51
|
Rodrigues DC, Sridhar S, Gindri IM, Siddiqui DA, Valderrama P, Wilson TG, Chung KH, Wadhwani C. Spectroscopic and microscopic investigation of the effects of bacteria on dental implant surfaces. RSC Adv 2016. [DOI: 10.1039/c6ra07760a] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The surface morphology and chemical composition of commercially pure titanium dental implants and healing abutments exposed in vitro or in vivo to oral bacteria were studied.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Kwok-Hung Chung
- Department of Restorative Dentistry
- University of Washington
- Seattle
- USA
| | - Chandur Wadhwani
- Department of Restorative Dentistry
- University of Washington
- Seattle
- USA
| |
Collapse
|
52
|
GRISCHKE J, EBERHARD J, STIESCH M. Antimicrobial dental implant functionalization strategies —A systematic review. Dent Mater J 2016; 35:545-58. [DOI: 10.4012/dmj.2015-314] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Jasmin GRISCHKE
- Department of Prosthetic Dentistry and Biomedical Materials Science, Hannover Medical School
| | - Jörg EBERHARD
- Department of Prosthetic Dentistry and Biomedical Materials Science, Hannover Medical School
| | - Meike STIESCH
- Department of Prosthetic Dentistry and Biomedical Materials Science, Hannover Medical School
| |
Collapse
|
53
|
Romanò CL, Scarponi S, Gallazzi E, Romanò D, Drago L. Antibacterial coating of implants in orthopaedics and trauma: a classification proposal in an evolving panorama. J Orthop Surg Res 2015; 10:157. [PMID: 26429342 PMCID: PMC4591707 DOI: 10.1186/s13018-015-0294-5] [Citation(s) in RCA: 168] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 09/16/2015] [Indexed: 02/07/2023] Open
Abstract
Implanted biomaterials play a key role in current success of orthopedic and trauma surgery. However, implant-related infections remain among the leading reasons for failure with high economical and social associated costs. According to the current knowledge, probably the most critical pathogenic event in the development of implant-related infection is biofilm formation, which starts immediately after bacterial adhesion on an implant and effectively protects the microorganisms from the immune system and systemic antibiotics. A rationale, modern prevention of biomaterial-associated infections should then specifically focus on inhibition of both bacterial adhesion and biofilm formation. Nonetheless, currently available prophylactic measures, although partially effective in reducing surgical site infections, are not based on the pathogenesis of biofilm-related infections and unacceptable high rates of septic complications, especially in high-risk patients and procedures, are still reported.In the last decade, several studies have investigated the ability of implant surface modifications to minimize bacterial adhesion, inhibit biofilm formation, and provide effective bacterial killing to protect implanted biomaterials, even if there still is a great discrepancy between proposed and clinically implemented strategies and a lack of a common language to evaluate them.To move a step forward towards a more systematic approach in this promising but complicated field, here we provide a detailed overview and an original classification of the various technologies under study or already in the market. We may distinguish the following: 1. Passive surface finishing/modification (PSM): passive coatings that do not release bactericidal agents to the surrounding tissues, but are aimed at preventing or reducing bacterial adhesion through surface chemistry and/or structure modifications; 2. Active surface finishing/modification (ASM): active coatings that feature pharmacologically active pre-incorporated bactericidal agents; and 3. Local carriers or coatings (LCC): local antibacterial carriers or coatings, biodegradable or not, applied at the time of the surgical procedure, immediately prior or at the same time of the implant and around it. Classifying different technologies may be useful in order to better compare different solutions, to improve the design of validation tests and, hopefully, to improve and speed up the regulatory process in this rapidly evolving field.
Collapse
Affiliation(s)
- Carlo Luca Romanò
- Department of Reconstructive Surgery of Osteo-articular Infections C.R.I.O. Unit, IRCCS Galeazzi Orthopaedic Institute, Via R. Galeazzi 4, 20161, Milan, Italy.
| | - Sara Scarponi
- Department of Reconstructive Surgery of Osteo-articular Infections C.R.I.O. Unit, IRCCS Galeazzi Orthopaedic Institute, Via R. Galeazzi 4, 20161, Milan, Italy.
| | - Enrico Gallazzi
- Department of Reconstructive Surgery of Osteo-articular Infections C.R.I.O. Unit, IRCCS Galeazzi Orthopaedic Institute, Via R. Galeazzi 4, 20161, Milan, Italy.
| | - Delia Romanò
- Department of Reconstructive Surgery of Osteo-articular Infections C.R.I.O. Unit, IRCCS Galeazzi Orthopaedic Institute, Via R. Galeazzi 4, 20161, Milan, Italy.
| | - Lorenzo Drago
- Laboratory of Clinical Chemistry and Microbiology, I.R.C.C.S. Galeazzi Orthopaedic Institute, Milan, Italy.
| |
Collapse
|
54
|
Almaguer-Flores A, Silva-Bermudez P, Galicia R, Rodil SE. Bacterial adhesion on amorphous and crystalline metal oxide coatings. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2015; 57:88-99. [PMID: 26354243 DOI: 10.1016/j.msec.2015.07.031] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Revised: 05/10/2015] [Accepted: 07/10/2015] [Indexed: 12/15/2022]
Abstract
Several studies have demonstrated the influence of surface properties (surface energy, composition and topography) of biocompatible materials on the adhesion of cells/bacteria on solid substrates; however, few have provided information about the effect of the atomic arrangement or crystallinity. Using magnetron sputtering deposition, we produced amorphous and crystalline TiO2 and ZrO2 coatings with controlled micro and nanoscale morphology. The effect of the structure on the physical-chemical surface properties was carefully analyzed. Then, we studied how these parameters affect the adhesion of Escherichia coli and Staphylococcus aureus. Our findings demonstrated that the nano-topography and the surface energy were significantly influenced by the coating structure. Bacterial adhesion at micro-rough (2.6 μm) surfaces was independent of the surface composition and structure, contrary to the observation in sub-micron (0.5 μm) rough surfaces, where the crystalline oxides (TiO2>ZrO2) surfaces exhibited higher numbers of attached bacteria. Particularly, crystalline TiO2, which presented a predominant acidic nature, was more attractive for the adhesion of the negatively charged bacteria. The information provided by this study, where surface modifications are introduced by means of the deposition of amorphous or crystalline oxide coatings, offers a route for the rational design of implant surfaces to control or inhibit bacterial adhesion.
Collapse
Affiliation(s)
- Argelia Almaguer-Flores
- Facultad de Odontología, División de Estudios de Posgrado e Investigación, Universidad Nacional Autónoma de México, Circuito exterior s/n, Ciudad Universitaria, 04510 México D.F., Mexico
| | - Phaedra Silva-Bermudez
- Unidad de Ingeniería de Tejidos, Terapia Celular y Medicina Regenerativa, Instituto Nacional de Rehabilitación, Calzada México-Xochimilco No. 289, Col. Arenal de Guadalupe, 14389 México D.F., Mexico; Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Ciudad Universitaria, 04510 México D.F., Mexico.
| | - Rey Galicia
- Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Ciudad Universitaria, 04510 México D.F., Mexico
| | - Sandra E Rodil
- Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Ciudad Universitaria, 04510 México D.F., Mexico
| |
Collapse
|
55
|
Ramaglia L, Di Spigna G, Capece G, Sbordone C, Salzano S, Postiglione L. Differentiation, apoptosis, and GM-CSF receptor expression of human gingival fibroblasts on a titanium surface treated by a dual acid-etched procedure. Clin Oral Investig 2015; 19:2245-53. [PMID: 25895169 DOI: 10.1007/s00784-015-1469-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Accepted: 04/03/2015] [Indexed: 01/08/2023]
Abstract
OBJECTIVES Analysis of the effects of titanium surface properties on the biological behavior of human gingival fibroblasts (HGFs). MATERIALS AND METHODS HGFs were in vitro cultured on a titanium surface modified by a dual acid-etched procedure and on a control machined surface. Cell adhesion, proliferation, apoptosis, production of certain extracellular matrix (ECM) proteins, and expression of granulocyte macrophage-colony stimulating factor receptor (GM-CSFR) were investigated using in each experiment a total of 18 samples for each titanium surface. RESULTS Cell attachment at 3 h of culture was statistically significantly higher on the etched surface. HGF growth increased on both surfaces during the entire experimental period and at day 14 of culture cell proliferation was statistically significantly higher on the treated surface than on the control. No statistically significant differences in percentage of apoptosis events were observed between the surfaces. ECM protein production increased progressively over time on both surfaces. A statistically significant deposition was observed at day 7 and 14 for collagen I and only at day 14 for fibronectin and tenascin, when compared to the baseline. GM-CSFR registered a positive expression on both surfaces, statistically significant at day 14 on the etched surface in comparison with the machined one. CONCLUSIONS Data showed that titanium surface microtopography modulates in vitro cell response and phenotypical expression of HGFs. The etched surface promoted a higher cell proliferation and differentiation improving the biological behavior of HGFs. CLINICAL RELEVANCE Results suggest a possible beneficial effect of surface etching modification on peri-implant biological integration and soft tissue healing which is critical for the formation of a biological seal around the neck of dental implants.
Collapse
Affiliation(s)
- Luca Ramaglia
- Department of Neurosciences, Reproductive and Odontostomatological Sciences, University of Naples "Federico II", Naples, Italy
| | - Gaetano Di Spigna
- Department of Translational Medical Sciences, University of Naples "Federico II", Naples, Italy
| | - Gabriele Capece
- Department of Neurosciences, Reproductive and Odontostomatological Sciences, University of Naples "Federico II", Naples, Italy
| | - Carolina Sbordone
- Department of Neurosciences, Reproductive and Odontostomatological Sciences, University of Naples "Federico II", Naples, Italy.
| | - Salvatore Salzano
- Institute of Experimental Endocrinology and Oncology "G. Salvatore", National Council of Research (CNR), Naples, Italy
| | - Loredana Postiglione
- Department of Translational Medical Sciences, University of Naples "Federico II", Naples, Italy
| |
Collapse
|
56
|
Vandeweghe S, Ferreira D, Vermeersch L, Mariën M, De Bruyn H. Long-term retrospective follow-up of turned and moderately rough implants in the edentulous jaw. Clin Oral Implants Res 2015; 27:421-6. [DOI: 10.1111/clr.12602] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/12/2015] [Indexed: 11/28/2022]
Affiliation(s)
- Stefan Vandeweghe
- Department of Periodontology, Oral Implantology, Implant and Removable Prosthodontics; Faculty of Medicine and Health Sciences; Ghent University; Ghent Belgium
| | - Deon Ferreira
- Private Practice for Prosthodontics; Unitas Hospital; Lyttelton South Africa
| | - Louis Vermeersch
- Dental School; Faculty of Medicine and Health Sciences; Ghent University; Ghent Belgium
| | - Margot Mariën
- Dental School; Faculty of Medicine and Health Sciences; Ghent University; Ghent Belgium
| | - Hugo De Bruyn
- Department of Periodontology, Oral Implantology, Implant and Removable Prosthodontics; Faculty of Medicine and Health Sciences; Ghent University; Ghent Belgium
- Department of Prosthodontics; Malmö Högskola; Malmö Sweden
| |
Collapse
|
57
|
Liu W, Su P, Chen S, Wang N, Wang J, Liu Y, Ma Y, Li H, Zhang Z, Webster TJ. Antibacterial and osteogenic stem cell differentiation properties of photoinduced TiO2 nanoparticle-decorated TiO2 nanotubes. Nanomedicine (Lond) 2015; 10:713-23. [DOI: 10.2217/nnm.14.183] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
This article has been retracted: please see Future Science Group's Policy on retractions ( www.futuremedicine.com/authorguide/editorialpolicies ). The following article has been retracted from Nanomedicine at the request of the authors and the editors: Liu W, Su P, Chen S, Wang N, Wang J, Liu Y, Ma Y, Li H, Zhang Z, Webster TJ. Antibacterial and osteogenic stem cell differentiation properties of photoinduced TiO2 nanoparticle-decorated TiO2 nanotubes. Nanomedicine (Lond.) 10(5), 713–723 (2015). The authors previously highlighted an issue relating to Figure 6 (Fluorescence images showing the viability of the Streptococcus mutans on samples) in this paper and a corrigendum was published to remove it. It was determined that the conclusions of the study were still valid without this figure. However, it has since been identified that parts of the figure in question contained manipulated images. The authors have reconsidered the completeness of the paper and have decided to retract it. The authors and editors of Nanomedicine regret any negative consequences this publication might have caused in the scientific and medical communities.
Collapse
Affiliation(s)
- Wenwen Liu
- Laboratory of Biomaterials & Biomechanics, Beijing Key Laboratory of Tooth Regeneration & Function Reconstruction, School of Stomatology, Capital Medical University, Tian Tan Xi Li No. 4, Beijing 100050, China
- Photoelectrochemical Research Group, Key Laboratory of Advanced Functional Materials, School of Materials Science & Engineering, Beijing University of Technology, Beijing 100124, China
- Department of Chemical Engineering, Northeastern University, Boston, MA 02115, USA
| | - Penglei Su
- Photoelectrochemical Research Group, Key Laboratory of Advanced Functional Materials, School of Materials Science & Engineering, Beijing University of Technology, Beijing 100124, China
| | - Su Chen
- Laboratory of Biomaterials & Biomechanics, Beijing Key Laboratory of Tooth Regeneration & Function Reconstruction, School of Stomatology, Capital Medical University, Tian Tan Xi Li No. 4, Beijing 100050, China
| | - Na Wang
- Laboratory of Biomaterials & Biomechanics, Beijing Key Laboratory of Tooth Regeneration & Function Reconstruction, School of Stomatology, Capital Medical University, Tian Tan Xi Li No. 4, Beijing 100050, China
| | - Jinshu Wang
- Photoelectrochemical Research Group, Key Laboratory of Advanced Functional Materials, School of Materials Science & Engineering, Beijing University of Technology, Beijing 100124, China
| | - Yiran Liu
- Laboratory of Biomaterials & Biomechanics, Beijing Key Laboratory of Tooth Regeneration & Function Reconstruction, School of Stomatology, Capital Medical University, Tian Tan Xi Li No. 4, Beijing 100050, China
| | - Yuanping Ma
- Laboratory of Biomaterials & Biomechanics, Beijing Key Laboratory of Tooth Regeneration & Function Reconstruction, School of Stomatology, Capital Medical University, Tian Tan Xi Li No. 4, Beijing 100050, China
| | - Hongyi Li
- Photoelectrochemical Research Group, Key Laboratory of Advanced Functional Materials, School of Materials Science & Engineering, Beijing University of Technology, Beijing 100124, China
| | - Zhenting Zhang
- Laboratory of Biomaterials & Biomechanics, Beijing Key Laboratory of Tooth Regeneration & Function Reconstruction, School of Stomatology, Capital Medical University, Tian Tan Xi Li No. 4, Beijing 100050, China
| | - Thomas J Webster
- Department of Chemical Engineering, Northeastern University, Boston, MA 02115, USA
- Center of Excellence for Advanced Materials Research, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
58
|
Braem A, De Cremer K, Delattin N, De Brucker K, Neirinck B, Vandamme K, Martens JA, Michiels J, Vleugels J, Cammue BPA, Thevissen K. Novel anti-infective implant substrates: controlled release of antibiofilm compounds from mesoporous silica-containing macroporous titanium. Colloids Surf B Biointerfaces 2015; 126:481-8. [PMID: 25601097 DOI: 10.1016/j.colsurfb.2014.12.054] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Revised: 12/05/2014] [Accepted: 12/30/2014] [Indexed: 10/24/2022]
Abstract
Bone implants with open porosity enable fast osseointegration, but also present an increased risk of biofilm-associated infections. We design a novel implant material consisting of a mesoporous SiO2 diffusion barrier (pore diameter: 6.4 nm) with controlled drug release functionality integrated in a macroporous Ti load-bearing structure (fully interconnected open porosity: 30%; pore window size: 0.5-2.0 μm). Using an in vitro tool consisting of Ti/SiO2 disks in an insert set-up, through which molecules can diffuse from feed side to release side, a continuous release without initial burst effect of the antibiofilm compound toremifene is sustained for at least 9 days, while release concentrations (up to 17 μM daily) increase with feed concentrations (up to 4mM). Toremifene diffusivity through the SiO2 phase into H2O is estimated around 10(-13)m(2)/s, suggesting configurational diffusion through mesopores. Candida albicans biofilm growth on the toremifene-release side is significantly inhibited, establishing a proof-of-concept for the drug delivery functionality of mesoporous SiO2 incorporated into a high-strength macroporous Ti carrier. Next-generation implants made of this composite material and equipped with an internal reservoir (feed side) can yield long-term controlled release of antibiofilm compounds, effectively treating infections on the implant surface (release side) over a prolonged time.
Collapse
Affiliation(s)
- Annabel Braem
- Department of Materials Engineering (MTM), KU Leuven, Kasteelpark Arenberg 44 Box 2450, 3001 Leuven, Belgium.
| | - Kaat De Cremer
- Centre of Microbial and Plant Genetics (CMPG), KU Leuven, Kasteelpark Arenberg 20 Box 2460, 3001 Leuven, Belgium; Department of Plant Systems Biology, VIB, Technologiepark 927, 9052 Ghent, Belgium.
| | - Nicolas Delattin
- Centre of Microbial and Plant Genetics (CMPG), KU Leuven, Kasteelpark Arenberg 20 Box 2460, 3001 Leuven, Belgium.
| | - Katrijn De Brucker
- Centre of Microbial and Plant Genetics (CMPG), KU Leuven, Kasteelpark Arenberg 20 Box 2460, 3001 Leuven, Belgium.
| | - Bram Neirinck
- Department of Materials Engineering (MTM), KU Leuven, Kasteelpark Arenberg 44 Box 2450, 3001 Leuven, Belgium.
| | - Katleen Vandamme
- BIOMAT Research Cluster, Department of Oral Health Sciences and Prosthetic Dentistry, KU Leuven and University Hospitals Leuven, Kapucijnenvoer 7 Box 7001, 3000 Leuven, Belgium.
| | - Johan A Martens
- Centre of Surface Chemistry and Catalysis (COK), KU Leuven, Kasteelpark Arenberg 23 Box 2461, 3001 Leuven, Belgium.
| | - Jan Michiels
- Centre of Microbial and Plant Genetics (CMPG), KU Leuven, Kasteelpark Arenberg 20 Box 2460, 3001 Leuven, Belgium.
| | - Jef Vleugels
- Department of Materials Engineering (MTM), KU Leuven, Kasteelpark Arenberg 44 Box 2450, 3001 Leuven, Belgium.
| | - Bruno P A Cammue
- Centre of Microbial and Plant Genetics (CMPG), KU Leuven, Kasteelpark Arenberg 20 Box 2460, 3001 Leuven, Belgium; Department of Plant Systems Biology, VIB, Technologiepark 927, 9052 Ghent, Belgium.
| | - Karin Thevissen
- Centre of Microbial and Plant Genetics (CMPG), KU Leuven, Kasteelpark Arenberg 20 Box 2460, 3001 Leuven, Belgium.
| |
Collapse
|
59
|
Welliver RC, Hanerhoff BL, Henry GD, Köhler TS. Significance of biofilm for the prosthetic surgeon. Curr Urol Rep 2014; 15:411. [PMID: 24740272 DOI: 10.1007/s11934-014-0411-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Biofilm formation on implanted medical devices is becoming more recognized as both a common finding and a potential problem. Although seen frequently in nature, these sequestered bacterial communities are proving to be an assiduous enemy as medical device technologies advance. The penile prosthesis has gone through many improvements, now with a more reliable mechanical function and a reduced infection rate. However, there remains a notable increase in infectious risk in revisions compared to novel cases, with many implants found to harbor a subclinical bacterial presence isolated in biofilms. This article focuses on recent updates in implant technology and surgical technique to combat infection, and reviews current research on biofilm prevention and treatment.
Collapse
|
60
|
Antibacterial surface treatment for orthopaedic implants. Int J Mol Sci 2014; 15:13849-80. [PMID: 25116685 PMCID: PMC4159828 DOI: 10.3390/ijms150813849] [Citation(s) in RCA: 179] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Revised: 06/06/2014] [Accepted: 06/13/2014] [Indexed: 02/07/2023] Open
Abstract
It is expected that the projected increased usage of implantable devices in medicine will result in a natural rise in the number of infections related to these cases. Some patients are unable to autonomously prevent formation of biofilm on implant surfaces. Suppression of the local peri-implant immune response is an important contributory factor. Substantial avascular scar tissue encountered during revision joint replacement surgery places these cases at an especially high risk of periprosthetic joint infection. A critical pathogenic event in the process of biofilm formation is bacterial adhesion. Prevention of biomaterial-associated infections should be concurrently focused on at least two targets: inhibition of biofilm formation and minimizing local immune response suppression. Current knowledge of antimicrobial surface treatments suitable for prevention of prosthetic joint infection is reviewed. Several surface treatment modalities have been proposed. Minimizing bacterial adhesion, biofilm formation inhibition, and bactericidal approaches are discussed. The ultimate anti-infective surface should be “smart” and responsive to even the lowest bacterial load. While research in this field is promising, there appears to be a great discrepancy between proposed and clinically implemented strategies, and there is urgent need for translational science focusing on this topic.
Collapse
|
61
|
Initial Bacterial Adhesion on Different Yttria-Stabilized Tetragonal Zirconia Implant Surfaces in Vitro. MATERIALS 2013; 6:5659-5674. [PMID: 28788415 PMCID: PMC5452733 DOI: 10.3390/ma6125659] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Revised: 11/26/2013] [Accepted: 11/27/2013] [Indexed: 11/26/2022]
Abstract
Bacterial adhesion to implant biomaterials constitutes a virulence factor leading to biofilm formation, infection and treatment failure. The aim of this study was to examine the initial bacterial adhesion on different implant materials in vitro. Four implant biomaterials were incubated with Enterococcus faecalis, Staphylococcus aureus and Candida albicans for 2 h: 3 mol % yttria-stabilized tetragonal zirconia polycrystal surface (B1a), B1a with zirconium oxide (ZrO2) coating (B2a), B1a with zirconia-based composite coating (B1b) and B1a with zirconia-based composite and ZrO2 coatings (B2b). Bovine enamel slabs (BES) served as control. The adherent microorganisms were quantified and visualized using scanning electron microscopy (SEM); DAPI and live/dead staining. The lowest bacterial count of E. faecalis was detected on BES and the highest on B1a. The fewest vital C. albicans strains (42.22%) were detected on B2a surfaces, while most E. faecalis and S. aureus strains (approximately 80%) were vital overall. Compared to BES; coated and uncoated zirconia substrata exhibited no anti-adhesive properties. Further improvement of the material surface characteristics is essential.
Collapse
|
62
|
Djordje A, Denis B, Nenadovic M, Petar M, Marija D, Zlatko R. An in vitro atomic force microscopic study of commercially available dental luting materials. Microsc Res Tech 2013; 76:924-30. [DOI: 10.1002/jemt.22249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Revised: 05/24/2013] [Accepted: 06/08/2013] [Indexed: 11/08/2022]
Affiliation(s)
- Antonijevic Djordje
- Laboratory for Anthropology; Institute of Anatomy; School of Medicine; University of Belgrade; Belgrade; Serbia
| | - Brajkovic Denis
- Clinic for Dentistry; Faculty of Medical Sciences; University of Kragujevac; Kragujevac; Serbia
| | - Milos Nenadovic
- Laboratory for Atomic Physics; Institute of Nuclear Sciences Vinca, University of Belgrade; Belgrade; Serbia
| | - Milovanovic Petar
- Laboratory for Anthropology; Institute of Anatomy; School of Medicine; University of Belgrade; Belgrade; Serbia
| | - Djuric Marija
- Laboratory for Anthropology; Institute of Anatomy; School of Medicine; University of Belgrade; Belgrade; Serbia
| | - Rakocevic Zlatko
- Laboratory for Atomic Physics; Institute of Nuclear Sciences Vinca, University of Belgrade; Belgrade; Serbia
| |
Collapse
|