
| | - Yajun Guo
- b State Key Laboratory of Antibody Medicine and Targeted Therapy , Shanghai , China.,d School of Pharmacy, Liaocheng University , Liaocheng , China.,e School of Bioscience and Bioengineering, South China University of Technology , Guangzhou , China
| | - Sheng Hou
- a International Joint Cancer Institute, Second Military Medical University , Shanghai , China.,b State Key Laboratory of Antibody Medicine and Targeted Therapy , Shanghai , China
| | - Hao Wang
- a International Joint Cancer Institute, Second Military Medical University , Shanghai , China.,b State Key Laboratory of Antibody Medicine and Targeted Therapy , Shanghai , China.,d School of Pharmacy, Liaocheng University , Liaocheng , China
| |
Collapse
|
80
|
Büyüktimkin B, Stewart J, Tabanor K, Kiptoo P, Siahaan TJ. Protein and Peptide Conjugates for Targeting Therapeutics and Diagnostics to Specific Cells. Drug Deliv 2016. [DOI: 10.1002/9781118833322.ch20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|
81
|
Zhang Z, Perrault R, Zhao Y, Ding J. SpeB proteolysis with imaged capillary isoelectric focusing for the characterization of domain-specific charge heterogeneities of reference and biosimilar Rituximab. J Chromatogr B Analyt Technol Biomed Life Sci 2016; 1020:148-57. [PMID: 27038651 DOI: 10.1016/j.jchromb.2016.03.031] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 01/29/2016] [Accepted: 03/19/2016] [Indexed: 11/24/2022]
Abstract
The charge variations of therapeutic monoclonal antibody reveal important information of the post-translational modifications that may potentially impact the potency and safety of pharmaceutical products, especially during the evaluation of biosimilarity of therapeutic proteins. In this work, a novel SpeB-based proteolysis strategy coupling with imaged capillary isoelectric focusing was developed for the determination of domain-specific charge heterogeneities of innovator and generic Rituximab drug products from United States, European and Indian markets. It was observed that innovator Rituximab from the United States and Europe share highly similar peak distributions and charge heterogeneities with 26.2-26.6% Fc/2, 28.9-29.3% LC and 44.4-44.5% Fd peak areas detected, respectively, while multiple basic variations of Fc/2 and less acidic LC and Fd species were found from generic Rituximab from India with 20.9% Fc/2, 32.3% LC and 46.9% Fd peak areas detected. It was also demonstrated that structural changes caused by Carboxypeptidase B treatment and deamidation study at pH extremes could be sensitively captured with the established method, with the results further indicating that the generic product's basic variations of Fc/2 were un-cleaved Lysine residues, while the lack of certain acidic peaks on LC and Fd probably was due to the lower level of deamidation. This new strategy could become a useful tool to reveal domain-specific charge heterogeneities profiles of a variety of therapeutic monoclonal antibodies in regulated environments.
Collapse
Affiliation(s)
- Zichuan Zhang
- PPD Laboratories, Biopharmaceutical Services, 8551 Research Way Suite 90, Middleton, WI 53562, USA.
| | - Ronel Perrault
- PPD Laboratories, Biopharmaceutical Services, 8551 Research Way Suite 90, Middleton, WI 53562, USA
| | - Yun Zhao
- PPD Laboratories, Biopharmaceutical Services, 8551 Research Way Suite 90, Middleton, WI 53562, USA
| | - Julia Ding
- PPD Laboratories, Biopharmaceutical Services, 8551 Research Way Suite 90, Middleton, WI 53562, USA.
| |
Collapse
|
82
|
Trevisiol S, Ayoub D, Lesur A, Ancheva L, Gallien S, Domon B. The use of proteases complementary to trypsin to probe isoforms and modifications. Proteomics 2016; 16:715-28. [DOI: 10.1002/pmic.201500379] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Revised: 11/06/2015] [Accepted: 12/08/2015] [Indexed: 12/15/2022]
Affiliation(s)
- Stéphane Trevisiol
- Luxembourg Clinical Proteomics Center (LCP); Luxembourg Institute of Health; Strassen Luxembourg
| | - Daniel Ayoub
- Luxembourg Clinical Proteomics Center (LCP); Luxembourg Institute of Health; Strassen Luxembourg
| | - Antoine Lesur
- Luxembourg Clinical Proteomics Center (LCP); Luxembourg Institute of Health; Strassen Luxembourg
| | - Lina Ancheva
- Luxembourg Clinical Proteomics Center (LCP); Luxembourg Institute of Health; Strassen Luxembourg
| | - Sébastien Gallien
- Luxembourg Clinical Proteomics Center (LCP); Luxembourg Institute of Health; Strassen Luxembourg
| | - Bruno Domon
- Luxembourg Clinical Proteomics Center (LCP); Luxembourg Institute of Health; Strassen Luxembourg
| |
Collapse
|
83
|
Brachet G, Respaud R, Arnoult C, Henriquet C, Dhommée C, Viaud-Massuard MC, Heuze-Vourc’h N, Joubert N, Pugnière M, Gouilleux-Gruart V. Increment in Drug Loading on an Antibody–Drug Conjugate Increases Its Binding to the Human Neonatal Fc Receptor in Vitro. Mol Pharm 2016; 13:1405-12. [DOI: 10.1021/acs.molpharmaceut.6b00082] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Guillaume Brachet
- CNRS,
GICC UMR 7292, CHRU de Tours, Service d’Immunologie, Université François Rabelais de Tours, Tours, France
| | - Renaud Respaud
- CNRS,
GICC UMR 7292, CHRU de Tours, Service de Pharmacie, Université François-Rabelais de Tours, Tours, France
| | - Christophe Arnoult
- CNRS,
GICC UMR 7292, Université François Rabelais de Tours, Tours, France
| | - Corinne Henriquet
- IRCM,
Institut de Recherche en Cancérologie de Montpellier, INSERM,
U1194, Université Montpellier, ICM Institut Régional du Cancer, Montpellier, F-34090 France
| | - Christine Dhommée
- CNRS,
GICC UMR 7292, Université François Rabelais de Tours, Tours, France
| | | | | | - Nicolas Joubert
- CNRS,
GICC
UMR 7292, Université François Rabelais de Tours, Tours, France
| | - Martine Pugnière
- IRCM,
Institut de Recherche en Cancérologie de Montpellier, INSERM,
U1194, Université Montpellier, ICM Institut Régional du Cancer, Montpellier, F-34090 France
| | - Valérie Gouilleux-Gruart
- CNRS,
GICC UMR 7292, CHRU de Tours, Service d’Immunologie, Université François Rabelais de Tours, Tours, France
| |
Collapse
|
84
|
Beck A, Terral G, Debaene F, Wagner-Rousset E, Marcoux J, Janin-Bussat MC, Colas O, Van Dorsselaer A, Cianférani S. Cutting-edge mass spectrometry methods for the multi-level structural characterization of antibody-drug conjugates. Expert Rev Proteomics 2016; 13:157-83. [PMID: 26653789 DOI: 10.1586/14789450.2016.1132167] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Antibody drug conjugates (ADCs) are highly cytotoxic drugs covalently attached via conditionally stable linkers to monoclonal antibodies (mAbs) and are among the most promising next-generation empowered biologics for cancer treatment. ADCs are more complex than naked mAbs, as the heterogeneity of the conjugates adds to the inherent microvariability of the biomolecules. The development and optimization of ADCs rely on improving their analytical and bioanalytical characterization by assessing several critical quality attributes, namely the distribution and position of the drug, the amount of naked antibody, the average drug to antibody ratio, and the residual drug-linker and related product proportions. Here brentuximab vedotin (Adcetris) and trastuzumab emtansine (Kadcyla), the first and gold-standard hinge-cysteine and lysine drug conjugates, respectively, were chosen to develop new mass spectrometry (MS) methods and to improve multiple-level structural assessment protocols.
Collapse
Affiliation(s)
- Alain Beck
- a Centre d'Immunologie Pierre-Fabre (CIPF) , Saint-Julien-en-Genevois , France
| | - Guillaume Terral
- b BioOrganic Mass Spectrometry Laboratory (LSMBO), IPHC, Analytical Sciences Department , Université de Strasbourg , Strasbourg , France.,c IPHC, Analytical Sciences Department, CNRS, UMR7178 , Strasbourg , France
| | - François Debaene
- b BioOrganic Mass Spectrometry Laboratory (LSMBO), IPHC, Analytical Sciences Department , Université de Strasbourg , Strasbourg , France.,c IPHC, Analytical Sciences Department, CNRS, UMR7178 , Strasbourg , France
| | - Elsa Wagner-Rousset
- a Centre d'Immunologie Pierre-Fabre (CIPF) , Saint-Julien-en-Genevois , France
| | - Julien Marcoux
- b BioOrganic Mass Spectrometry Laboratory (LSMBO), IPHC, Analytical Sciences Department , Université de Strasbourg , Strasbourg , France.,c IPHC, Analytical Sciences Department, CNRS, UMR7178 , Strasbourg , France
| | | | - Olivier Colas
- a Centre d'Immunologie Pierre-Fabre (CIPF) , Saint-Julien-en-Genevois , France
| | - Alain Van Dorsselaer
- b BioOrganic Mass Spectrometry Laboratory (LSMBO), IPHC, Analytical Sciences Department , Université de Strasbourg , Strasbourg , France.,c IPHC, Analytical Sciences Department, CNRS, UMR7178 , Strasbourg , France
| | - Sarah Cianférani
- b BioOrganic Mass Spectrometry Laboratory (LSMBO), IPHC, Analytical Sciences Department , Université de Strasbourg , Strasbourg , France.,c IPHC, Analytical Sciences Department, CNRS, UMR7178 , Strasbourg , France
| |
Collapse
|
85
|
Sjögren J, Olsson F, Beck A. Rapid and improved characterization of therapeutic antibodies and antibody related products using IdeS digestion and subunit analysis. Analyst 2016; 141:3114-25. [DOI: 10.1039/c6an00071a] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Antibody subunits LC, Fd and Fc/2, generated by IdeS digestion has been applied in analytical methodologies to characterize antibody quality attributes such as glycosylation, oxidation, deamidation, and identity.
Collapse
Affiliation(s)
| | | | - Alain Beck
- Centre d'Immunologie Pierre Fabre
- St Julien-en-Genevois
- France
| |
Collapse
|
86
|
Fekete S, Guillarme D, Sandra P, Sandra K. Chromatographic, Electrophoretic, and Mass Spectrometric Methods for the Analytical Characterization of Protein Biopharmaceuticals. Anal Chem 2015; 88:480-507. [DOI: 10.1021/acs.analchem.5b04561] [Citation(s) in RCA: 171] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Szabolcs Fekete
- School
of Pharmaceutical Sciences, University of Geneva, University of Lausanne, Boulevard d’Yvoy 20, 1211 Geneva 4, Switzerland
| | - Davy Guillarme
- School
of Pharmaceutical Sciences, University of Geneva, University of Lausanne, Boulevard d’Yvoy 20, 1211 Geneva 4, Switzerland
| | - Pat Sandra
- Research Institute for Chromatography (RIC), President Kennedypark 26, 8500 Kortrijk, Belgium
| | - Koen Sandra
- Research Institute for Chromatography (RIC), President Kennedypark 26, 8500 Kortrijk, Belgium
| |
Collapse
|
87
|
Birdsall RE, McCarthy SM, Janin-Bussat MC, Perez M, Haeuw JF, Chen W, Beck A. A sensitive multidimensional method for the detection, characterization, and quantification of trace free drug species in antibody-drug conjugate samples using mass spectral detection. MAbs 2015; 8:306-17. [PMID: 26651262 PMCID: PMC4966627 DOI: 10.1080/19420862.2015.1116659] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Conjugation processes and stability studies associated with the production and shelf life of antibody-drug conjugates (ADCs) can result in free (non-conjugated) drug species. These free drug species can increase the risk to patients and reduce the efficacy of the ADC. Despite stringent purification steps, trace levels of free drug species may be present in formulated ADCs, reducing the therapeutic window. The reduction of sample preparation steps through the incorporation of multidimensional techniques has afforded analysts more efficient methods to assess trace drug species. Multidimensional methods coupling size-exclusion and reversed phase liquid chromatography with ultra-violet detection (SEC-RPLC/UV) have been reported, but offer limited sensitivity and can limit method optimization. The current study addresses these challenges with a multidimensional method that is specific, sensitive, and enables method control in both dimensions via coupling of an on-line solid phase extraction column to RPLC with mass spectral detection (SPE-RPLC/MS). The proposed method was evaluated using an antibody-fluorophore conjugate (AFC) as an ADC surrogate to brentuximab vedotin and its associated parent maleimide-val-cit-DSEA payload and the derived N-acetylcysteine adduct formed during the conjugation process. Assay sensitivity was found to be 2 orders more sensitive using MS detection in comparison to UV-based detection with a nominal limit of quantitation of 0.30 ng/mL (1.5 pg on-column). Free-drug species were present in an unadulterated ADC surrogate sample at concentrations below 7 ng/mL, levels not detectable by UV alone. The proposed SPE-RPLC/MS method provides a high degree of specificity and sensitivity in the assessment of trace free drug species and offers improved control over each dimension, enabling straightforward integration into existing or novel workflows.
Collapse
Affiliation(s)
| | - Sean M McCarthy
- a Waters Corporation, 34 Maple Street , Milford , MA , 01757 , USA
| | | | - Michel Perez
- c IRPF, Center de R&D Pierre Fabre , Toulouse , France
| | | | - Weibin Chen
- a Waters Corporation, 34 Maple Street , Milford , MA , 01757 , USA
| | - Alain Beck
- b IRPF, Center d'Immunologie Pierre Fabre , St Julien-en-Genevois , France
| |
Collapse
|
88
|
Huang RYC, Deyanova EG, Passmore D, Rangan V, Deshpande S, Tymiak AA, Chen G. Utility of Ion Mobility Mass Spectrometry for Drug-to-Antibody Ratio Measurements in Antibody-Drug Conjugates. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2015; 26:1791-4. [PMID: 26122520 DOI: 10.1007/s13361-015-1203-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2015] [Revised: 05/12/2015] [Accepted: 05/19/2015] [Indexed: 05/21/2023]
Abstract
Antibody-drug conjugates (ADCs) are emerging modalities in the pharmaceutical industry. Characterization of ADC's drug-to-antibody ratio (DAR) becomes a key assessment because of its importance in ADC efficacy and safety. DAR characterization by conventional intact protein MS analysis, however, is challenging because of high heterogeneity of ADC samples. The analysis often requires protein deglycosylation, disulfide-bond reduction, or partial fragmentation. In this study, we illustrate the practical utility of ion mobility mass spectrometry (IM-MS) in a routine LC/MS workflow for DAR measurements. This strategy allows analyte "cleanup" in the gas phase, providing significant improvement of signal-to-noise ratios of ADC intact mass spectra for accurate DAR measurements. In addition, protein drift time analysis offers a new dimension in monitoring the changes of DAR in lot-to-lot analysis.
Collapse
Affiliation(s)
- Richard Y-C Huang
- Bioanalytical and Discovery Analytical Sciences, Research and Development, Bristol-Myers Squibb Company, Princeton, NJ, USA.
| | - Ekaterina G Deyanova
- Bioanalytical and Discovery Analytical Sciences, Research and Development, Bristol-Myers Squibb Company, Princeton, NJ, USA
| | - David Passmore
- Biologics Discovery California, Research and Development, Bristol-Myers Squibb Company, Redwood City, CA, USA
| | - Vangipuram Rangan
- Biologics Discovery California, Research and Development, Bristol-Myers Squibb Company, Redwood City, CA, USA
| | - Shrikant Deshpande
- Biologics Discovery California, Research and Development, Bristol-Myers Squibb Company, Redwood City, CA, USA
| | - Adrienne A Tymiak
- Bioanalytical and Discovery Analytical Sciences, Research and Development, Bristol-Myers Squibb Company, Princeton, NJ, USA
| | - Guodong Chen
- Bioanalytical and Discovery Analytical Sciences, Research and Development, Bristol-Myers Squibb Company, Princeton, NJ, USA.
| |
Collapse
|
89
|
Birdsall RE, Shion H, Kotch FW, Xu A, Porter TJ, Chen W. A rapid on-line method for mass spectrometric confirmation of a cysteine-conjugated antibody-drug-conjugate structure using multidimensional chromatography. MAbs 2015; 7:1036-44. [PMID: 26305867 PMCID: PMC4966495 DOI: 10.1080/19420862.2015.1083665] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Cysteine-conjugated antibody-drug conjugates (ADCs) are manufactured using controlled partial reduction and conjugation chemistry with drug payloads that typically occur in intervals of 0, 2, 4, 6, and 8. Control of heterogeneity is of particular importance to the quality of ADC product because drug loading and distribution can affect the safety and efficacy of the ADC. Liquid chromatography ultra-violet (LC-UV)-based methods can be used to acquire the drug distribution profiles of cysteine-conjugated ADCs when analyzed using hydrophobic interaction chromatography (HIC). However, alternative analysis techniques are often required for structural identification when conjugated drugs do not possess discrete ultra-violet absorbance properties for precise assessment of the drug-to-antibody ratio (DAR). In this study, multidimensional chromatography was used as an efficient method for combining non-compatible techniques, such as HIC, with analysis by mass spectrometry (LC/LC/QTOF-MS) for rapid on-line structural elucidation of species observed in HIC distribution profiles of cysteine-conjugated ADCs. The methodology was tested using an IgG1 mAb modified by cysteine conjugation with a non-toxic drug mimic. Structural elucidation of peaks observed in the HIC analysis (1st dimension) were successfully identified based on their unique sub-unit masses via mass spectrometry techniques once dissociation occurred under denaturing reversed phase conditions (2nd dimension). Upon identification, the DAR values were determined to be 2.83, 4.44, and 5.97 for 3 drug load levels (low-, medium-, and high-loaded ADC batches), respectively, based on relative abundance from the LC-UV data. This work demonstrates that multidimensional chromatography coupled with MS, provides an efficient approach for on-line biotherapeutic characterization to ensure ADC product quality.
Collapse
Affiliation(s)
- Robert E Birdsall
- a Biopharmaceutical Business Operations, Waters Corporation ; Milford , MA USA
| | - Henry Shion
- a Biopharmaceutical Business Operations, Waters Corporation ; Milford , MA USA
| | - Frank W Kotch
- b Pfizer Bioprocess Research & Development, Pfizer Inc ; Pearl River , NY USA
| | - April Xu
- c Pfizer Analytical Research & Development, Pfizer Inc ; Pearl River , NY USA
| | - Thomas J Porter
- d Pfizer Analytical Research & Development, Pfizer Inc ; Andover , MA USA
| | - Weibin Chen
- a Biopharmaceutical Business Operations, Waters Corporation ; Milford , MA USA
| |
Collapse
|
90
|
Stoll DR, Harmes DC, Danforth J, Wagner E, Guillarme D, Fekete S, Beck A. Direct Identification of Rituximab Main Isoforms and Subunit Analysis by Online Selective Comprehensive Two-Dimensional Liquid Chromatography–Mass Spectrometry. Anal Chem 2015; 87:8307-15. [DOI: 10.1021/acs.analchem.5b01578] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Dwight R. Stoll
- Department
of Chemistry, Gustavus Adolphus College, St. Peter, Minnesota 56082, United States
| | - David C. Harmes
- Department
of Chemistry, Gustavus Adolphus College, St. Peter, Minnesota 56082, United States
| | - John Danforth
- Department
of Chemistry, Gustavus Adolphus College, St. Peter, Minnesota 56082, United States
| | - Elsa Wagner
- Center
of Immunology
Pierre Fabre, 5, Avenue Napoléon
III, BP 60497, 74160 Saint-Julien-en-Genevois, France
| | - Davy Guillarme
- School
of Pharmaceutical Sciences University of Geneva, University of Lausanne, Boulevard d’Yvoy 20, 1211 Geneva 4, Switzerland
| | - Szabolcs Fekete
- School
of Pharmaceutical Sciences University of Geneva, University of Lausanne, Boulevard d’Yvoy 20, 1211 Geneva 4, Switzerland
| | - Alain Beck
- Center
of Immunology
Pierre Fabre, 5, Avenue Napoléon
III, BP 60497, 74160 Saint-Julien-en-Genevois, France
| |
Collapse
|
91
|
Bioanalytical approaches for characterizing catabolism of antibody–drug conjugates. Bioanalysis 2015; 7:1583-604. [DOI: 10.4155/bio.15.87] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The in vivo stability and catabolism of antibody–drug conjugates (ADCs) directly impact their PK, efficacy and safety, and metabolites of the cytotoxic or small molecule drug component of an ADC can further complicate these factors. This perspective highlights the importance of understanding ADC catabolism and the associated bioanalytical challenges. We evaluated different bioanalytical approaches to qualitatively and quantitatively characterize ADC catabolites. Here we review and discuss the rationale and experimental strategies used to design bioanalytical assays for characterization of ADC catabolism and supporting ADME studies during ADC clinical development. This review covers both large and small molecule approaches, and uses examples from Kadcyla® (T-DM1) and a THIOMAB™ antibody–drug conjugate to illustrate the process.
Collapse
|
92
|
Marcoux J, Champion T, Colas O, Wagner-Rousset E, Corvaïa N, Van Dorsselaer A, Beck A, Cianférani S. Native mass spectrometry and ion mobility characterization of trastuzumab emtansine, a lysine-linked antibody drug conjugate. Protein Sci 2015; 24:1210-23. [PMID: 25694334 DOI: 10.1002/pro.2666] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Revised: 02/12/2015] [Accepted: 02/12/2015] [Indexed: 01/08/2023]
Abstract
Antibody-drug conjugates (ADCs) are biochemotherapeutics consisting of a cytotoxic chemical drug linked covalently to a monoclonal antibody. Two main classes of ADCs, namely cysteine and lysine conjugates, are currently available on the market or involved in clinical trials. The complex structure and heterogeneity of ADCs makes their biophysical characterization challenging. For cysteine conjugates, hydrophobic interaction chromatography is the gold standard technique for studying drug distribution, the naked antibody content, and the average drug to antibody ratio (DAR). For lysine ADC conjugates on the other hand, which are not amenable to hydrophobic interaction chromatography because of their higher heterogeneity, denaturing mass spectrometry (MS) and UV/Vis spectroscopy are the most powerful approaches. We report here the use of native MS and ion mobility (IM-MS) for the characterization of trastuzumab emtansine (T-DM1, Kadcyla(®)). This lysine conjugate is currently being considered for the treatment of human epidermal growth factor receptor 2 (HER2)-positive breast cancer, and combines the anti-HER2 antibody trastuzumab (Herceptin(®)), with the cytotoxic microtubule-inhibiting maytansine derivative, DM1. We show that native MS combined with high-resolution measurements and/or charge reduction is beneficial in terms of the accurate values it provides of the average DAR and the drug load profiles. The use of spectral deconvolution is discussed in detail. We report furthermore the use of native IM-MS to directly determine DAR distribution profiles and average DAR values, as well as a molecular modeling investigation of positional isomers in T-DM1.
Collapse
Affiliation(s)
- Julien Marcoux
- BioOrganic Mass Spectrometry Laboratory (LSMBO), IPHC, Université de Strasbourg, 25 rue Becquerel, 67087, Strasbourg, France.,IPHC, CNRS, UMR7178, 67087, Strasbourg, France
| | - Thierry Champion
- Centre d'Immunologie Pierre-Fabre (CIPF), 5 Av. Napoléon III, BP 60497, 74164, Saint-Julien-en-Genevois, France
| | - Olivier Colas
- Centre d'Immunologie Pierre-Fabre (CIPF), 5 Av. Napoléon III, BP 60497, 74164, Saint-Julien-en-Genevois, France
| | - Elsa Wagner-Rousset
- Centre d'Immunologie Pierre-Fabre (CIPF), 5 Av. Napoléon III, BP 60497, 74164, Saint-Julien-en-Genevois, France
| | - Nathalie Corvaïa
- Centre d'Immunologie Pierre-Fabre (CIPF), 5 Av. Napoléon III, BP 60497, 74164, Saint-Julien-en-Genevois, France
| | - Alain Van Dorsselaer
- BioOrganic Mass Spectrometry Laboratory (LSMBO), IPHC, Université de Strasbourg, 25 rue Becquerel, 67087, Strasbourg, France.,IPHC, CNRS, UMR7178, 67087, Strasbourg, France
| | - Alain Beck
- Centre d'Immunologie Pierre-Fabre (CIPF), 5 Av. Napoléon III, BP 60497, 74164, Saint-Julien-en-Genevois, France
| | - Sarah Cianférani
- BioOrganic Mass Spectrometry Laboratory (LSMBO), IPHC, Université de Strasbourg, 25 rue Becquerel, 67087, Strasbourg, France.,IPHC, CNRS, UMR7178, 67087, Strasbourg, France
| |
Collapse
|
93
|
Leurs U, Mistarz UH, Rand KD. Getting to the core of protein pharmaceuticals--Comprehensive structure analysis by mass spectrometry. Eur J Pharm Biopharm 2015; 93:95-109. [PMID: 25791210 DOI: 10.1016/j.ejpb.2015.03.012] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Revised: 02/27/2015] [Accepted: 03/02/2015] [Indexed: 01/19/2023]
Abstract
Protein pharmaceuticals are the fastest growing class of novel therapeutic agents, and have been a major research and development focus in the (bio)pharmaceutical industry. Due to their large size and structural diversity, biopharmaceuticals represent a formidable challenge regarding analysis and characterization compared to traditional small molecule drugs. Any changes to the primary, secondary, tertiary or quaternary structure of a protein can potentially impact its function, efficacy and safety. The analysis and characterization of (structural) protein heterogeneity is therefore of utmost importance. Mass spectrometry has evolved as a powerful tool for the characterization of both primary and higher order structures of protein pharmaceuticals. Furthermore, the chemical and physical stability of protein drugs, as well as their pharmacokinetics are nowadays routinely determined by mass spectrometry. Here we review current techniques in primary, secondary and tertiary structure analysis of proteins by mass spectrometry. An overview of established top-down and bottom-up protein analyses will be given, and in particular the use of advanced technologies such as hydrogen/deuterium exchange mass spectrometry (HDX-MS) for higher-order structure analysis will be discussed. Modification and degradation pathways of protein drugs and their detection by mass spectrometry will be described, as well as the growing use of mass spectrometry to assist protein design and biopharmaceutical development.
Collapse
Affiliation(s)
- Ulrike Leurs
- Department of Pharmacy, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Ulrik H Mistarz
- Department of Pharmacy, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Kasper D Rand
- Department of Pharmacy, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark.
| |
Collapse
|
94
|
An Y, Zhang Y, Mueller HM, Shameem M, Chen X. A new tool for monoclonal antibody analysis: application of IdeS proteolysis in IgG domain-specific characterization. MAbs 2015; 6:879-93. [PMID: 24927271 DOI: 10.4161/mabs.28762] [Citation(s) in RCA: 108] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Monoclonal antibody (mAb) products are extraordinarily heterogeneous due to the presence of a variety of enzymatic and chemical modifications, such as deamidation, isomerization, oxidation, glycosylation, glycation, and terminal cyclization. The modifications in different domains of the antibody molecule can result in different biological consequences. Therefore, characterization and routine monitoring of domain-specific modifications are essential to ensure the quality of the therapeutic antibody products. For this purpose, a rapid and informative methodology was developed to examine the heterogeneity of individual domains in mAb products. A recently discovered endopeptidase, IdeS, cleaves heavy chains below the hinge region, producing F(ab') 2 and Fc fragments. Following reduction of disulfide bonds, three antibody domains (LC, Fd, and Fc/2) can be released for further characterization. Subsequent analyses by liquid chromatography/mass spectrometry, capillary isoelectric focusing, and glycan mapping enable domain-specific profiling of oxidation, charge heterogeneity, and glycoform distribution. When coupled with reversed phase chromatography, the unique chromatographic profile of each molecule offers a simple strategy for an identity test, which is an important formal test for biopharmaceutical quality control purposes. This methodology is demonstrated for a number of IgGs of different subclasses (IgG1, IgG2, IgG4), as well as an Fc fusion protein. The presented technique provides a convenient platform approach for scientific and formal therapeutic mAb product characterization. It can also be applied in regulated drug substance batch release and stability testing of antibody and Fc fusion protein products, in particular for identity and routine monitoring of domain-specific modifications.
Collapse
Affiliation(s)
- Yan An
- Sterile Product and Analytical Development; Merck Research Laboratories; Kenilworth, NJ USA
| | - Ying Zhang
- Sterile Product and Analytical Development; Merck Research Laboratories; Kenilworth, NJ USA
| | - Hans-Martin Mueller
- Sterile Product and Analytical Development; Merck Research Laboratories; Kenilworth, NJ USA
| | - Mohammed Shameem
- Sterile Product and Analytical Development; Merck Research Laboratories; Kenilworth, NJ USA
| | - Xiaoyu Chen
- Sterile Product and Analytical Development; Merck Research Laboratories; Kenilworth, NJ USA
| |
Collapse
|
95
|
Application of Pharmacokinetic-Pharmacodynamic Modeling and Simulation for Antibody-Drug Conjugate Development. Pharm Res 2015; 32:3508-25. [PMID: 25666843 DOI: 10.1007/s11095-015-1626-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Accepted: 01/12/2015] [Indexed: 10/24/2022]
Abstract
Characterization and prediction of the pharmacokinetics (PK) and pharmacodynamics (PD) of Antibody-Drug Conjugates (ADCs) is challenging, since it requires simultaneous quantitative understanding about the PK-PD properties of three different molecular species i.e., the monoclonal antibody, the drug, and the conjugate. Mathematical modeling and simulation provides an excellent tool to overcome these challenges, as it can simultaneously integrate the PK-PD of ADCs and their components in a quantitative manner. Additionally, the computational PK-PD models can also serve as a cornerstone for the model-based drug development and preclinical-to-clinical translation of ADCs. To provide an overview of this subject matter, this manuscript reviews the PK-PD models applicable to ADCs. Additionally, the usage of these models during different drug development stages (i.e., discovery, preclinical development, and clinical development) is also emphasized. The importance of PK-PD modeling and simulation in making rationale go/no-go decisions throughout the drug development process is also highlighted. There is an array of PK-PD models available, ranging from the systems models specifically developed for ADCs to the empirical models applicable to all chemotherapeutic agents, which one can employ for ADCs. The decision about which model to choose depends on the questions to be answered, time at hand, and resources available.
Collapse
|
96
|
Janin-Bussat MC, Dillenbourg M, Corvaia N, Beck A, Klinguer-Hamour C. Characterization of antibody drug conjugate positional isomers at cysteine residues by peptide mapping LC–MS analysis. J Chromatogr B Analyt Technol Biomed Life Sci 2015; 981-982:9-13. [DOI: 10.1016/j.jchromb.2014.12.017] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Revised: 12/11/2014] [Accepted: 12/17/2014] [Indexed: 12/14/2022]
|
97
|
Ji JA, Liu J, Wang YJ. Formulation Development for Antibody-Drug Conjugates. ANTIBODY-DRUG CONJUGATES 2015. [DOI: 10.1007/978-3-319-13081-1_5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
98
|
Fekete S, Beck A, Veuthey JL, Guillarme D. Theory and practice of size exclusion chromatography for the analysis of protein aggregates. J Pharm Biomed Anal 2014; 101:161-73. [DOI: 10.1016/j.jpba.2014.04.011] [Citation(s) in RCA: 180] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Revised: 04/03/2014] [Accepted: 04/08/2014] [Indexed: 12/27/2022]
|
99
|
Debaene F, Bœuf A, Wagner-Rousset E, Colas O, Ayoub D, Corvaïa N, Van Dorsselaer A, Beck A, Cianférani S. Innovative Native MS Methodologies for Antibody Drug Conjugate Characterization: High Resolution Native MS and IM-MS for Average DAR and DAR Distribution Assessment. Anal Chem 2014; 86:10674-83. [DOI: 10.1021/ac502593n] [Citation(s) in RCA: 132] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- François Debaene
- BioOrganic
Mass Spectrometry Laboratory
(LSMBO), IPHC, Université de Strasbourg, 25 rue Becquerel, 67087 Strasbourg, France
- IPHC, CNRS, UMR7178, 67087 Strasbourg, France
| | - Amandine Bœuf
- Centre d’Immunologie
Pierre-Fabre (CIPF), 5 Av. Napoléon
III, BP 60497, 74164 Saint-Julien-en-Genevois, France
| | - Elsa Wagner-Rousset
- Centre d’Immunologie
Pierre-Fabre (CIPF), 5 Av. Napoléon
III, BP 60497, 74164 Saint-Julien-en-Genevois, France
| | - Olivier Colas
- Centre d’Immunologie
Pierre-Fabre (CIPF), 5 Av. Napoléon
III, BP 60497, 74164 Saint-Julien-en-Genevois, France
| | - Daniel Ayoub
- Centre d’Immunologie
Pierre-Fabre (CIPF), 5 Av. Napoléon
III, BP 60497, 74164 Saint-Julien-en-Genevois, France
| | - Nathalie Corvaïa
- Centre d’Immunologie
Pierre-Fabre (CIPF), 5 Av. Napoléon
III, BP 60497, 74164 Saint-Julien-en-Genevois, France
| | - Alain Van Dorsselaer
- BioOrganic
Mass Spectrometry Laboratory
(LSMBO), IPHC, Université de Strasbourg, 25 rue Becquerel, 67087 Strasbourg, France
- IPHC, CNRS, UMR7178, 67087 Strasbourg, France
| | - Alain Beck
- Centre d’Immunologie
Pierre-Fabre (CIPF), 5 Av. Napoléon
III, BP 60497, 74164 Saint-Julien-en-Genevois, France
| | - Sarah Cianférani
- BioOrganic
Mass Spectrometry Laboratory
(LSMBO), IPHC, Université de Strasbourg, 25 rue Becquerel, 67087 Strasbourg, France
- IPHC, CNRS, UMR7178, 67087 Strasbourg, France
| |
Collapse
|
100
|
Abstract
Antibody-drug conjugates (ADCs) are becoming an increasingly important sub-class of antibody-related therapeutics. Two ADCs, brentuximab vedotin (Adcetris) and ado-trastuzumab emtansine (Kadcyla), were recently approved for marketing both by the US Food and Drug Administration (FDA) and the European Medicine Agency (EMA). Brentuximab vedotin is marketed as therapy for hematological malignancies (Hodgkin lymphoma, systemic anaplastic large cell lymphoma), while ado-trastuzumab emtansine is marketed for treatment of a solid tumor (breast cancer). The approvals of these two ADCs followed the mitigated success of gemtuzumab ozogamicin (Mylotarg), which was withdrawn from the US market in 2010, ten years after approval by the FDA.
Collapse
Affiliation(s)
- Alain Beck
- Centre d'Immunologie Pierre Fabre; Saint-Julien-en-Genevois, France
| | | |
Collapse
|