51
|
Bardill JR, Park D, Marwan AI. Improved Coverage of Mouse Myelomeningocele With a Mussel Inspired Reverse Thermal Gel. J Surg Res 2020; 251:262-274. [PMID: 32197182 DOI: 10.1016/j.jss.2020.01.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 01/09/2020] [Accepted: 01/31/2020] [Indexed: 11/30/2022]
Abstract
BACKGROUND Myelomeningocele (MMC) is an open neural tube defect of the spinal column. Our laboratory previously introduced a reverse thermal gel (RTG) as the first in situ forming patch for in utero MMC application. To overcome the challenges of anchoring the RTG in the wet amniotic environment to improve MMC coverage, we modified the RTG to mimic the underwater adhesive properties of mussels. We have separated this study into three separate hypotheses-based components: CONCLUSIONS: The DRTG demonstrates increased elasticity, cellular scaffolding properties, and improved MMC coverage in the Grhl3 mouse model. Future studies will be translated to the preclinical ovine model to evaluate this novel gel.
Collapse
Affiliation(s)
- James R Bardill
- Department of Bioengineering, University of Colorado Denver Anschutz Medical Campus, Aurora, Colorado; Division of Pediatric Surgery, Department of Surgery, University of Colorado Denver Anschutz Medical Campus, Aurora, Colorado
| | - Daewon Park
- Department of Bioengineering, University of Colorado Denver Anschutz Medical Campus, Aurora, Colorado.
| | | |
Collapse
|
52
|
Huang NF, Chaudhuri O, Cahan P, Wang A, Engler AJ, Wang Y, Kumar S, Khademhosseini A, Li S. Multi-scale cellular engineering: From molecules to organ-on-a-chip. APL Bioeng 2020; 4:010906. [PMID: 32161833 PMCID: PMC7054123 DOI: 10.1063/1.5129788] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 01/28/2020] [Indexed: 12/11/2022] Open
Abstract
Recent technological advances in cellular and molecular engineering have provided new
insights into biology and enabled the design, manufacturing, and manipulation of complex
living systems. Here, we summarize the state of advances at the molecular, cellular, and
multi-cellular levels using experimental and computational tools. The areas of focus
include intrinsically disordered proteins, synthetic proteins, spatiotemporally dynamic
extracellular matrices, organ-on-a-chip approaches, and computational modeling, which all
have tremendous potential for advancing fundamental and translational science.
Perspectives on the current limitations and future directions are also described, with the
goal of stimulating interest to overcome these hurdles using multi-disciplinary
approaches.
Collapse
Affiliation(s)
| | - Ovijit Chaudhuri
- Department of Mechanical Engineering, Stanford University, Stanford, California 94305, USA
| | - Patrick Cahan
- Department of Biomedical Engineering, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | | - Adam J Engler
- Department of Bioengineering, Jacob School of Engineering, University of California San Diego, La Jolla, California 92093, USA
| | - Yingxiao Wang
- Department of Bioengineering, Jacob School of Engineering, University of California San Diego, La Jolla, California 92093, USA
| | | | | | - Song Li
- Department of Bioengineering, University of California, Los Angeles, California 90095, USA
| |
Collapse
|
53
|
Gao K, He S, Kumar P, Farmer D, Zhou J, Wang A. Clonal isolation of endothelial colony-forming cells from early gestation chorionic villi of human placenta for fetal tissue regeneration. World J Stem Cells 2020; 12:123-138. [PMID: 32184937 PMCID: PMC7062038 DOI: 10.4252/wjsc.v12.i2.123] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 12/03/2019] [Accepted: 12/23/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Endothelial colony-forming cells (ECFCs) have been implicated in the process of vascularization, which includes vasculogenesis and angiogenesis. Vasculogenesis is a de novo formation of blood vessels, and is an essential physiological process that occurs during embryonic development and tissue regeneration. Angiogenesis is the growth of new capillaries from pre-existing blood vessels, which is observed both prenatally and postnatally. The placenta is an organ composed of a variety of fetal-derived cells, including ECFCs, and therefore has significant potential as a source of fetal ECFCs for tissue engineering.
AIM To investigate the possibility of isolating clonal ECFCs from human early gestation chorionic villi (CV-ECFCs) of the placenta, and assess their potential for tissue engineering.
METHODS The early gestation chorionic villus tissue was dissociated by enzyme digestion. Cells expressing CD31 were selected using magnetic-activated cell sorting, and plated in endothelial-specific growth medium. After 2-3 wks in culture, colonies displaying cobblestone-like morphology were manually picked using cloning cylinders. We characterized CV-ECFCs by flow cytometry, immunophenotyping, tube formation assay, and Dil-Ac-LDL uptake assay. Viral transduction of CV-ECFCs was performed using a Luciferase/tdTomato-containing lentiviral vector, and transduction efficiency was tested by fluorescent microscopy and flow cytometry. Compatibility of CV-ECFCs with a delivery vehicle was determined using an FDA approved, small intestinal submucosa extracellular matrix scaffold.
RESULTS After four passages in 6-8 wks of culture, we obtained a total number of 1.8 × 107 CV-ECFCs using 100 mg of early gestational chorionic villus tissue. Immunophenotypic analyses by flow cytometry demonstrated that CV-ECFCs highly expressed the endothelial markers CD31, CD144, CD146, CD105, CD309, only partially expressed CD34, and did not express CD45 and CD90. CV-ECFCs were capable of acetylated low-density lipoprotein uptake and tube formation, similar to cord blood-derived ECFCs (CB-ECFCs). CV-ECFCs can be transduced with a Luciferase/tdTomato-containing lentiviral vector at a transduction efficiency of 85.1%. Seeding CV-ECFCs on a small intestinal submucosa extracellular matrix scaffold confirmed that CV-ECFCs were compatible with the biomaterial scaffold.
CONCLUSION In summary, we established a magnetic sorting-assisted clonal isolation approach to derive CV-ECFCs. A substantial number of CV-ECFCs can be obtained within a short time frame, representing a promising novel source of ECFCs for fetal treatments.
Collapse
Affiliation(s)
- Kewa Gao
- Department of Burns and Plastic Surgery, The Third Xiangya Hospital of Central South University, Changsha 410013, Hunan Province, China
- Surgical Bioengineering Laboratory, Department of Surgery, University of California Davis, Sacramento, CA 95817, United States
- Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Sacramento, CA 95817, United States
| | - Siqi He
- Department of Burns and Plastic Surgery, The Third Xiangya Hospital of Central South University, Changsha 410013, Hunan Province, China
- Surgical Bioengineering Laboratory, Department of Surgery, University of California Davis, Sacramento, CA 95817, United States
- Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Sacramento, CA 95817, United States
| | - Priyadarsini Kumar
- Surgical Bioengineering Laboratory, Department of Surgery, University of California Davis, Sacramento, CA 95817, United States
- Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Sacramento, CA 95817, United States
| | - Diana Farmer
- Surgical Bioengineering Laboratory, Department of Surgery, University of California Davis, Sacramento, CA 95817, United States
- Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Sacramento, CA 95817, United States
| | - Jianda Zhou
- Department of Burns and Plastic Surgery, The Third Xiangya Hospital of Central South University, Changsha 410013, Hunan Province, China
| | - Aijun Wang
- Surgical Bioengineering Laboratory, Department of Surgery, University of California Davis, Sacramento, CA 95817, United States
- Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Sacramento, CA 95817, United States
- Department of Biomedical Engineering, University of California Davis, Davis, CA 95817, United States
| |
Collapse
|
54
|
Hao D, Ma B, He C, Liu R, Farmer DL, Lam KS, Wang A. Surface modification of polymeric electrospun scaffolds via a potent and high-affinity integrin α4β1 ligand improved the adhesion, spreading and survival of human chorionic villus-derived mesenchymal stem cells: a new insight for fetal tissue engineering. J Mater Chem B 2020; 8:1649-1659. [PMID: 32011618 PMCID: PMC7353926 DOI: 10.1039/c9tb02309g] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Cell-biomaterial interactions are primarily governed by cell adhesion, which arises from the binding of cellular integrins to the extracellular matrix (ECM). Integrins drive the assembly of focal contacts that serve as mechanotransducers and signaling nexuses for stem cells, for example integrin α4β1 plays pivotal roles in regulating mesenchymal stem cell (MSC) homing, adhesion, migration and differentiation. The strategy to control the integrin-mediated cell adhesion to bioinspired, ECM-mimicking materials is essential to regulate cell functions and tissue regeneration. Previously, using one-bead one-compound (OBOC) combinatorial technology, we discovered that LLP2A was a high-affinity peptidomimetic ligand (IC50 = 2 pM) against integrin α4β1. In this study, we identified that LLP2A had a strong binding to human early gestation chorionic villi-derived MSCs (CV-MSCs) via integrin α4β1. To improve CV-MSC seeding, expansion and delivery for regenerative applications, we constructed artificial scaffolds simulating the structure of the native ECM by immobilizing LLP2A onto the scaffold surface as cell adhesion sites. LLP2A modification significantly enhanced CV-MSC adhesion, spreading and viability on the polymeric scaffolds via regulating signaling pathways including phosphorylation of focal adhesion kinase (FAK), and AKT, NF-kB and Caspase 9. In addition, we also demonstrated that LLP2A had strong binding to MSCs of other sources, such as bone marrow-derived mesenchymal stem cells (BM-MSCs) and adipose tissue-derived mesenchymal stem cells (AT-MSCs). Therefore, LLP2A and its derivatives not only hold great promise for improving CV-MSC-mediated treatment of fetal diseases, but they can also be widely applied to functionalize various biological and medical materials, which are in need of MSC recruitment, enrichment and survival, for regenerative medicine applications.
Collapse
Affiliation(s)
- Dake Hao
- Department of Surgery, School of Medicine, University of California Davis, Sacramento, CA 95817, USA. and Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Sacramento, CA 95817, USA
| | - Bowen Ma
- Department of Surgery, School of Medicine, University of California Davis, Sacramento, CA 95817, USA.
| | - Chuanchao He
- Department of Surgery, School of Medicine, University of California Davis, Sacramento, CA 95817, USA.
| | - Ruiwu Liu
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California Davis, Sacramento, CA 95817, USA
| | - Diana L Farmer
- Department of Surgery, School of Medicine, University of California Davis, Sacramento, CA 95817, USA. and Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Sacramento, CA 95817, USA
| | - Kit S Lam
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California Davis, Sacramento, CA 95817, USA
| | - Aijun Wang
- Department of Surgery, School of Medicine, University of California Davis, Sacramento, CA 95817, USA. and Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Sacramento, CA 95817, USA and Department of Biomedical Engineering, University of California Davis, Davis, CA 95616, USA
| |
Collapse
|
55
|
Galganski LA, Yamashiro KJ, Pivetti CD, Keller BA, Becker JC, Brown EG, Saadai P, Hirose S, Wang A, Farmer DL. A Decade of Experience with the Ovine Model of Myelomeningocele: Risk Factors for Fetal Loss. Fetal Diagn Ther 2020; 47:507-513. [PMID: 32097922 DOI: 10.1159/000505400] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 12/11/2019] [Indexed: 12/20/2022]
Abstract
INTRODUCTION The ovine model is the gold standard large animal model of myelomeningocele (MMC); however, it has a high rate of fetal loss. We reviewed our experience with the model to determine risk factors for fetal loss. METHODS We performed a retrospective review from 2009 to 2018 to identify operative factors associated with fetal loss (early fetal demise, abortion, or stillbirth). Operative risk factors included gestational age at operation, operative time, reduction of multiple gestations, amount of replaced amniotic fluid, ambient temperature, and method of delivery. RESULTS MMC defects were created in 232 lambs with an overall survival rate of 43%. Of the 128 fetuses that died, 53 (42%) had demise prior to repair, 61 (48%) aborted, and 14 (11%) were stillborn. Selective reduction of multiple gestations in the same uterine horn was associated with increased fetal demise (OR 3.03 [95% CI 1.29-7.05], p = 0.01). Later gestational age at MMC repair and Cesarean delivery were associated with decreased abortion/stillbirth (OR 0.90 [95% CI 0.83-0.90], p = 0.03, and OR 0.37 [95% CI 0.16-0.31], p = 0.02), respectively. CONCLUSION Avoiding selective reduction, repairing MMC later in gestation, and performing Cesarean delivery decreases the rate of fetal loss in the ovine MMC model.
Collapse
Affiliation(s)
- Laura A Galganski
- Department of Surgery, University of California-Davis, Sacramento, California, USA,
| | - Kaeli J Yamashiro
- Department of Surgery, University of California-Davis, Sacramento, California, USA
| | - Christopher D Pivetti
- Department of Surgery, University of California-Davis, Sacramento, California, USA.,Shriners Hospitals for Children Northern California, Sacramento, California, USA
| | - Benjamin A Keller
- Department of Surgery, University of California-Davis, Sacramento, California, USA
| | - James C Becker
- Department of Surgery, University of California-Davis, Sacramento, California, USA
| | - Erin G Brown
- Department of Surgery, University of California-Davis, Sacramento, California, USA.,Shriners Hospitals for Children Northern California, Sacramento, California, USA
| | - Payam Saadai
- Department of Surgery, University of California-Davis, Sacramento, California, USA.,Shriners Hospitals for Children Northern California, Sacramento, California, USA
| | - Shinjiro Hirose
- Department of Surgery, University of California-Davis, Sacramento, California, USA.,Shriners Hospitals for Children Northern California, Sacramento, California, USA
| | - Aijun Wang
- Department of Surgery, University of California-Davis, Sacramento, California, USA.,Shriners Hospitals for Children Northern California, Sacramento, California, USA.,Department of Biomedical Engineering, University of California-Davis, Davis, California, USA
| | - Diana L Farmer
- Department of Surgery, University of California-Davis, Sacramento, California, USA.,Shriners Hospitals for Children Northern California, Sacramento, California, USA
| |
Collapse
|
56
|
Kuncorojakti S, Srisuwatanasagul S, Kradangnga K, Sawangmake C. Insulin-Producing Cell Transplantation Platform for Veterinary Practice. Front Vet Sci 2020; 7:4. [PMID: 32118053 PMCID: PMC7028771 DOI: 10.3389/fvets.2020.00004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 01/06/2020] [Indexed: 12/14/2022] Open
Abstract
Diabetes mellitus (DM) remains a global concern in both human and veterinary medicine. Type I DM requires prolonged and consistent exogenous insulin administration to address hyperglycemia, which can increase the risk of diabetes complications such as retinopathy, nephropathy, neuropathy, and heart disorders. Cell-based therapies have been successful in human medicine using the Edmonton protocol. These therapies help maintain the production of endogenous insulin and stabilize blood glucose levels and may possibly be adapted to veterinary clinical practice. The limited number of cadaveric pancreas donors and the long-term use of immunosuppressive agents are the main obstacles for this protocol. Over the past decade, the development of potential therapies for DM has mainly focused on the generation of effective insulin-producing cells (IPCs) from various sources of stem cells that can be transplanted into the body. Another successful application of stem cells in type I DM therapies is transplanting generated IPCs. Encapsulation can be an alternative strategy to protect IPCs from rejection by the body due to their immunoisolation properties. This review summarizes current concepts of IPCs and encapsulation technology for veterinary clinical application and proposes a potential stem-cell-based platform for veterinary diabetic regenerative therapy.
Collapse
Affiliation(s)
- Suryo Kuncorojakti
- Veterinary Stem Cell and Bioengineering Innovation Center (VSCBIC), Veterinary Pharmacology and Stem Cell Research Laboratory, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand.,Department of Veterinary Anatomy, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Sayamon Srisuwatanasagul
- Department of Anatomy, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Krishaporn Kradangnga
- Department of Surgery, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Chenphop Sawangmake
- Veterinary Stem Cell and Bioengineering Innovation Center (VSCBIC), Veterinary Pharmacology and Stem Cell Research Laboratory, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand.,Veterinary Clinical Stem Cell and Bioengineering Research Unit, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand.,Department of Pharmacology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
57
|
Freedman-Weiss MR, Stitelman DH. Minimally Invasive Fetal Therapy for Myelomeningocele. CURRENT STEM CELL REPORTS 2020. [DOI: 10.1007/s40778-020-00167-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
58
|
Iavorovschi AM, Wang A. Engineering mesenchymal stromal/stem cell-derived extracellular vesicles with improved targeting and therapeutic efficiency for the treatment of central nervous system disorders. Neural Regen Res 2020; 15:2235-2236. [PMID: 32594034 PMCID: PMC7749490 DOI: 10.4103/1673-5374.284982] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Affiliation(s)
- Alexandra M Iavorovschi
- Surgical Bioengineering Laboratory, Department of Surgery, School of Medicine, University of California-Davis; Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children-Northern California, Sacramento, CA, USA
| | - Aijun Wang
- Surgical Bioengineering Laboratory, Department of Surgery, School of Medicine, University of California-Davis; Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children-Northern California, Sacramento; Department of Biomedical Engineering, University of California, Davis School of Engineering, Davis, CA, USA
| |
Collapse
|
59
|
Clark K, Zhang S, Barthe S, Kumar P, Pivetti C, Kreutzberg N, Reed C, Wang Y, Paxton Z, Farmer D, Guo F, Wang A. Placental Mesenchymal Stem Cell-Derived Extracellular Vesicles Promote Myelin Regeneration in an Animal Model of Multiple Sclerosis. Cells 2019; 8:cells8121497. [PMID: 31771176 PMCID: PMC6952942 DOI: 10.3390/cells8121497] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 11/16/2019] [Accepted: 11/19/2019] [Indexed: 02/04/2023] Open
Abstract
Mesenchymal stem/stromal cells (MSCs) display potent immunomodulatory and regenerative capabilities through the secretion of bioactive factors, such as proteins, cytokines, chemokines as well as the release of extracellular vesicles (EVs). These functional properties of MSCs make them ideal candidates for the treatment of degenerative and inflammatory diseases, including multiple sclerosis (MS). MS is a heterogenous disease that is typically characterized by inflammation, demyelination, gliosis and axonal loss. In the current study, an induced experimental autoimmune encephalomyelitis (EAE) murine model of MS was utilized. At peak disease onset, animals were treated with saline, placenta-derived MSCs (PMSCs), as well as low and high doses of PMSC-EVs. Animals treated with PMSCs and high-dose PMSC-EVs displayed improved motor function outcomes as compared to animals treated with saline. Symptom improvement by PMSCs and PMSC-EVs led to reduced DNA damage in oligodendroglia populations and increased myelination within the spinal cord of treated mice. In vitro data demonstrate that PMSC-EVs promote myelin regeneration by inducing endogenous oligodendrocyte precursor cells to differentiate into mature myelinating oligodendrocytes. These findings support that PMSCs’ mechanism of action is mediated by the secretion of EVs. Therefore, PMSC-derived EVs are a feasible alternative to cellular based therapies for MS, as demonstrated in an animal model of the disease.
Collapse
Affiliation(s)
- Kaitlin Clark
- Department of Surgery, School of Medicine, University of California Davis, Sacramento, CA 95817, USA; (K.C.); (S.B.); (P.K.); (C.P.); (N.K.); (C.R.); (Z.P.); (D.F.)
- Shriner’s Hospitals for Children, Northern California, Sacramento, CA 95817, USA; (S.Z.); (Y.W.); (F.G.)
| | - Sheng Zhang
- Shriner’s Hospitals for Children, Northern California, Sacramento, CA 95817, USA; (S.Z.); (Y.W.); (F.G.)
| | - Sylvain Barthe
- Department of Surgery, School of Medicine, University of California Davis, Sacramento, CA 95817, USA; (K.C.); (S.B.); (P.K.); (C.P.); (N.K.); (C.R.); (Z.P.); (D.F.)
| | - Priyadarsini Kumar
- Department of Surgery, School of Medicine, University of California Davis, Sacramento, CA 95817, USA; (K.C.); (S.B.); (P.K.); (C.P.); (N.K.); (C.R.); (Z.P.); (D.F.)
- Shriner’s Hospitals for Children, Northern California, Sacramento, CA 95817, USA; (S.Z.); (Y.W.); (F.G.)
| | - Christopher Pivetti
- Department of Surgery, School of Medicine, University of California Davis, Sacramento, CA 95817, USA; (K.C.); (S.B.); (P.K.); (C.P.); (N.K.); (C.R.); (Z.P.); (D.F.)
- Shriner’s Hospitals for Children, Northern California, Sacramento, CA 95817, USA; (S.Z.); (Y.W.); (F.G.)
| | - Nicole Kreutzberg
- Department of Surgery, School of Medicine, University of California Davis, Sacramento, CA 95817, USA; (K.C.); (S.B.); (P.K.); (C.P.); (N.K.); (C.R.); (Z.P.); (D.F.)
| | - Camille Reed
- Department of Surgery, School of Medicine, University of California Davis, Sacramento, CA 95817, USA; (K.C.); (S.B.); (P.K.); (C.P.); (N.K.); (C.R.); (Z.P.); (D.F.)
| | - Yan Wang
- Shriner’s Hospitals for Children, Northern California, Sacramento, CA 95817, USA; (S.Z.); (Y.W.); (F.G.)
| | - Zachary Paxton
- Department of Surgery, School of Medicine, University of California Davis, Sacramento, CA 95817, USA; (K.C.); (S.B.); (P.K.); (C.P.); (N.K.); (C.R.); (Z.P.); (D.F.)
| | - Diana Farmer
- Department of Surgery, School of Medicine, University of California Davis, Sacramento, CA 95817, USA; (K.C.); (S.B.); (P.K.); (C.P.); (N.K.); (C.R.); (Z.P.); (D.F.)
- Shriner’s Hospitals for Children, Northern California, Sacramento, CA 95817, USA; (S.Z.); (Y.W.); (F.G.)
| | - Fuzheng Guo
- Shriner’s Hospitals for Children, Northern California, Sacramento, CA 95817, USA; (S.Z.); (Y.W.); (F.G.)
| | - Aijun Wang
- Department of Surgery, School of Medicine, University of California Davis, Sacramento, CA 95817, USA; (K.C.); (S.B.); (P.K.); (C.P.); (N.K.); (C.R.); (Z.P.); (D.F.)
- Shriner’s Hospitals for Children, Northern California, Sacramento, CA 95817, USA; (S.Z.); (Y.W.); (F.G.)
- Department of Biomedical Engineering, University of California Davis, Davis, CA 95616, USA
- Correspondence: ; Tel.: +1-916-703-0422
| |
Collapse
|
60
|
Hypoxic Preconditioning Enhances Survival and Proangiogenic Capacity of Human First Trimester Chorionic Villus-Derived Mesenchymal Stem Cells for Fetal Tissue Engineering. Stem Cells Int 2019; 2019:9695239. [PMID: 31781252 PMCID: PMC6874947 DOI: 10.1155/2019/9695239] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 08/23/2019] [Accepted: 09/04/2019] [Indexed: 12/19/2022] Open
Abstract
Prenatal stem cell-based regenerative therapies have progressed substantially and have been demonstrated as effective treatment options for fetal diseases that were previously deemed untreatable. Due to immunoregulatory properties, self-renewal capacity, and multilineage potential, autologous human placental chorionic villus-derived mesenchymal stromal cells (CV-MSCs) are an attractive cell source for fetal regenerative therapies. However, as a general issue for MSC transplantation, the poor survival and engraftment is a major challenge of the application of MSCs. Particularly for the fetal transplantation of CV-MSCs in the naturally hypoxic fetal environment, improving the survival and engraftment of CV-MSCs is critically important. Hypoxic preconditioning (HP) is an effective priming approach to protect stem cells from ischemic damage. In this study, we developed an optimal HP protocol to enhance the survival and proangiogenic capacity of CV-MSCs for improving clinical outcomes in fetal applications. Total cell number, DNA quantification, nuclear area test, and cell viability test showed HP significantly protected CV-MSCs from ischemic damage. Flow cytometry analysis confirmed HP did not alter the immunophenotype of CV-MSCs. Caspase-3, MTS, and Western blot analysis showed HP significantly reduced the apoptosis of CV-MSCs under ischemic stimulus via the activation of the AKT signaling pathway that was related to cell survival. ELISA results showed HP significantly enhanced the secretion of vascular endothelial growth factor (VEGF) and hepatocyte growth factor (HGF) by CV-MSCs under an ischemic stimulus. We also found that the environmental nutrition level was critical for the release of brain-derived neurotrophic factor (BDNF). The angiogenesis assay results showed HP-primed CV-MSCs could significantly enhance endothelial cell (EC) proliferation, migration, and tube formation. Consequently, HP is a promising strategy to increase the tolerance of CV-MSCs to ischemia and improve their therapeutic efficacy in fetal clinical applications.
Collapse
|
61
|
Abe Y, Ochiai D, Masuda H, Sato Y, Otani T, Fukutake M, Ikenoue S, Miyakoshi K, Okano H, Tanaka M. In Utero Amniotic Fluid Stem Cell Therapy Protects Against Myelomeningocele via Spinal Cord Coverage and Hepatocyte Growth Factor Secretion. Stem Cells Transl Med 2019; 8:1170-1179. [PMID: 31407874 PMCID: PMC6811697 DOI: 10.1002/sctm.19-0002] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 07/02/2019] [Indexed: 12/13/2022] Open
Abstract
Despite the poor prognosis associated with myelomeningocele (MMC), the options for prenatal treatments are still limited. Recently, fetal cellular therapy has become a new option for treating birth defects, although the therapeutic effects and mechanisms associated with such treatments remain unclear. The use of human amniotic fluid stem cells (hAFSCs) is ideal with respect to immunoreactivity and cell propagation. The prenatal diagnosis of MMC during early stages of pregnancy could allow for the ex vivo proliferation and modulation of autologous hAFSCs for use in utero stem cell therapy. Therefore, we investigated the therapeutic effects and mechanisms of hAFSCs‐based treatment for fetal MMC. hAFSCs were isolated as CD117‐positive cells from the amniotic fluid of 15‐ to 17‐week pregnant women who underwent amniocentesis for prenatal diagnosis and consented to this study. Rat dams were exposed to retinoic acid to induce fetal MMC and were subsequently injected with hAFSCs in each amniotic cavity. We measured the exposed area of the spinal cord and hepatocyte growth factor (HGF) levels at the lesion. The exposed spinal area of the hAFSC‐treated group was significantly smaller than that of the control group. Immunohistochemical analysis demonstrated a reduction in neuronal damage such as neurodegeneration and astrogliosis in the hAFSC‐treated group. Additionally, in lesions of the hAFSC‐treated group, HGF expression was upregulated and HGF‐positive hAFSCs were identified, suggesting that these cells migrated to the lesion and secreted HGF to suppress neuronal damage and induce neurogenesis. Therefore, in utero hAFSC therapy could become a novel strategy for fetal MMC. stem cells translational medicine2019;8:1170–1179
Collapse
Affiliation(s)
- Yushi Abe
- Department of Obstetrics & Gynecology, Keio University School of Medicine, Tokyo, Japan
| | - Daigo Ochiai
- Department of Obstetrics & Gynecology, Keio University School of Medicine, Tokyo, Japan
| | - Hirotaka Masuda
- Department of Obstetrics & Gynecology, Keio University School of Medicine, Tokyo, Japan
| | - Yu Sato
- Department of Obstetrics & Gynecology, Keio University School of Medicine, Tokyo, Japan
| | - Toshimitsu Otani
- Department of Obstetrics & Gynecology, Keio University School of Medicine, Tokyo, Japan
| | - Marie Fukutake
- Department of Obstetrics & Gynecology, Keio University School of Medicine, Tokyo, Japan
| | - Satoru Ikenoue
- Department of Obstetrics & Gynecology, Keio University School of Medicine, Tokyo, Japan
| | - Kei Miyakoshi
- Department of Obstetrics & Gynecology, Keio University School of Medicine, Tokyo, Japan
| | - Hideyuki Okano
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan
| | - Mamoru Tanaka
- Department of Obstetrics & Gynecology, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
62
|
Extracellular Vesicles as a Potential Therapy for Neonatal Conditions: State of the Art and Challenges in Clinical Translation. Pharmaceutics 2019; 11:pharmaceutics11080404. [PMID: 31405234 PMCID: PMC6723449 DOI: 10.3390/pharmaceutics11080404] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 07/27/2019] [Accepted: 07/31/2019] [Indexed: 12/15/2022] Open
Abstract
Despite advances in intensive care, several neonatal conditions typically due to prematurity affect vital organs and are associated with high mortality and long-term morbidities. Current treatment strategies for these babies are only partially successful or are effective only in selected patients. Regenerative medicine has been shown to be a promising option for these conditions at an experimental level, but still warrants further exploration for the development of optimal treatment. Although stem cell-based therapy has emerged as a treatment option, studies have shown that it is associated with potential risks and hazards, especially in the fragile population of babies. Recently, extracellular vesicles (EVs) have emerged as an attractive therapeutic alternative that holds great regenerative potential and is cell-free. EVs are nanosized particles endogenously produced by cells that mediate intercellular communication through the transfer of their cargo. Currently, EVs are garnering considerable attention as they are the key effectors of stem cell paracrine signaling and can epigenetically regulate target cell genes through the release of RNA species, such as microRNA. Herein, we review the emerging literature on the therapeutic potential of EVs derived from different sources for the treatment of neonatal conditions that affect the brain, retinas, spine, lungs, and intestines and discuss the challenges for the translation of EVs into clinical practice.
Collapse
|
63
|
Abstract
Myelomeningocele is a congenital malformation that causes a spectrum of morbidity. With the standard of care now being in utero repair, the spectrum of morbidity has changed. The purpose of this article is to review the diagnosis, workup and treatment options of fetal myelomeningocele. We also review the obstetrical, neurological, gastrointestinal, urinary, and orthopedic outcomes of the in utero myelomeningocele repair.
Collapse
Affiliation(s)
- Kaeli J Yamashiro
- Division of Pediatric General, Thoracic and Fetal Surgery, University of California Davis Medical Center, 2335 Stockton Blvd, Room 5107, Sacramento, CA 95817, USA.
| | - Laura A Galganski
- Division of Pediatric General, Thoracic and Fetal Surgery, University of California Davis Medical Center, 2335 Stockton Blvd, Room 5107, Sacramento, CA 95817, USA
| | - Shinjiro Hirose
- Division of Pediatric General, Thoracic and Fetal Surgery, University of California Davis Medical Center, 2335 Stockton Blvd, Room 5107, Sacramento, CA 95817, USA
| |
Collapse
|
64
|
Abstract
A randomized trial demonstrated that fetal spina bifida (SB) repair is safe and effective yet invasive. New less invasive techniques are proposed but are not supported by adequate experimental studies. A validated animal model is needed to bridge the translational gap to the clinic and should mimic the human condition. Introducing a standardized method, we comprehensively and reliably characterize the SB phenotype in two lamb surgical models with and without myelotomy as compared to normal lambs. Hindbrain herniation measured on brain magnetic resonance imaging (MRI) was the primary outcome. Secondary outcomes included gross examination with cerebrospinal fluid (CSF) leakage test, neurological examination with locomotor assessment, whole-body MRI, motor and somatosensory evoked potentials; brain, spinal cord, hindlimb muscles, bladder and rectum histology and/or immunohistochemistry. We show that the myelotomy model best phenocopies the anatomy, etiopathophysiology and symptomatology of non-cystic SB. This encompasses hindbrain herniation, ventriculomegaly, posterior fossa anomalies, loss of brain neurons; lumbar CSF leakage, hindlimb somatosensory-motor deficit with absence of motor and somatosensory evoked potentials due to loss of spinal cord neurons, astroglial cells and myelin; urinary incontinence. This model obtains the highest validity score for SB animal models and is adequate to assess the efficacy of novel fetal therapies.
Collapse
|
65
|
Boruczkowski D, Zdolińska-Malinowska I. A Retrospective Analysis of Safety and Efficacy of Wharton’s Jelly Stem Cell Administration in Children with Spina Bifida. Stem Cell Rev Rep 2019; 15:717-729. [PMID: 31222411 DOI: 10.1007/s12015-019-09902-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
66
|
Vanover M, Pivetti C, Galganski L, Kumar P, Lankford L, Rowland D, Paxton Z, Deal B, Wang A, Farmer D. Spinal Angulation: A Limitation of the Fetal Lamb Model of Myelomeningocele. Fetal Diagn Ther 2019; 46:376-384. [PMID: 30970373 DOI: 10.1159/000496201] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 12/13/2018] [Indexed: 01/27/2023]
Abstract
INTRODUCTION The surgically induced fetal lamb model is the most commonly used large animal model of myelomeningocele (MMC) but is subject to variation due to surgical technique during defect creation. MATERIAL AND METHODS Thirty-one fetal lambs underwent creation of the MMC defect, followed by defect repair with either an extracellular matrix (ECM) patch (n = 10) or ECM seeded with placental mesenchymal stromal cells (n = 21). Postnatal hindlimb function was assessed using the Sheep Locomotor Rating (SLR) scale. Postmortem magnetic resonance imaging of the lumbar spine was used to measure the level and degree of spinal angulation, as well as cross-sectional area of remaining vertebral bone. RESULTS Median level of angulation was between the 2nd and 3rd lumbar vertebrae, with a median angle of 24.3 degrees (interquartile range 16.2-35.3). There was a negative correlation between angulation degree and SLR (r = -0.44, p = 0.013). Degree of angulation also negatively correlated with the normalized cross-sectional area of remaining vertebral bone (r = -0.75, p < 0.0001). DISCUSSION Surgical creation of fetal MMC leads to varying severity of spinal angulation in the ovine model, which affects postnatal functional outcomes. Postnatal assessment of spinal angulation aids in standardization of the surgical model of fetal MMC repair.
Collapse
Affiliation(s)
- Melissa Vanover
- Department of Surgery, University of California Davis, Sacramento, California, USA,
| | - Christopher Pivetti
- Department of Surgery, University of California Davis, Sacramento, California, USA
| | - Laura Galganski
- Department of Surgery, University of California Davis, Sacramento, California, USA
| | - Priyadarsini Kumar
- Department of Surgery, University of California Davis, Sacramento, California, USA
| | - Lee Lankford
- Department of Surgery, University of California Davis, Sacramento, California, USA
| | - Douglas Rowland
- Center for Molecular and Genomic Imaging, University of California Davis, Davis, California, USA
| | - Zachary Paxton
- Department of Surgery, University of California Davis, Sacramento, California, USA
| | - Bailey Deal
- Department of Surgery, University of California Davis, Sacramento, California, USA
| | - Aijun Wang
- Department of Surgery, University of California Davis, Sacramento, California, USA
| | - Diana Farmer
- Department of Surgery, University of California Davis, Sacramento, California, USA
| |
Collapse
|
67
|
Kumar P, Gao K, Wang C, Pivetti C, Lankford L, Farmer D, Wang A. In Utero Transplantation of Placenta-Derived Mesenchymal Stromal Cells for Potential Fetal Treatment of Hemophilia A. Cell Transplant 2019; 27:130-139. [PMID: 29562772 PMCID: PMC6434487 DOI: 10.1177/0963689717728937] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Hemophilia A (HA) is an X-linked recessive disorder caused by mutations in the factor VIII (FVIII) gene leading to deficient blood coagulation. The current standard of care is frequent infusions of plasma-derived FVIII or recombinant B-domain-deleted FVIII (BDD-FVIII). While this treatment is effective, many patients eventually develop FVIII inhibitors that limit the effectiveness of the infused FVIII. As a monogenic disorder, HA is an ideal target for gene or cell-based therapy. Several studies have investigated allogeneic stem cell therapy targeting in utero or postnatal treatment of HA but have not been successful in completely correcting HA. Autologous in utero transplantation of mesenchymal stem cells is promising for treatment of HA due to the naive immune status of the fetal environment as well as its potential to prevent transplant rejection and long-term FVIII inhibitor formation. HA can be diagnosed by chorionic villus sampling performed during the first trimester (10 to 13 wk) of gestation. In this study, we used an established protocol and isolated placenta-derived mesenchymal stromal cells (PMSCs) from first trimester chorionic villus tissue and transduced them with lentiviral vector encoding the BDD-FVIII gene. We show that gene-modified PMSCs maintain their immunophenotype and multipotency, express, and secrete high levels of active FVIII. PMSCs were then transplanted at embryonic day 14.5 (E14.5) into wild-type fetuses from time-mated pregnant mice. Four days after birth, pups were checked for engraftment, and varying levels of expression of human green fluorescent protein were found in the organs tested. This study shows feasibility of the approach to obtain PMSCs from first trimester chorionic villus tissue, genetically modify them with the FVIII gene, and transplant them in utero for cell-mediated gene therapy of HA. Future studies will involve evaluation of long-term engraftment, phenotypic correction in HA mice, and prevention of FVIII inhibitor development by this approach.
Collapse
Affiliation(s)
- Priyadarsini Kumar
- 1 Department of Surgery, Surgical Bioengineering Laboratory, UC Davis School of Medicine, Research II, University of California, Davis, Sacramento, CA, USA
| | - Kewa Gao
- 1 Department of Surgery, Surgical Bioengineering Laboratory, UC Davis School of Medicine, Research II, University of California, Davis, Sacramento, CA, USA.,2 Department of Burns and Plastic Surgery, The Third Xiangya Hospital of Central South University, Changsha, Hunan, People's Republic of China
| | - Chuwang Wang
- 1 Department of Surgery, Surgical Bioengineering Laboratory, UC Davis School of Medicine, Research II, University of California, Davis, Sacramento, CA, USA.,2 Department of Burns and Plastic Surgery, The Third Xiangya Hospital of Central South University, Changsha, Hunan, People's Republic of China
| | - Christopher Pivetti
- 1 Department of Surgery, Surgical Bioengineering Laboratory, UC Davis School of Medicine, Research II, University of California, Davis, Sacramento, CA, USA
| | - Lee Lankford
- 1 Department of Surgery, Surgical Bioengineering Laboratory, UC Davis School of Medicine, Research II, University of California, Davis, Sacramento, CA, USA
| | - Diana Farmer
- 1 Department of Surgery, Surgical Bioengineering Laboratory, UC Davis School of Medicine, Research II, University of California, Davis, Sacramento, CA, USA
| | - Aijun Wang
- 1 Department of Surgery, Surgical Bioengineering Laboratory, UC Davis School of Medicine, Research II, University of California, Davis, Sacramento, CA, USA
| |
Collapse
|
68
|
Kumar P, Becker JC, Gao K, Carney RP, Lankford L, Keller BA, Herout K, Lam KS, Farmer DL, Wang A. Neuroprotective effect of placenta-derived mesenchymal stromal cells: role of exosomes. FASEB J 2019; 33:5836-5849. [PMID: 30753093 DOI: 10.1096/fj.201800972r] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
We have established early-gestation chorionic villus-derived placenta mesenchymal stromal cells (PMSCs) as a potential treatment for spina bifida (SB), a neural tube defect. Our preclinical studies demonstrated that PMSCs have the potential to cure hind limb paralysis in the fetal lamb model of SB via a paracrine mechanism. PMSCs exhibit neuroprotective function by increasing cell number and neurites, as shown by indirect coculture and direct addition of PMSC-conditioned medium to the staurosporine-induced apoptotic human neuroblastoma cell line, SH-SY5Y. PMSC-conditioned medium suppressed caspase activity in apoptotic SH-SY5Y cells, suggesting that PMSC secretome contributes to neuronal survival after injury. As a part of PMSC secretome, PMSC exosomes were isolated and extensively characterized; their addition to apoptotic SH-SY5Y cells mediated an increase in neurites, suggesting that they exhibit neuroprotective function. Proteomic and RNA sequencing analysis revealed that PMSC exosomes contain several proteins and RNAs involved in neuronal survival and development. Galectin 1 was highly expressed on the surface of PMSCs and PMSC exosomes. Preincubation of exosomes with anti-galectin 1 antibody decreased their neuroprotective effect, suggesting that PMSC exosomes likely impart their effect via binding of galectin 1 to cells. Future studies will include in-depth analyses of the role of PMSC exosomes on neuroprotection and their clinical applications.-Kumar, P., Becker, J. C., Gao, K., Carney, R. P., Lankford, L., Keller, B. A., Herout, K., Lam, K. S., Farmer, D. L., Wang, A. Neuroprotective effect of placenta-derived mesenchymal stromal cells: role of exosomes.
Collapse
Affiliation(s)
- Priyadarsini Kumar
- Surgical Bioengineering Laboratory, Department of Surgery, University of California-Davis, Sacramento, California, USA
| | - James C Becker
- Surgical Bioengineering Laboratory, Department of Surgery, University of California-Davis, Sacramento, California, USA
| | - Kewa Gao
- Surgical Bioengineering Laboratory, Department of Surgery, University of California-Davis, Sacramento, California, USA.,Department of Burns and Plastic Surgery, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Randy P Carney
- Department of Biomedical Engineering, University of California-Davis, Davis, California, USA
| | - Lee Lankford
- Surgical Bioengineering Laboratory, Department of Surgery, University of California-Davis, Sacramento, California, USA
| | - Benjamin A Keller
- Surgical Bioengineering Laboratory, Department of Surgery, University of California-Davis, Sacramento, California, USA
| | - Kyle Herout
- Surgical Bioengineering Laboratory, Department of Surgery, University of California-Davis, Sacramento, California, USA
| | - Kit S Lam
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California-Davis, Sacramento, California, USA
| | - Diana L Farmer
- Surgical Bioengineering Laboratory, Department of Surgery, University of California-Davis, Sacramento, California, USA.,Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children-Northern California, Sacramento, California, USA
| | - Aijun Wang
- Surgical Bioengineering Laboratory, Department of Surgery, University of California-Davis, Sacramento, California, USA.,Department of Biomedical Engineering, University of California-Davis, Davis, California, USA.,Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children-Northern California, Sacramento, California, USA
| |
Collapse
|
69
|
Transamniotic stem cell therapy (TRASCET) in a rabbit model of spina bifida. J Pediatr Surg 2019; 54:293-296. [PMID: 30518492 DOI: 10.1016/j.jpedsurg.2018.10.086] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 10/30/2018] [Indexed: 01/13/2023]
Abstract
PURPOSE Transamniotic stem cell therapy (TRASCET) with select mesenchymal stem cells (MSCs) has been shown to induce partial or complete skin coverage of spina bifida in rodents. Clinical translation of this emerging therapy hinges on its efficacy in larger animal models. We sought to study TRASCET in a model requiring intra-amniotic injections 60 times larger than those performed in the rat. METHODS Rabbit fetuses (n = 65) with surgically created spina bifida were divided into three groups. One group (untreated) had no further manipulations. Two groups received volume-matched intra-amniotic injections of either saline or a concentrated suspension of amniotic fluid MSCs (afMSCs) at the time of operation. Infused afMSCs consisted of banked heterologous rabbit afMSCs with mesenchymal identity confirmed by flow cytometry, labeled with green fluorescent protein. Defect coverage at term was blindly categorized only if the presence of a distinctive neoskin was confirmed histologically. Statistical comparisons were by logistic regression and the likelihood ratio test. RESULTS Among survivors with spina bifida (n = 19), there were statistically significant higher rates of defect coverage (all partial) in the afMSC group when compared with the saline and untreated groups (0-50%; p = 0.022-0.036), with no difference between the saline and untreated groups (p = 1.00). Donor afMSCs were identified locally, though sparsely and not in the neoskin. CONCLUSIONS Concentrated intra-amniotic injection of amniotic mesenchymal stem cells can induce partial coverage of experimental spina bifida in a leporine model. Transamniotic stem cell therapy may become a feasible strategy in the prenatal management of spina bifida. LEVEL OF EVIDENCE N/A (animal and laboratory study).
Collapse
|
70
|
Long C, Lankford L, Wang A. Stem cell-based in utero therapies for spina bifida: implications for neural regeneration. Neural Regen Res 2019; 14:260-261. [PMID: 30531007 PMCID: PMC6301160 DOI: 10.4103/1673-5374.244786] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Affiliation(s)
- Connor Long
- Surgical Bioengineering Laboratory, Department of Surgery, University of California, Davis School of Medicine, Sacramento, CA, USA
| | - Lee Lankford
- Surgical Bioengineering Laboratory, Department of Surgery, University of California, Davis School of Medicine; Institute for Paediatric Regenerative Medicine, Shriners Hospital for Children, Sacramento, CA, USA
| | - Aijun Wang
- Surgical Bioengineering Laboratory, Department of Surgery, University of California, Davis School of Medicine; Institute for Paediatric Regenerative Medicine, Shriners Hospital for Children; Department of Biomedical Engineering, University of California, Davis School of Engineering, Davis, CA, USA
| |
Collapse
|
71
|
Vanover M, Pivetti C, Lankford L, Kumar P, Galganski L, Kabagambe S, Keller B, Becker J, Chen YJ, Chung K, Lee C, Paxton Z, Deal B, Goodman L, Anderson J, Jensen G, Wang A, Farmer D. High density placental mesenchymal stromal cells provide neuronal preservation and improve motor function following in utero treatment of ovine myelomeningocele. J Pediatr Surg 2019; 54:75-79. [PMID: 30529115 PMCID: PMC6339576 DOI: 10.1016/j.jpedsurg.2018.10.032] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 10/01/2018] [Indexed: 12/29/2022]
Abstract
PURPOSE The purpose of this study was to determine whether seeding density of placental mesenchymal stromal cells (PMSCs) on extracellular matrix (ECM) during in utero repair of myelomeningocele (MMC) affects motor function and neuronal preservation in the ovine model. METHODS MMC defects were surgically created in 33 fetuses and repaired following randomization into four treatment groups: ECM only (n = 10), PMSC-ECM (42 K cells/cm2) (n = 8), PMSC-ECM (167 K cells/cm2) (n = 7), or PMSC-ECM (250-300 K cells/cm2) (n = 8). Motor function was evaluated using the Sheep Locomotor Rating Scale (SLR). Serial sections of the lumbar spinal cord were analyzed by measuring their cross-sectional areas which were then normalized to normal lambs. Large neurons (LN, diameter 30-70 μm) were counted manually and density calculated per mm2 gray matter. RESULTS Lambs treated with PMSCs at any density had a higher median SLR score (15 [IQR 13.5-15]) than ECM alone (6.5 [IQR 4-12.75], p = 0.036). Cross-sectional areas of spinal cord and gray matter were highest in the PMSC-ECM (167 K/cm2) group (p = 0.002 and 0.006, respectively). LN density was highest in the greatest density PMSC-ECM (250-300 K/cm2) group (p = 0.045) which positively correlated with SLR score (r = 0.807, p < 0.0001). CONCLUSIONS Fetal repair of myelomeningocele with high density PMSC-ECM resulted in increased large neuron density, which strongly correlated with improved motor function. TYPE OF STUDY Basic science. LEVEL OF EVIDENCE N/A.
Collapse
Affiliation(s)
- Melissa Vanover
- Department of Surgery, University of California Davis, Sacramento, CA, USA.
| | | | - Lee Lankford
- Department of Surgery, University of California Davis, Sacramento, CA, USA
| | - Priyadarsini Kumar
- Department of Surgery, University of California Davis, Sacramento, CA, USA
| | - Laura Galganski
- Department of Surgery, University of California Davis, Sacramento, CA, USA
| | - Sandra Kabagambe
- Department of Surgery, University of California Davis, Sacramento, CA, USA
| | - Benjamin Keller
- Department of Surgery, University of California Davis, Sacramento, CA, USA
| | - James Becker
- Department of Surgery, University of California Davis, Sacramento, CA, USA
| | - Y. Julia Chen
- Department of Surgery, University of California Davis, Sacramento, CA, USA
| | - Karen Chung
- Department of Surgery, University of California Davis, Sacramento, CA, USA
| | - Chelsey Lee
- Department of Surgery, University of California Davis, Sacramento, CA, USA
| | - Zachary Paxton
- Department of Surgery, University of California Davis, Sacramento, CA, USA
| | - Bailey Deal
- Department of Surgery, University of California Davis, Sacramento, CA, USA
| | - Laura Goodman
- Department of Surgery, University of California Davis, Sacramento, CA, USA
| | - Jamie Anderson
- Department of Surgery, University of California Davis, Sacramento, CA, USA
| | - Guy Jensen
- Department of Surgery, University of California Davis, Sacramento, CA, USA
| | - Aijun Wang
- Department of Surgery, University of California Davis, Sacramento, CA, USA
| | - Diana Farmer
- Department of Surgery, University of California Davis, Sacramento, CA, USA
| |
Collapse
|
72
|
Gugjoo MB, Amarpal. Mesenchymal stem cell research in sheep: Current status and future prospects. Small Rumin Res 2018. [DOI: 10.1016/j.smallrumres.2018.08.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
73
|
Bardill J, Williams SM, Shabeka U, Niswander L, Park D, Marwan AI. An Injectable Reverse Thermal Gel for Minimally Invasive Coverage of Mouse Myelomeningocele. J Surg Res 2018; 235:227-236. [PMID: 30691800 DOI: 10.1016/j.jss.2018.09.078] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 09/24/2018] [Accepted: 09/25/2018] [Indexed: 11/17/2022]
Abstract
BACKGROUND Myelomeningocele (MMC) results in lifelong neurologic and functional deficits. Currently, prenatal repair of MMC closes the defect, resulting in a 50% reduction in postnatal ventriculoperitoneal shunting. However, this invasive fetal surgery is associated with significant morbidities to mother and baby. We have pioneered a novel reverse thermal gel (RTG) to cover MMC defects in a minimally invasive manner. Here, we test in-vitro RTG long-term stability in amniotic fluid and in vivo application in the Grainy head-like 3 (Grhl3) mouse MMC model. MATERIALS AND METHODS RTG stability in amniotic fluid (in-vitro) was monitored for 6 mo and measured using gel permeation chromatography and solution-gel transition temperature (lower critical solution temperature). E16.5 Grhl3 mouse fetuses were injected with the RTG or saline and harvested on E19.5. Tissue was assessed for RTG coverage of the gross defect and inflammatory response by immunohistochemistry for macrophages. RESULTS Polymer backbone molecular weight and lower critical solution temperature remain stable in amniotic fluid after 6 mo. Needle injection over the MMC of Grhl3 fetuses successfully forms a stable gel that covers the entire defect. On harvest, some animals demonstrate >50% RTG coverage. RTG injection is not associated with inflammation. CONCLUSIONS Our results demonstrate that the RTG is a promising candidate for a minimally invasive approach to patch MMC. We are now poised to test our RTG patch in the large preclinical ovine model used to evaluate prenatal repair of MMC.
Collapse
Affiliation(s)
- James Bardill
- Department of Bioengineering, University of Colorado Denver Anschutz Medical Campus, Aurora, Colorado; Division of Pediatric Surgery, Department of Surgery, University of Colorado Denver Anschutz Medical Campus, Aurora, Colorado
| | - Sarah M Williams
- Division of Pediatric Surgery, Department of Surgery, University of Colorado Denver Anschutz Medical Campus, Aurora, Colorado
| | - Uladzimir Shabeka
- Division of Pediatric Surgery, Department of Surgery, University of Colorado Denver Anschutz Medical Campus, Aurora, Colorado
| | - Lee Niswander
- Department of Molecular, Cellular and Developmental Biology, University of Colorado Boulder, Boulder, Colorado
| | - Daewon Park
- Department of Bioengineering, University of Colorado Denver Anschutz Medical Campus, Aurora, Colorado.
| | - Ahmed I Marwan
- Department of Bioengineering, University of Colorado Denver Anschutz Medical Campus, Aurora, Colorado; Division of Pediatric Surgery, Department of Surgery, University of Colorado Denver Anschutz Medical Campus, Aurora, Colorado.
| |
Collapse
|
74
|
Phan J, Kumar P, Hao D, Gao K, Farmer D, Wang A. Engineering mesenchymal stem cells to improve their exosome efficacy and yield for cell-free therapy. J Extracell Vesicles 2018; 7:1522236. [PMID: 30275938 PMCID: PMC6161586 DOI: 10.1080/20013078.2018.1522236] [Citation(s) in RCA: 225] [Impact Index Per Article: 32.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 08/08/2018] [Accepted: 08/27/2018] [Indexed: 02/07/2023] Open
Abstract
Through traditional medicine, there were diseases and disorders that previously remained untreated or were simply thought to be incurable. Since the discovery of mesenchymal stem cells (MSCs), there has been a flurry of research to develop MSC-based therapy for diseases and disorders. It is now well-known that MSCs do not typically engraft after transplantation and exhibit their therapeutic effect via a paracrine mechanism. In addition to secretory proteins, MSCs also produce extracellular vesicles (EVs), membrane-bound nanovesicles containing proteins, DNA and RNA. The secreted vesicles then interact with target cells and deliver their contents, imparting their ultimate therapeutic effect. Unlike the widely studied cancer cells, the yield of MSC-exosomes is a limiting factor for large-scale production for cell-free therapies. Here we summarise potential approaches to increase the yield of such vesicles while maintaining or enhancing their efficacy by engineering the extracellular environment and intracellular components of MSCs.
Collapse
Affiliation(s)
- Jennifer Phan
- Surgical Bioengineering Laboratory, Department of Surgery, University of California, Davis School of Medicine, Sacramento, CA, USA.,CIRM Bridges to Stem Cell Research Program, California State University, Sacramento, CA, USA
| | - Priyadarsini Kumar
- Surgical Bioengineering Laboratory, Department of Surgery, University of California, Davis School of Medicine, Sacramento, CA, USA.,Institute for Paediatric Regenerative Medicine, Shriners Hospital for Children/UC Davis School of Medicine, Sacramento, CA, USA
| | - Dake Hao
- Surgical Bioengineering Laboratory, Department of Surgery, University of California, Davis School of Medicine, Sacramento, CA, USA.,Institute for Paediatric Regenerative Medicine, Shriners Hospital for Children/UC Davis School of Medicine, Sacramento, CA, USA
| | - Kewa Gao
- Surgical Bioengineering Laboratory, Department of Surgery, University of California, Davis School of Medicine, Sacramento, CA, USA.,Department of Burn and Plastic Surgery, The Third Xiangya Hospital of Central South University, Changsha, Hunan, P.R. China
| | - Diana Farmer
- Surgical Bioengineering Laboratory, Department of Surgery, University of California, Davis School of Medicine, Sacramento, CA, USA.,Institute for Paediatric Regenerative Medicine, Shriners Hospital for Children/UC Davis School of Medicine, Sacramento, CA, USA
| | - Aijun Wang
- Surgical Bioengineering Laboratory, Department of Surgery, University of California, Davis School of Medicine, Sacramento, CA, USA.,Institute for Paediatric Regenerative Medicine, Shriners Hospital for Children/UC Davis School of Medicine, Sacramento, CA, USA
| |
Collapse
|
75
|
Teofili L, Silini AR, Bianchi M, Valentini CG, Parolini O. Incorporating placental tissue in cord blood banking for stem cell transplantation. Expert Rev Hematol 2018; 11:649-661. [PMID: 29856650 DOI: 10.1080/17474086.2018.1483717] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
INTRODUCTION Human term placenta is comprised of various tissues from which different cells can be obtained, including hematopoietic stem cells and mesenchymal stem/stromal cells (MSCs). Areas covered: This review will discuss the possibility to incorporate placental tissue cells in cord blood banking. It will discuss general features of human placenta, with a brief review of the immune cells at the fetal-maternal interface and the different cell populations isolated from placenta, with a particular focus on MSCs. It will address the question as to why placenta-derived MSCs should be banked with their hematopoietic counterparts. It will discuss clinical trials which are studying safety and efficacy of placenta tissue-derived MSCs in selected diseases, and preclinical studies which have proven their therapeutic properties in other diseases. It will discuss banking of umbilical cord blood and raise several issues for improvement, and the applications of cord blood cells in non-malignant disorders. Expert commentary: Umbilical cord blood banking saves lives worldwide. The concomitant banking of non-hematopoietic cells from placenta, which could be applied therapeutically in the future, alone or in combination to their hematopoietic counterparts, could exploit current banking processes while laying the foundation for clinical trials exploring placenta-derived cell therapies in regenerative medicine.
Collapse
Affiliation(s)
- Luciana Teofili
- a Policlinico Universitario A. Gemelli IRCCS , Banca del Sangue di Cordone Ombelicale UNICATT, Università Cattolica del Sacro Cuore , Rome , Italy
| | - Antonietta R Silini
- b Centro di Ricerca "E. Menni" Fondazione Poliambulanza - Istituto Ospedaliero , Brescia , Italy
| | - Maria Bianchi
- c Policlinico Universitario A. Gemelli IRCCS, Banca del Sangue di Cordone Ombelicale UNICATT , Rome , Italy
| | | | - Ornella Parolini
- b Centro di Ricerca "E. Menni" Fondazione Poliambulanza - Istituto Ospedaliero , Brescia , Italy.,d Istituto di Anatomia Umana e Biologia Cellulare Facoltà di Medicina e chirurgia "A. Gemelli" , Università Cattolica del Sacro Cuore , Rome , Italy
| |
Collapse
|
76
|
Joyeux L, De Bie F, Danzer E, Van Mieghem T, Flake AW, Deprest J. Safety and efficacy of fetal surgery techniques to close a spina bifida defect in the fetal lamb model: A systematic review. Prenat Diagn 2018; 38:231-242. [PMID: 29388237 DOI: 10.1002/pd.5222] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 12/16/2017] [Accepted: 01/23/2018] [Indexed: 12/22/2022]
Abstract
OBJECTIVE To determine the safety and efficacy of different neurosurgical techniques for closure of spina bifida (SB) in the fetal lamb model. METHOD Systematic review of studies reporting on fetal lambs undergoing induction and closure of SB compared with non-operated normal lambs (negative controls) and/or lambs not undergoing closure of the defect (positive controls). Primary outcomes were (1) survival at birth (safety) and/or (2) presence of Somatosensory Evoked Potentials on hind limbs and/or improvement in quantitative histological spinal cord findings and/or reversal of hindbrain herniation (efficacy). RESULTS Out of 1311, 36 full-text articles were eligible. Nineteen were included for quality assessment. Due to high bias, only 2 adequately powered studies were included in the final analysis. An open approach using a 2-layer closure (muscle flap or acellular-dermal-matrix patch plus skin) was the only safe (patch + skin) and effective (both techniques) technique for prenatal closure in this animal model. No comparable level of evidence was identified for other techniques. CONCLUSION The experimental literature on prenatal SB closure underscores the lack of standardization. At present, there is animal experimental evidence that a 2-layer closure by hysterotomy is safe and effective. This technique is currently clinically used in a subset of patients. As new clinical techniques are introduced, it would seem logic to preclinically validate them against this experimental standard.
Collapse
Affiliation(s)
- Luc Joyeux
- Academic Department Development and Regeneration, Cluster Organ Systems, Biomedical Sciences, Faculty of Medicine, Katholieke Universiteit (KU) Leuven, Leuven, Belgium
- Center for Surgical Technologies, Faculty of Medicine, KU Leuven, Leuven, Belgium
| | - Felix De Bie
- Center for Surgical Technologies, Faculty of Medicine, KU Leuven, Leuven, Belgium
| | - Enrico Danzer
- Center for Fetal Diagnosis and Treatment, the Children's Hospital of Philadelphia and the Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Surgery, Children's Center for Fetal Research, Abramson Research center, the Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Tim Van Mieghem
- Department of Obstetrics and Gynecology, Fetal Medicine Unit, Mt. Sinai Hospital, University of Toronto, Toronto, Canada
| | - Alan W Flake
- Center for Fetal Diagnosis and Treatment, the Children's Hospital of Philadelphia and the Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Surgery, Children's Center for Fetal Research, Abramson Research center, the Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Jan Deprest
- Academic Department Development and Regeneration, Cluster Organ Systems, Biomedical Sciences, Faculty of Medicine, Katholieke Universiteit (KU) Leuven, Leuven, Belgium
- Center for Surgical Technologies, Faculty of Medicine, KU Leuven, Leuven, Belgium
- Department of Obstetrics and Gynecology, Division Woman and Child, Fetal Medicine Unit, University Hospital Gasthuisberg UZ Leuven, Leuven, Belgium
- Institute of Women's Health, University College London Hospitals, London, UK
| |
Collapse
|
77
|
Ventura Ferreira MS, Bienert M, Müller K, Rath B, Goecke T, Opländer C, Braunschweig T, Mela P, Brümmendorf TH, Beier F, Neuss S. Comprehensive characterization of chorionic villi-derived mesenchymal stromal cells from human placenta. Stem Cell Res Ther 2018; 9:28. [PMID: 29402304 PMCID: PMC5800083 DOI: 10.1186/s13287-017-0757-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 11/29/2017] [Accepted: 12/19/2017] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Studies in which mesenchymal stromal cells (MSC) from the placenta are compared with multiple MSC types from other sources are rare. The chorionic plate of the human placenta is mainly composed of fetal blood vessels embedded in fetal stroma tissue, lined by trophoblastic cells and organized into chorionic villi (CV) structures. METHODS We comprehensively characterized human MSC collected from postnatal human chorionic villi of placenta (CV-MSC) by analyzing their growth and proliferation potential, differentiation, immunophenotype, extracellular matrix production, telomere length, aging phenotype, and plasticity. RESULTS Immunophenotypic characterization of CV-MSC confirmed the typical MSC marker expression as defined by the International Society for Cellular Therapy. The surface marker profile was consistent with increased potential for proliferation, vascular localization, and early myogenic marker expression. CV-MSC retained multilineage differentiation potential and extracellular matrix remodeling properties. They have undergone reduced telomere loss and delayed onset of cellular senescence as they aged in vitro compared to three other MSC sources. We present evidence that increased human telomerase reverse transcriptase gene expression could not explain the exceptional telomere maintenance and senescence onset delay in cultured CV-MSC. Our in-vitro tumorigenesis detection assay suggests that CV-MSC are not prone to undergo malignant transformation during long-term in-vitro culture. Besides SOX2 expression, no other pluripotency features were observed in early and late passages of CV-MSC. CONCLUSIONS Our work brings forward two remarkable characteristics of CV-MSC, the first being their extended life span as a result of delayed replicative senescence and the second being a delayed aged phenotype characterized by improved telomere length maintenance. MSC from human placenta are very attractive candidates for stem cell-based therapy applications.
Collapse
Affiliation(s)
- Mónica S. Ventura Ferreira
- 0000 0001 0728 696Xgrid.1957.aInstitute of Pathology, RWTH Aachen University, Aachen, Germany
- 0000 0001 0728 696Xgrid.1957.aDepartment of Hematology, Oncology, Hemostaseology and Stem Cell Transplantation, RWTH Aachen University, Aachen, Germany
| | - Michaela Bienert
- 0000 0001 0728 696Xgrid.1957.aInstitute of Pathology, RWTH Aachen University, Aachen, Germany
- 0000 0001 0728 696Xgrid.1957.aHelmholtz Institute for Biomedical Engineering, Biointerface Group, RWTH Aachen University, Aachen, Germany
| | - Katrin Müller
- 0000 0001 0728 696Xgrid.1957.aInstitute of Pathology, RWTH Aachen University, Aachen, Germany
| | - Björn Rath
- 0000 0001 0728 696Xgrid.1957.aDepartment of Orthopedic Surgery, RWTH Aachen University, Aachen, Germany
| | - Tamme Goecke
- 0000 0001 0728 696Xgrid.1957.aDepartment for Gynecology, RWTH Aachen University, Aachen, Germany
| | - Christian Opländer
- 0000 0000 9024 6397grid.412581.bDepartment of Translational Wound Research, Centre for Biomedical Education and Research (ZBAF), Witten/Herdecke University, Witten, Germany
| | - Till Braunschweig
- 0000 0001 0728 696Xgrid.1957.aInstitute of Pathology, RWTH Aachen University, Aachen, Germany
| | - Petra Mela
- 0000 0001 0728 696Xgrid.1957.aDepartment of Tissue Engineering and Textile Implants, Institute of Applied Medical Engineering, Helmholtz Institute, RWTH Aachen University, Aachen, Germany
| | - Tim H. Brümmendorf
- 0000 0001 0728 696Xgrid.1957.aDepartment of Hematology, Oncology, Hemostaseology and Stem Cell Transplantation, RWTH Aachen University, Aachen, Germany
| | - Fabian Beier
- 0000 0001 0728 696Xgrid.1957.aDepartment of Hematology, Oncology, Hemostaseology and Stem Cell Transplantation, RWTH Aachen University, Aachen, Germany
| | - Sabine Neuss
- 0000 0001 0728 696Xgrid.1957.aInstitute of Pathology, RWTH Aachen University, Aachen, Germany
- 0000 0001 0728 696Xgrid.1957.aHelmholtz Institute for Biomedical Engineering, Biointerface Group, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
78
|
Farmer DL, Thom EA, Brock JW, Burrows PK, Johnson MP, Howell LJ, Farrell JA, Gupta N, Adzick NS. The Management of Myelomeningocele Study: full cohort 30-month pediatric outcomes. Am J Obstet Gynecol 2018; 218:256.e1-256.e13. [PMID: 29246577 DOI: 10.1016/j.ajog.2017.12.001] [Citation(s) in RCA: 153] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 11/28/2017] [Accepted: 12/01/2017] [Indexed: 01/05/2023]
Abstract
BACKGROUND Previous reports from the Management of Myelomeningocele Study demonstrated that prenatal repair of myelomeningocele reduces hindbrain herniation and the need for cerebrospinal fluid shunting, and improves motor function in children with myelomeningocele. The trial was stopped for efficacy after 183 patients were randomized, but 30-month outcomes were only available at the time of initial publication in 134 mother-child dyads. Data from the complete cohort for the 30-month outcomes are presented here. Maternal and 12-month neurodevelopmental outcomes for the full cohort were reported previously. OBJECTIVE The purpose of this study is to report the 30-month outcomes for the full cohort of patients randomized to either prenatal or postnatal repair of myelomeningocele in the original Management of Myelomeningocele Study. STUDY DESIGN Eligible women were randomly assigned to undergo standard postnatal repair or prenatal repair <26 weeks gestation. We evaluated a composite of mental development and motor function outcome at 30 months for all enrolled patients as well as independent ambulation and the Bayley Scales of Infant Development, Second Edition. We assessed whether there was a differential effect of prenatal surgery in subgroups defined by: fetal leg movements, ventricle size, presence of hindbrain herniation, gender, and location of the myelomeningocele lesion. Within the prenatal surgery group only, we evaluated these and other baseline parameters as predictors of 30-month motor and cognitive outcomes. We evaluated whether presence or absence of a shunt at 1 year was associated with 30-month motor outcomes. RESULTS The data for the full cohort of 183 patients corroborate the original findings of Management of Myelomeningocele Study, confirming that prenatal repair improves the primary outcome composite score of mental development and motor function (199.4 ± 80.5 vs 166.7 ± 76.7, P = .004). Prenatal surgery also resulted in improvement in the secondary outcomes of independent ambulation (44.8% vs 23.9%, P = .004), WeeFIM self-care score (20.8 vs 19.0, P = .006), functional level at least 2 better than anatomic level (26.4% vs 11.4%, P = .02), and mean Bayley Scales of Infant Development, Second Edition, psychomotor development index (17.3% vs 15.1%, P = .03), but does not affect cognitive development at 30 months. On subgroup analysis, there was a nominally significant interaction between gender and surgery, with boys demonstrating better improvement in functional level and psychomotor development index. For patients receiving prenatal surgery, the presence of in utero ankle, knee, and hip movement, absence of a sac over the lesion and a myelomeningocele lesion of ≤L3 were significantly associated with independent ambulation. Postnatal motor function showed no correlation with either prenatal ventricular size or postnatal shunt placement. CONCLUSION The full cohort data of 30-month cognitive development and motor function outcomes validate in utero surgical repair as an effective treatment for fetuses with myelomeningocele. Current data suggest that outcomes related to the need for shunting should be counseled separately from the outcomes related to distal neurologic functioning.
Collapse
|
79
|
Placenta and Placental Derivatives in Regenerative Therapies: Experimental Studies, History, and Prospects. Stem Cells Int 2018. [PMID: 29535770 PMCID: PMC5822788 DOI: 10.1155/2018/4837930] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Placental structures, capable to persist in a genetically foreign organism, are a natural model of allogeneic engraftment carrying a number of distinctive properties. In this review, the main features of the placenta and its derivatives such as structure, cellular composition, immunological and endocrine aspects, and the ability to invasion and deportation are discussed. These features are considered from a perspective that determines the placental material as a unique source for regenerative cell therapies and a lesson for immunological tolerance. A historical overview of clinical applications of placental extracts, cells, and tissue components is described. Empirically accumulated data are summarized and compared with modern research. Furthermore, we define scopes and outlooks of application of placental cells and tissues in the rapidly progressing field of regenerative medicine.
Collapse
|
80
|
Ryzhuk V, Zeng XX, Wang X, Melnychuk V, Lankford L, Farmer D, Wang A. Human amnion extracellular matrix derived bioactive hydrogel for cell delivery and tissue engineering. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 85:191-202. [PMID: 29407148 DOI: 10.1016/j.msec.2017.12.026] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 10/29/2017] [Accepted: 12/19/2017] [Indexed: 12/21/2022]
Affiliation(s)
- Volodymyr Ryzhuk
- Surgical Bioengineering Laboratory, Department of Surgery, University of California Davis Health System, Research II, 4625 2nd Avenue, Sacramento, CA 95817, USA
| | - Xu-Xin Zeng
- Surgical Bioengineering Laboratory, Department of Surgery, University of California Davis Health System, Research II, 4625 2nd Avenue, Sacramento, CA 95817, USA; Pharmaceutical Laboratory, School of Medicine, Foshan University, No. 5 Hebin Rd., Foshan, Guangdong, PR China
| | - Xijun Wang
- Surgical Bioengineering Laboratory, Department of Surgery, University of California Davis Health System, Research II, 4625 2nd Avenue, Sacramento, CA 95817, USA; School of Stomatology, Shandong University, 44 Wenhua Xi Road, Jinan, Shandong, PR China
| | - Veniamin Melnychuk
- Surgical Bioengineering Laboratory, Department of Surgery, University of California Davis Health System, Research II, 4625 2nd Avenue, Sacramento, CA 95817, USA
| | - Lee Lankford
- Surgical Bioengineering Laboratory, Department of Surgery, University of California Davis Health System, Research II, 4625 2nd Avenue, Sacramento, CA 95817, USA
| | - Diana Farmer
- Surgical Bioengineering Laboratory, Department of Surgery, University of California Davis Health System, Research II, 4625 2nd Avenue, Sacramento, CA 95817, USA
| | - Aijun Wang
- Surgical Bioengineering Laboratory, Department of Surgery, University of California Davis Health System, Research II, 4625 2nd Avenue, Sacramento, CA 95817, USA.
| |
Collapse
|
81
|
Kabagambe SK, Lee CJ, Goodman LF, Chen YJ, Vanover MA, Farmer DL. Lessons from the Barn to the Operating Suite: A Comprehensive Review of Animal Models for Fetal Surgery. Annu Rev Anim Biosci 2017; 6:99-119. [PMID: 29237141 DOI: 10.1146/annurev-animal-030117-014637] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The International Fetal Medicine and Surgery Society was created in 1982 and proposed guidelines for fetal interventions that required demonstrations of the safety and feasibility of intended interventions in animal models prior to application in humans. Because of their short gestation and low cost, small animal models are useful in early investigation of fetal strategies. However, owing to the anatomic and physiologic differences between small animals and humans, repeated studies in large animal models are usually needed to facilitate translation to humans. Ovine (sheep) models have been used the most extensively to study the pathophysiology of congenital abnormalities and to develop techniques for fetal interventions. However, nonhuman primates have uterine and placental structures that most closely resemble those of humans. Thus, the nonhuman primate is the ideal model to develop surgical and anesthetic techniques that minimize obstetrical complications.
Collapse
Affiliation(s)
- Sandra K Kabagambe
- University of California, Davis Health, Sacramento, California 95817, USA; , , , , ,
| | - Chelsey J Lee
- University of California, Davis Health, Sacramento, California 95817, USA; , , , , ,
| | - Laura F Goodman
- University of California, Davis Health, Sacramento, California 95817, USA; , , , , ,
| | - Y Julia Chen
- University of California, Davis Health, Sacramento, California 95817, USA; , , , , ,
| | - Melissa A Vanover
- University of California, Davis Health, Sacramento, California 95817, USA; , , , , ,
| | - Diana L Farmer
- University of California, Davis Health, Sacramento, California 95817, USA; , , , , ,
| |
Collapse
|
82
|
Kabagambe SK, Lankford L, Kumar P, Chen YJ, Herout KT, Lee CJ, Stark RA, Farmer DL, Wang A. Isolation of myogenic progenitor cell population from human placenta: A pilot study. J Pediatr Surg 2017; 52:2078-2082. [PMID: 28964407 DOI: 10.1016/j.jpedsurg.2017.08.025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2017] [Accepted: 08/28/2017] [Indexed: 01/07/2023]
Abstract
PURPOSE The purpose of this study was to demonstrate a method of isolating myogenic progenitor cells from human placenta chorionic villi and to confirm the myogenic characteristics of the isolated cells. METHODS Cells were isolated from chorionic villi of a second trimester male placenta via a combined enzymatic digestion and explant culture. A morphologically distinct subpopulation of elongated and multinucleated cells was identified. This subpopulation was manually passaged from the explant culture, expanded, and analyzed by fluorescence in situ hybridization (FISH) assay, immunocytochemistry, and flow cytometry. Myogenic characteristics including alignment and fusion were tested by growing these cells on aligned polylactic acid microfibrous scaffold in a fusion media composed of 2% horse serum in Dulbecco's modified Eagle medium/high glucose. RESULTS The expanded subpopulation was uniformly positive for integrin α-7. Presence of Y-chromosome by FISH analysis confirmed chorionic villus origin rather than maternal cell contamination. Isolated cells grew, aligned, and fused on the microfibrous scaffold, and they expressed myogenin, desmin, and MHC confirming their myogenic identity. CONCLUSION Myogenic progenitor cells can be isolated from human chorionic villi. This opens the possibility for translational and clinical applications using autologous myogenic cells for possible engraftment in treatment of chest and abdominal wall defects.
Collapse
Affiliation(s)
| | - Lee Lankford
- University of California, Davis Health, Sacramento, CA, USA
| | | | - Y Julia Chen
- University of California, Davis Health, Sacramento, CA, USA
| | - Kyle T Herout
- University of California, Davis Health, Sacramento, CA, USA
| | - Chelsey J Lee
- University of California, Davis Health, Sacramento, CA, USA
| | | | - Diana L Farmer
- University of California, Davis Health, Sacramento, CA, USA
| | - Aijun Wang
- University of California, Davis Health, Sacramento, CA, USA
| |
Collapse
|
83
|
Joyeux L, Deprez M, Khatoun A, Van Kuyck K, Pelsmaekers K, Engels AC, Wang H, Monteiro Carvalho Mori da Cunha MG, De Vleeschauwer S, Mc Laughlin M, Deprest J. Quantitative analysis of motor evoked potentials in the neonatal lamb. Sci Rep 2017; 7:16095. [PMID: 29170524 PMCID: PMC5701025 DOI: 10.1038/s41598-017-16453-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 11/13/2017] [Indexed: 12/05/2022] Open
Abstract
Evoking motor potentials are an objective assessment method for neuromotor function, yet this was to our knowledge never done in neonatal lambs. There is neither a method for standardized quantification of motor evoked potentials (MEPs). We first aimed to evaluate the feasibility of MEP recording in neonatal lambs and test its validity. Second we aimed to develop an algorithm for its quantification and test its reliability since manual input is required. We recorded myogenic MEPs after transcranial motor cortex stimulation in 6 lambs aged 1–2 days. MEPs were also measured in one lamb undergoing Neuro-Muscular Blockade (NMB) and another undergoing lumbar spinal cord (SC) transection, both serving as controls. We computed 5 parameters using a custom-made algorithm: motor threshold, latency, area-under-the-curve, peak-to-peak amplitude and duration. Intra- and inter-observer reliability was analyzed. MEPs could be easily recorded, disappearing after NMB and SC transection. The algorithm allowed for analysis, hence physiologic readings of the parameters in all 4 limbs of all lambs were obtained. Our method was shown to have high intra- and inter-observer ( ≥70%) reliability for latency, area-under-the-curve and peak-to-peak amplitude. These results suggest that standardized MEP recording and analysis in neonatal lambs is feasible, and can reliably assess neuromotor function.
Collapse
Affiliation(s)
- Luc Joyeux
- Academic Department Development and Regeneration, Cluster Organ Systems, Biomedical Sciences, Faculty of Medicine, Katholieke Universiteit (KU) Leuven, Leuven, Belgium. .,Center for Surgical Technologies, Faculty of Medicine, KU Leuven, Leuven, Belgium.
| | - Marjolijn Deprez
- Research group Experimental Neurosurgery and Neuroanatomy, Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Ahmad Khatoun
- Experimental Otorhinolaryngology, Department of Neurosciences, KU Leuven, Belgium
| | - Kris Van Kuyck
- Research group Experimental Neurosurgery and Neuroanatomy, Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Kelly Pelsmaekers
- Research group Experimental Neurosurgery and Neuroanatomy, Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Alexander C Engels
- Academic Department Development and Regeneration, Cluster Organ Systems, Biomedical Sciences, Faculty of Medicine, Katholieke Universiteit (KU) Leuven, Leuven, Belgium.,Center for Surgical Technologies, Faculty of Medicine, KU Leuven, Leuven, Belgium.,Department of Obstetrics and Gynecology, Division Woman and Child, Fetal Medicine Unit, University Hospital Gasthuisberg UZ Leuven, Leuven, Belgium
| | - Hongmei Wang
- Academic Department Development and Regeneration, Cluster Organ Systems, Biomedical Sciences, Faculty of Medicine, Katholieke Universiteit (KU) Leuven, Leuven, Belgium.,Department of Obstetrics and Gynecology, Shandong Provincial University Hospital, Jinan, China
| | | | | | - Myles Mc Laughlin
- Experimental Otorhinolaryngology, Department of Neurosciences, KU Leuven, Belgium
| | - Jan Deprest
- Academic Department Development and Regeneration, Cluster Organ Systems, Biomedical Sciences, Faculty of Medicine, Katholieke Universiteit (KU) Leuven, Leuven, Belgium.,Center for Surgical Technologies, Faculty of Medicine, KU Leuven, Leuven, Belgium.,Department of Obstetrics and Gynecology, Division Woman and Child, Fetal Medicine Unit, University Hospital Gasthuisberg UZ Leuven, Leuven, Belgium.,Institute of Women's Health, University College London Hospitals, London, United Kingdom
| |
Collapse
|
84
|
Chen YJ, Chung K, Pivetti C, Lankford L, Kabagambe SK, Vanover M, Becker J, Lee C, Tsang J, Wang A, Farmer DL. Fetal surgical repair with placenta-derived mesenchymal stromal cell engineered patch in a rodent model of myelomeningocele. J Pediatr Surg 2017; 53:S0022-3468(17)30662-0. [PMID: 29096888 DOI: 10.1016/j.jpedsurg.2017.10.040] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 10/05/2017] [Indexed: 12/14/2022]
Abstract
PURPOSE The purpose of this study is to determine the feasibility of fetal surgical repair of myelomeningocele (MMC) in a rodent model using human placental mesenchymal stromal cells (PMSCs) seeded onto extracellular matrix (ECM) and to characterize the resulting changes in spinal cord tissue. METHODS Fetal rodents with retinoic acid (RA) induced MMC underwent surgical repair of the MMC defect using an ECM patch on embryonic age (EA) 19 and were collected via caesarean section on EA 21. Various seeding densities of PMSC-ECM and ECM only controls were evaluated. Cross-sectional compression (width/height) and apoptotic cell density of the lumbosacral spinal cord were analyzed. RESULTS 67 dams treated with 40mg/kg of RA resulted in 352 pups with MMC defects. 121 pups underwent MMC repair, and 105 (86.8%) survived to term. Unrepaired MMC pups had significantly greater cord compression and apoptotic cell density compared to normal non-MMC pups. Pups treated with PMSC-ECM had significantly less cord compression and demonstrated a trend towards decreased apoptotic cell density compared to pups treated with ECM only. CONCLUSION Surgical repair of MMC with a PMSC-seeded ECM disc is feasible with a postoperative survival rate of 86.8%. Fetal rodents repaired with PMSC-ECM have significantly less cord deformity and decreased histological evidence of apoptosis compared to ECM only controls.
Collapse
Affiliation(s)
- Y Julia Chen
- University of California Davis Health, Sacramento, CA.
| | - Karen Chung
- University of California Davis Health, Sacramento, CA
| | | | - Lee Lankford
- University of California Davis Health, Sacramento, CA
| | | | | | - James Becker
- University of California Davis Health, Sacramento, CA
| | - Chelsey Lee
- University of California Davis Health, Sacramento, CA
| | | | - Aijun Wang
- University of California Davis Health, Sacramento, CA
| | | |
Collapse
|
85
|
Kabagambe S, Keller B, Becker J, Goodman L, Pivetti C, Lankford L, Chung K, Lee C, Chen YJ, Kumar P, Vanover M, Wang A, Farmer D. Placental mesenchymal stromal cells seeded on clinical grade extracellular matrix improve ambulation in ovine myelomeningocele. J Pediatr Surg 2017; 53:S0022-3468(17)30654-1. [PMID: 29122293 DOI: 10.1016/j.jpedsurg.2017.10.032] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 10/05/2017] [Indexed: 01/27/2023]
Abstract
PURPOSE The purpose of this study was to investigate the effects of placental mesenchymal stromal cells (PMSCs) seeded on a clinical grade porcine small intestinal submucosa (SIS)-derived extracellular matrix (ECM) on hindlimb motor function in an ovine fetal repair model of myelomeningocele (MMC). METHODS MMC defects were surgically created in 21 fetuses at median gestational age 78 (range 76-83) days. Fetuses were randomly assigned to repair 25days later with ECM only or PMSC-ECM. Surviving fetuses were delivered at term. Motor function was evaluated using the Sheep Locomotor Rating (SLR) scale (0-15). Histologic analysis of the spinal cord (SC) was completed. RESULTS Fetal viability was 71%. 5 of 8 (63%) lambs repaired with PMSC-ECM ambulated independently versus only 1 of 6 (17%) repaired with ECM only (p=0.04, χ2 test). SLR scores and large neuron densities were higher in the PMSC-ECM group. The cross-sectional areas of the SC and the gray matter were equally preserved. CONCLUSIONS Fetal repair of MMC with PMSCs seeded on SIS-ECM improves hindlimb motor function in lambs. Using ECM helps to preserve the architecture of the SC, but adding PMSCs improves the lamb's ability to walk and increases large neuron density. Clinical studies are needed to show benefits in humans. LEVELS OF EVIDENCE/TYPE OF STUDY Basic Science.
Collapse
Affiliation(s)
| | | | - James Becker
- University of California, Davis Health, Sacramento, CA
| | - Laura Goodman
- University of California, Davis Health, Sacramento, CA
| | | | - Lee Lankford
- University of California, Davis Health, Sacramento, CA
| | - Karen Chung
- University of California, Davis Health, Sacramento, CA
| | - Chelsey Lee
- University of California, Davis Health, Sacramento, CA
| | - Y Julia Chen
- University of California, Davis Health, Sacramento, CA
| | | | | | - Aijun Wang
- University of California, Davis Health, Sacramento, CA
| | - Diana Farmer
- University of California, Davis Health, Sacramento, CA
| |
Collapse
|
86
|
Uder C, Brückner S, Winkler S, Tautenhahn HM, Christ B. Mammalian MSC from selected species: Features and applications. Cytometry A 2017; 93:32-49. [PMID: 28906582 DOI: 10.1002/cyto.a.23239] [Citation(s) in RCA: 111] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Mesenchymal stromal/stem cells (MSC) are promising candidates for cellular therapy of different diseases in humans and in animals. Following the guidelines of the International Society for Cell Therapy, human MSC may be identified by expression of a specific panel of cell surface markers (CD105+, CD73+, CD90+, CD34-, CD14-, or CD11b-, CD79- or CD19-, HLA-DR-). In addition, multiple differentiation potential into at least the osteogenic, adipogenic, and chondrogenic lineage is a main criterion for MSC definition. Human MSC and MSC of a variety of mammals isolated from different tissues meet these criteria. In addition to the abovementioned, they express many more cell surface markers. Yet, these are not uniquely expressed by MSC. The gross phenotypic appearance like marker expression and differentiation potential is similar albeit not identical for MSC from different tissues and species. Similarly, MSC may feature different biological characteristics depending on the tissue source and the isolation and culture procedures. Their versatile biological qualities comprising immunomodulatory, anti-inflammatory, and proregenerative capacities rely largely on the migratory and secretory capabilities of MSC. They are attracted to sites of tissue lesion and secrete factors to promote self-repair of the injured tissue. This is a big perspective for clinical MSC applications in both veterinary and human medicine. Phase I/II clinical trials have been initiated to assess safety and feasibility of MSC therapies in acute and chronic disease settings. Yet, since the mode of MSC action in a specific disease environment is still unknown at large, it is mandatory to unravel the response of MSC from a given source onto a specific disease environment in suitable animal models prior to clinical applications. © 2017 International Society for Advancement of Cytometry.
Collapse
Affiliation(s)
- Christiane Uder
- Department of Visceral, Transplantation, Thoracic and Vascular Surgery, Applied Molecular Hepatology Laboratory, University Hospital of Leipzig, Liebigstraße 21, Leipzig D-04103, Germany
| | - Sandra Brückner
- Department of Visceral, Transplantation, Thoracic and Vascular Surgery, Applied Molecular Hepatology Laboratory, University Hospital of Leipzig, Liebigstraße 21, Leipzig D-04103, Germany
| | - Sandra Winkler
- Department of Visceral, Transplantation, Thoracic and Vascular Surgery, Applied Molecular Hepatology Laboratory, University Hospital of Leipzig, Liebigstraße 21, Leipzig D-04103, Germany
| | - Hans-Michael Tautenhahn
- Department of Visceral, Transplantation, Thoracic and Vascular Surgery, Applied Molecular Hepatology Laboratory, University Hospital of Leipzig, Liebigstraße 21, Leipzig D-04103, Germany
| | | |
Collapse
|
87
|
Long C, Lankford L, Kumar P, Grahn R, Borjesson DL, Farmer D, Wang A. Isolation and characterization of canine placenta-derived mesenchymal stromal cells for the treatment of neurological disorders in dogs. Cytometry A 2017; 93:82-92. [DOI: 10.1002/cyto.a.23171] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 06/19/2017] [Accepted: 06/27/2017] [Indexed: 12/21/2022]
Affiliation(s)
- Connor Long
- Surgical Bioengineering Laboratory, Department of Surgery; University of California, Davis School of Medicine; Sacramento California
| | - Lee Lankford
- Surgical Bioengineering Laboratory, Department of Surgery; University of California, Davis School of Medicine; Sacramento California
| | - Priyadarsini Kumar
- Surgical Bioengineering Laboratory, Department of Surgery; University of California, Davis School of Medicine; Sacramento California
| | - Robert Grahn
- Veterinary Genetics Laboratory; University of California; Davis California
| | - Dori L. Borjesson
- Veterinary Institute for Regenerative Cures and Department of Pathology, Microbiology, Immunology; University of California, Davis School of Veterinary Medicine; Davis California
| | - Diana Farmer
- Surgical Bioengineering Laboratory, Department of Surgery; University of California, Davis School of Medicine; Sacramento California
| | - Aijun Wang
- Surgical Bioengineering Laboratory, Department of Surgery; University of California, Davis School of Medicine; Sacramento California
| |
Collapse
|
88
|
Kabagambe SK, Chen YJ, Vanover MA, Saadai P, Farmer DL. New directions in fetal surgery for myelomeningocele. Childs Nerv Syst 2017; 33:1185-1190. [PMID: 28497181 DOI: 10.1007/s00381-017-3438-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 04/28/2017] [Indexed: 01/07/2023]
Abstract
The treatment of children with myelomeningocele (MMC) has improved over time, from supportive management to early postnatal closure to prenatal repair of the defect. The Management of Myelomeningocele Study (MOMS) showed that prenatal repair of MMC resulted in improved neurological outcomes compared to postnatal closure. Follow-up studies showed that prenatal repair was, as with any other fetal intervention, associated with higher rates of obstetrical complications. There was no significant difference in urological outcomes. Long-term follow-up of ambulatory status, executive functioning, and urological outcomes is needed to determine the durable effects of fetal MMC repair on mobility, functional independence, and the prevalence of renal insufficiency in patients with MMC who survive to adulthood. The future of fetal MMC repair consists of developing strategies to reduce maternal morbidity and improve infant outcomes. Fetoscopic MMC repair has been suggested as an alternative to open repair that may reduce obstetrical complications and the need for cesarean delivery in subsequent pregnancies. Translational research using mesenchymal stromal cells to augment fetal repair of ovine MMC has shown improvement in motor function.
Collapse
Affiliation(s)
- Sandra K Kabagambe
- Department of Surgery, University of California, Davis Health Systems, 2315 Stockton Blvd, OP512, Sacramento, CA, 95817, USA.
| | - Y Julia Chen
- Department of Surgery, University of California, Davis Health Systems, 2315 Stockton Blvd, OP512, Sacramento, CA, 95817, USA
| | - Melissa A Vanover
- Department of Surgery, University of California, Davis Health Systems, 2315 Stockton Blvd, OP512, Sacramento, CA, 95817, USA
| | - Payam Saadai
- Department of Surgery, University of California, Davis Health Systems, 2315 Stockton Blvd, OP512, Sacramento, CA, 95817, USA
| | - Diana L Farmer
- Department of Surgery, University of California, Davis Health Systems, 2315 Stockton Blvd, OP512, Sacramento, CA, 95817, USA
| |
Collapse
|
89
|
Potential clinical applications of placental stem cells for use in fetal therapy of birth defects. Placenta 2017; 59:107-112. [PMID: 28651900 DOI: 10.1016/j.placenta.2017.05.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 04/22/2017] [Accepted: 05/16/2017] [Indexed: 12/12/2022]
Abstract
Placental stem cells are of growing interest for a variety of clinical applications due to their multipotency and ready availability from otherwise frequently discarded biomaterial. Stem cells derived from the placenta have been investigated in a number of disease processes, including wound healing, ischemic heart disease, autoimmune disorders, and chronic lung or liver injury. Fetal intervention for structural congenital defects, such as spina bifida, has rapidly progressed as a field due to advances in maternal-fetal medicine and improving surgical techniques. In utero treatment of structural, as well as non-structural, congenital disorders with cell-based therapies is of particular interest given the immunologic immaturity and immunotolerant environment of the developing fetus. A comprehensive literature review was performed to assess the potential utilization of placenta-derived stem cells for in utero treatment of congenital disorders. Most studies are still in the preclinical phase, utilizing animal models of common congenital disorders. Future research endeavors may include autologous transplantation, gene transfers, induced pluripotent stem cells, or cell-free therapies derived from the stem cell secretome. Though much work still needs to be done, placental stem cells are a promising therapeutic agent for fetal intervention for congenital disease.
Collapse
|
90
|
Farmer D. Placental stem cells: The promise of curing diseases before birth. Placenta 2017; 59:113-115. [PMID: 28477969 DOI: 10.1016/j.placenta.2017.04.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 04/22/2017] [Accepted: 04/25/2017] [Indexed: 12/18/2022]
Abstract
Regenerative medicine is a rapidly expanding and promising field for many diseases and injuries. Stem cells for regenerative therapies have originally been obtained from bone marrow, but are now readily extracted from a variety of adult tissues. Fetal tissue has recently garnered interest for its ease of differentiation into a variety of phenotypes and its relative abundance of pluripotent-linked transcription factors. However, much ethical concern surrounds the methods of obtaining fetal cells. The placenta has emerged as a potential source of fetal derived cells due to its favorable technical and ethical characteristics, as well as its promising therapeutic properties. This preview focuses on providing on overview on the derivation and characteristics of placental derived stem cells as well as delving into their various clinical applications and potential future directions.
Collapse
Affiliation(s)
- Diana Farmer
- Department of Surgery, University of California, Davis Health System, Sacramento, CA, United States.
| |
Collapse
|
91
|
Lankford L, Chen YJ, Saenz Z, Kumar P, Long C, Farmer D, Wang A. Manufacture and preparation of human placenta-derived mesenchymal stromal cells for local tissue delivery. Cytotherapy 2017; 19:680-688. [PMID: 28438482 DOI: 10.1016/j.jcyt.2017.03.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 03/02/2017] [Accepted: 03/03/2017] [Indexed: 12/12/2022]
Abstract
BACKGROUND In this study we describe the development of a Current Good Manufacturing Practice (CGMP)-compliant process to isolate, expand and bank placenta-derived mesenchymal stromal cells (PMSCs) for use as stem cell therapy. We characterize the viability, proliferation and neuroprotective secretory profile of PMSCs seeded on clinical-grade porcine small intestine submucosa extracellular matrix (SIS-ECM; Cook Biotech). METHODS PMSCs were isolated from early gestation placenta chorionic villus tissue via explant culture. Cells were expanded, banked and screened. Purity and expression of markers of pluripotency were determined using flow cytometry. Optimal loading density and viability of PMSCs on SIS-ECM were determined using 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium (MTS) cell proliferation and fluorescent live/dead assays, respectively. Growth factors secretion was analyzed using enzyme-linked immunosorbent assays (ELISA). RESULTS PMSCs were rapidly expanded and banked. Viable Master and Working Cell Banks were stable with minimal decrease in viability at 6 months. All PMSCs were sterile, free from Mycoplasma species, karyotypically normal and had low endotoxin levels. PMSCs were homogeneous by immunophenotyping and expressed little to no pluripotency markers. Optimal loading density on SIS-ECM was 3-5 × 105 cells/cm2, and seeded cells were >95% viable. Neurotrophic factor secretion was detectable from PMSCs seeded on plastic and SIS-ECM with variability between donor lots. DISCUSSION PMSCs from early gestation placental tissues can be rapidly expanded and banked in stable, viable cell banks that are free from contaminating agents, genetically normal and pure. PMSC delivery can be accomplished by using SIS-ECM, which maintains cell viability and protein secretion. Future work in vivo is necessary to optimize cell seeding and transplantation to maximize therapeutic capabilities.
Collapse
Affiliation(s)
- Lee Lankford
- Surgical Bioengineering Laboratory, Department of Surgery, University of California, Davis School of Medicine, Sacramento, California, USA
| | - Y Julia Chen
- Surgical Bioengineering Laboratory, Department of Surgery, University of California, Davis School of Medicine, Sacramento, California, USA
| | - Zoe Saenz
- Surgical Bioengineering Laboratory, Department of Surgery, University of California, Davis School of Medicine, Sacramento, California, USA
| | - Priyadarsini Kumar
- Surgical Bioengineering Laboratory, Department of Surgery, University of California, Davis School of Medicine, Sacramento, California, USA
| | - Connor Long
- Surgical Bioengineering Laboratory, Department of Surgery, University of California, Davis School of Medicine, Sacramento, California, USA
| | - Diana Farmer
- Surgical Bioengineering Laboratory, Department of Surgery, University of California, Davis School of Medicine, Sacramento, California, USA
| | - Aijun Wang
- Surgical Bioengineering Laboratory, Department of Surgery, University of California, Davis School of Medicine, Sacramento, California, USA.
| |
Collapse
|
92
|
Chen YJ, Lankford L, Kabagambe S, Saenz Z, Kumar P, Farmer D, Wang A. Effect of 2-octylcyanoacrylate on placenta derived mesenchymal stromal cells on extracellular matrix. Placenta 2017; 59:163-168. [PMID: 28465002 DOI: 10.1016/j.placenta.2017.03.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 03/07/2017] [Accepted: 03/31/2017] [Indexed: 02/08/2023]
Abstract
PURPOSE Determine the effect of 2-octylcyanoacrylate on placenta derived mesenchymal stromal cells (PMSCs) seeded onto extracellular matrix (ECM) in order to assess its biocompatibility as a potential adhesive for in-vivo fetal cell delivery. METHODS PMSCs isolated from chorionic villus tissue were seeded onto ECM. A MTS proliferation assay assessed cellular metabolic activity at various time points in PMSC-ECM with direct, indirect, and no glue contact. Conditioned media collected prior to and 24 hours after glue exposure was analyzed for secretion of human brain-derived neurotrophic factor, hepatocyte growth factor, and vascular endothelial growth factor. RESULTS Direct and indirect contact with 2-octylcyanoacrylate results in progressively decreased cellular metabolic activity over 24 hours compared to no glue controls. Cells with direct contact are less metabolically active than cells with indirect contact. 24 hours of glue exposure resulted in suppression of growth factor secretion that is near complete with direct contact. DISCUSSION Exposure to 2-octylcyanoacrylate results in decreased metabolic activity and decreased measurable secretion of growth factors by PMSCs seeded onto ECM. Thus, the application of 2-octylcyanoacrylate glue should be limited when working with cell-engineered scaffolds as its inhibitory effects on cell growth and secretory function can limit the therapeutic potential of cell-based interventions.
Collapse
Affiliation(s)
- Y Julia Chen
- Surgical Bioengineering Laboratory, Department of Surgery, University of California, Davis School of Medicine, Sacramento, CA 95817, United States
| | - Lee Lankford
- Surgical Bioengineering Laboratory, Department of Surgery, University of California, Davis School of Medicine, Sacramento, CA 95817, United States
| | - Sandra Kabagambe
- Surgical Bioengineering Laboratory, Department of Surgery, University of California, Davis School of Medicine, Sacramento, CA 95817, United States
| | - Zoe Saenz
- Surgical Bioengineering Laboratory, Department of Surgery, University of California, Davis School of Medicine, Sacramento, CA 95817, United States
| | - Priyadarsini Kumar
- Surgical Bioengineering Laboratory, Department of Surgery, University of California, Davis School of Medicine, Sacramento, CA 95817, United States
| | - Diana Farmer
- Surgical Bioengineering Laboratory, Department of Surgery, University of California, Davis School of Medicine, Sacramento, CA 95817, United States
| | - Aijun Wang
- Surgical Bioengineering Laboratory, Department of Surgery, University of California, Davis School of Medicine, Sacramento, CA 95817, United States.
| |
Collapse
|
93
|
Papanna R, Mann LK, Snowise S, Morales Y, Prabhu SP, Tseng SCG, Grill R, Fletcher S, Moise KJ. Neurological Outcomes after Human Umbilical Cord Patch for In Utero Spina Bifida Repair in a Sheep Model. AJP Rep 2016; 6:e309-17. [PMID: 27621952 PMCID: PMC5017885 DOI: 10.1055/s-0036-1592316] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
OBJECTIVES The objective of our study was to test the hypothesis that in utero repair of surgically created spina bifida in a sheep model using cryopreserved human umbilical cord (HUC) patch improves neurological outcome. METHODS Spina bifida with myelotomy was surgically created in timed pregnant ewes at gestational day (GD) 75. The fetuses were randomly assigned to unrepaired versus HUC and treated at GD 95 and then delivered at GD 140. Neurological evaluation was performed using the Texas Spinal Cord Injury Scale (TSCIS), bladder control using ultrasound, and the hindbrain herniation. RESULTS Three lambs without the spina bifida creation served as controls. There were four lambs with spina bifida: two were unrepaired and two underwent HUC repair. The control lambs had normal function. Both unrepaired lambs had nonhealed skin lesions with leakage of cerebrospinal fluid, a 0/20 TSCIS score, no bladder control, and the hindbrain herniation. In contrast, both HUC lambs had a completely healed skin defect and survived to day 2 of life, a 3/20 and 4/20 TSCIS score (nociception), partial bladder control, and normal hindbrain anatomy. CONCLUSIONS Cryopreserved HUC patch appears to improve survival and neurological outcome in this severe form of the ovine model of spina bifida.
Collapse
Affiliation(s)
- Ramesha Papanna
- Division of Maternal-Fetal Medicine, Department of Obstetrics, Gynecology and Reproductive Medicine, UTHealth, The University of Texas Health Science at Houston, McGovern Medical School and the Fetal Center at Children's Memorial Hermann Hospital, Houston, Texas
| | - Lovepreet K Mann
- Division of Maternal-Fetal Medicine, Department of Obstetrics, Gynecology and Reproductive Medicine, UTHealth, The University of Texas Health Science at Houston, McGovern Medical School and the Fetal Center at Children's Memorial Hermann Hospital, Houston, Texas
| | - Saul Snowise
- Division of Maternal-Fetal Medicine, Department of Obstetrics, Gynecology and Reproductive Medicine, UTHealth, The University of Texas Health Science at Houston, McGovern Medical School and the Fetal Center at Children's Memorial Hermann Hospital, Houston, Texas
| | - Yisel Morales
- Division of Maternal-Fetal Medicine, Department of Obstetrics, Gynecology and Reproductive Medicine, UTHealth, The University of Texas Health Science at Houston, McGovern Medical School and the Fetal Center at Children's Memorial Hermann Hospital, Houston, Texas
| | - Sanjay P Prabhu
- Department of Radiology, Harvard Medical School, Boston Children's Hospital, Boston, Massachusetts
| | - Scheffer C G Tseng
- The Ocular Surface Center, Miami, Florida; TissueTech, Inc., Miami, Florida
| | - Raymond Grill
- Department of Neurobiology and Anatomical Sciences, University of Mississippi Medical Center, Jackson, Mississippi
| | - Stephen Fletcher
- Division of Pediatric Neurosurgery, The Department of Pediatrics, UTHealth, The University of Texas Health Science at Houston, McGovern Medical School, Houston, Texas; Department of Pediatric Surgery, UTHealth, The University of Texas Health Science at Houston, McGovern Medical School, Houston, Texas
| | - Kenneth J Moise
- Division of Maternal-Fetal Medicine, Department of Obstetrics, Gynecology and Reproductive Medicine, UTHealth, The University of Texas Health Science at Houston, McGovern Medical School and the Fetal Center at Children's Memorial Hermann Hospital, Houston, Texas
| |
Collapse
|
94
|
Liu S, Zhou J, Zhang X, Liu Y, Chen J, Hu B, Song J, Zhang Y. Strategies to Optimize Adult Stem Cell Therapy for Tissue Regeneration. Int J Mol Sci 2016; 17:ijms17060982. [PMID: 27338364 PMCID: PMC4926512 DOI: 10.3390/ijms17060982] [Citation(s) in RCA: 103] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 05/06/2016] [Accepted: 05/10/2016] [Indexed: 12/13/2022] Open
Abstract
Stem cell therapy aims to replace damaged or aged cells with healthy functioning cells in congenital defects, tissue injuries, autoimmune disorders, and neurogenic degenerative diseases. Among various types of stem cells, adult stem cells (i.e., tissue-specific stem cells) commit to becoming the functional cells from their tissue of origin. These cells are the most commonly used in cell-based therapy since they do not confer risk of teratomas, do not require fetal stem cell maneuvers and thus are free of ethical concerns, and they confer low immunogenicity (even if allogenous). The goal of this review is to summarize the current state of the art and advances in using stem cell therapy for tissue repair in solid organs. Here we address key factors in cell preparation, such as the source of adult stem cells, optimal cell types for implantation (universal mesenchymal stem cells vs. tissue-specific stem cells, or induced vs. non-induced stem cells), early or late passages of stem cells, stem cells with endogenous or exogenous growth factors, preconditioning of stem cells (hypoxia, growth factors, or conditioned medium), using various controlled release systems to deliver growth factors with hydrogels or microspheres to provide apposite interactions of stem cells and their niche. We also review several approaches of cell delivery that affect the outcomes of cell therapy, including the appropriate routes of cell administration (systemic, intravenous, or intraperitoneal vs. local administration), timing for cell therapy (immediate vs. a few days after injury), single injection of a large number of cells vs. multiple smaller injections, a single site for injection vs. multiple sites and use of rodents vs. larger animal models. Future directions of stem cell-based therapies are also discussed to guide potential clinical applications.
Collapse
Affiliation(s)
- Shan Liu
- Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, Chongqing 401147, China.
- College of Stomatology, Chongqing Medical University, Chongqing 401147, China.
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401147, China.
| | - Jingli Zhou
- Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, Chongqing 401147, China.
- College of Stomatology, Chongqing Medical University, Chongqing 401147, China.
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401147, China.
| | - Xuan Zhang
- Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, Chongqing 401147, China.
- College of Stomatology, Chongqing Medical University, Chongqing 401147, China.
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401147, China.
| | - Yang Liu
- Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, Chongqing 401147, China.
- College of Stomatology, Chongqing Medical University, Chongqing 401147, China.
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401147, China.
| | - Jin Chen
- Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, Chongqing 401147, China.
- College of Stomatology, Chongqing Medical University, Chongqing 401147, China.
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401147, China.
| | - Bo Hu
- Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, Chongqing 401147, China.
- College of Stomatology, Chongqing Medical University, Chongqing 401147, China.
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401147, China.
| | - Jinlin Song
- Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, Chongqing 401147, China.
- College of Stomatology, Chongqing Medical University, Chongqing 401147, China.
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401147, China.
| | - Yuanyuan Zhang
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Medical Center Blvd., Winston-Salem, NC 27157, USA.
| |
Collapse
|
95
|
Feng C, D Graham C, Connors JP, Brazzo J, Zurakowski D, Fauza DO. A comparison between placental and amniotic mesenchymal stem cells for transamniotic stem cell therapy (TRASCET) in experimental spina bifida. J Pediatr Surg 2016; 51:1010-3. [PMID: 27013425 DOI: 10.1016/j.jpedsurg.2016.02.071] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 02/26/2016] [Indexed: 12/24/2022]
Abstract
PURPOSE We compared placental-derived and amniotic fluid-derived mesenchymal stem cells (pMSCs and afMSCs, respectively) in transamniotic stem cell therapy (TRASCET) for experimental spina bifida. METHODS Pregnant dams (n=29) exposed to retinoic acid for the induction of fetal spina bifida were divided into four groups. Three groups received volume-matched intraamniotic injections of either saline (n=38 fetuses) or a suspension of 2×10(6) cells/mL of syngeneic, labeled afMSCs (n=73) or pMSCs (n=115) on gestational day 17 (term=21-22days). Untreated fetuses served as controls. Animals were killed before term. Statistical comparisons were by Fisher's exact test (p<0.05). RESULTS Survival was similar across treatment groups (p=0.08). In fetuses with isolated spina bifida (n=100), there were higher percentages of defect coverage (either partial or complete) in both afMSC and pMSC groups compared with saline and untreated groups (p<0.001-0.03 in pairwise comparisons). There were no differences in coverage rates between afMSC and pMSC groups (p=0.94) or between saline and untreated groups (p=0.98). CONCLUSIONS Both pMSC and afMSC can induce comparable rates of coverage of experimental spina bifida after concentrated intraamniotic injection in the rodent model. This broadens the options for timing and cell source for TRASCET as a potential alternative in the prenatal management of spina bifida.
Collapse
Affiliation(s)
- Christina Feng
- Department of Surgery, Boston Children's Hospital and Harvard Medical School, Boston, MA
| | - Christopher D Graham
- Department of Surgery, Boston Children's Hospital and Harvard Medical School, Boston, MA
| | - John Patrick Connors
- Department of Surgery, Boston Children's Hospital and Harvard Medical School, Boston, MA
| | - Joseph Brazzo
- Department of Surgery, Boston Children's Hospital and Harvard Medical School, Boston, MA
| | - David Zurakowski
- Department of Surgery, Boston Children's Hospital and Harvard Medical School, Boston, MA
| | - Dario O Fauza
- Department of Surgery, Boston Children's Hospital and Harvard Medical School, Boston, MA.
| |
Collapse
|
96
|
Deprest J, Ghidini A, Van Mieghem T, Bianchi DW, Faas B, Chitty LS. In case you missed it: the Prenatal Diagnosis
editors bring you the most significant advances of 2015. Prenat Diagn 2016; 36:3-9. [DOI: 10.1002/pd.4758] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Jan Deprest
- Department of Obstetrics and Gynecology; University Hospitals Leuven; Leuven Belgium
- Academic Department Development and Regeneration, Biomedical Sciences; KU Leuven; Leuven Belgium
| | - Alessandro Ghidini
- Department of Obstetrics and Gynecology; Georgetown University Hospital; Washington DC USA
| | - Tim Van Mieghem
- Department of Obstetrics and Gynecology; University Hospitals Leuven; Leuven Belgium
- Academic Department Development and Regeneration, Biomedical Sciences; KU Leuven; Leuven Belgium
| | - Diana W. Bianchi
- Mother Infant Research Institute, Tufts Medical Center; Boston MA
- Floating Hospital for Children; Boston MA USA
| | - Brigitte Faas
- Department of Human Genetics; Radboud University Medical Centre; Nijmegen the Netherlands
| | - Lyn S. Chitty
- UCL Institute of Child Health; Great Ormond Street Hospital for Children and NHS Foundation Trust; London UK
| |
Collapse
|
97
|
Antoniadou E, David AL. Placental stem cells. Best Pract Res Clin Obstet Gynaecol 2015; 31:13-29. [PMID: 26547389 DOI: 10.1016/j.bpobgyn.2015.08.014] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Accepted: 08/31/2015] [Indexed: 12/14/2022]
Abstract
The placenta represents a reservoir of progenitor, stem cells and epithelial cells that have been shown to differentiate into various types, including adipogenic, osteogenic, myogenic, hepatogenic, cardiac, pancreatic, endothelial, pulmonary and neurogenic lineages. This review focuses on the properties of placenta-derived cells, and it evaluates their current therapeutic applications in regenerative medicine and cell transplantations. Ongoing clinical and preclinical studies are investigating the safety and efficacy of the human amniotic epithelial cells (hAECs), human amniotic mesenchymal stromal cells (hAMSCs) and chorionic mesenchymal stromal cells (hCMSCs). The establishment of biobanks for placental stem cells will enable the translation of scientific research into the clinic. The advantage of the placenta as a cellular source is that it contains different cell lineages, such as the haematopoietic lineage that originates from the chorion, allantois and yolk sac, and the mesenchymal lineage that originates from the chorion and amnion. In this review, we address advances in placental stem cell characterization, and we explore their possible uses in cell therapy.
Collapse
Affiliation(s)
- Eleni Antoniadou
- Stem Cells and Regenerative Medicine Section, Developmental Biology and Cancer Programme, UCL Institute of Child Health, 30 Guilford Street, London WC1N 1EH, UK.
| | - Anna L David
- Institute for Women's Health, University College London, 86-96 Chenies Mews, London WC1E 6HX, UK.
| |
Collapse
|