51
|
Liu C, Zheng X, Dai T, Wang H, Chen X, Chen B, Sun T, Wang F, Chu S, Rao J. Reversibly Photoswitching Upconversion Nanoparticles for Super‐Sensitive Photoacoustic Molecular Imaging. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202116802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Cheng Liu
- Molecular Imaging Program at Stanford Departments of Radiology and Chemistry School of Medicine Stanford University Stanford CA 94305 USA
| | - Xianchuang Zheng
- Molecular Imaging Program at Stanford Departments of Radiology and Chemistry School of Medicine Stanford University Stanford CA 94305 USA
- Institute of Nanophotonics Jinan University Guangzhou 511443 China
| | - Tingting Dai
- Molecular Imaging Program at Stanford Departments of Radiology and Chemistry School of Medicine Stanford University Stanford CA 94305 USA
| | - Huiliang Wang
- Department of Bioengineering Stanford University Stanford CA 94305 USA
| | - Xian Chen
- Department of Materials Science and Engineering City University of Hong Kong Hong Kong SAR China
- College of Materials Science and Engineering Shenzhen University Shenzhen 51860 China
| | - Bing Chen
- Department of Materials Science and Engineering City University of Hong Kong Hong Kong SAR China
| | - Tianying Sun
- Department of Materials Science and Engineering City University of Hong Kong Hong Kong SAR China
| | - Feng Wang
- Department of Materials Science and Engineering City University of Hong Kong Hong Kong SAR China
| | - Steven Chu
- Departments of Physics and Molecular and Cellular Physiology Stanford University Stanford CA 94305 USA
| | - Jianghong Rao
- Molecular Imaging Program at Stanford Departments of Radiology and Chemistry School of Medicine Stanford University Stanford CA 94305 USA
| |
Collapse
|
52
|
Jiang Z, Han X, Zhao C, Wang S, Tang X. Recent Advance in Biological Responsive Nanomaterials for Biosensing and Molecular Imaging Application. Int J Mol Sci 2022; 23:ijms23031923. [PMID: 35163845 PMCID: PMC8837089 DOI: 10.3390/ijms23031923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 01/30/2022] [Accepted: 02/07/2022] [Indexed: 02/04/2023] Open
Abstract
In recent decades, as a subclass of biomaterials, biologically sensitive nanoparticles have attracted increased scientific interest. Many of the demands for physiologically responsive nanomaterials in applications involving the human body cannot be met by conventional technologies. Due to the field's importance, considerable effort has been expended, and biologically responsive nanomaterials have achieved remarkable success thus far. This review summarizes the recent advancements in biologically responsive nanomaterials and their applications in biosensing and molecular imaging. The nanomaterials change their structure or increase the chemical reaction ratio in response to specific bio-relevant stimuli (such as pH, redox potentials, enzyme kinds, and concentrations) in order to improve the signal for biologically responsive diagnosis. We use various case studies to illustrate the existing issues and provide a clear sense of direction in this area. Furthermore, the limitations and prospects of these nanomaterials for diagnosis are also discussed.
Collapse
Affiliation(s)
- Zhenqi Jiang
- School of Life Science, Institute of Engineering Medicine, Beijing Institute of Technology, Beijing 100081, China; (Z.J.); (X.H.); (C.Z.)
- School of Chemistry and Chemical Engineering, Analysis & Testing Center, Beijing Institute of Technology, Beijing 100081, China;
| | - Xiao Han
- School of Life Science, Institute of Engineering Medicine, Beijing Institute of Technology, Beijing 100081, China; (Z.J.); (X.H.); (C.Z.)
| | - Chen Zhao
- School of Life Science, Institute of Engineering Medicine, Beijing Institute of Technology, Beijing 100081, China; (Z.J.); (X.H.); (C.Z.)
| | - Shanshan Wang
- School of Chemistry and Chemical Engineering, Analysis & Testing Center, Beijing Institute of Technology, Beijing 100081, China;
| | - Xiaoying Tang
- School of Life Science, Institute of Engineering Medicine, Beijing Institute of Technology, Beijing 100081, China; (Z.J.); (X.H.); (C.Z.)
- Correspondence:
| |
Collapse
|
53
|
Kyrkou SG, Vrettos EI, Gorpas D, Crook T, Syed N, Tzakos AG. Design Principles Governing the Development of Theranostic Anticancer Agents and Their Nanoformulations with Photoacoustic Properties. Pharmaceutics 2022; 14:362. [PMID: 35214094 PMCID: PMC8877540 DOI: 10.3390/pharmaceutics14020362] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/22/2022] [Accepted: 01/25/2022] [Indexed: 02/05/2023] Open
Abstract
The unmet need to develop novel approaches for cancer diagnosis and treatment has led to the evolution of theranostic agents, which usually include, in addition to the anticancer drug, an imaging agent based mostly on fluorescent agents. Over the past few years, a non-invasive photoacoustic imaging modality has been effectively integrated into theranostic agents. Herein, we shed light on the design principles governing the development of theranostic agents with photoacoustic properties, which can be formulated into nanocarriers to enhance their potency. Specifically, we provide an extensive analysis of their individual constituents including the imaging dyes, drugs, linkers, targeting moieties, and their formulation into nanocarriers. Along these lines, we present numerous relevant paradigms. Finally, we discuss the clinical relevance of the specific strategy, as also the limitations and future perspectives, and through this review, we envisage paving the way for the development of theranostic agents endowed with photoacoustic properties as effective anticancer medicines.
Collapse
Affiliation(s)
- Stavroula G. Kyrkou
- Department of Chemistry, Section of Organic Chemistry and Biochemistry, University of Ioannina, 45110 Ioannina, Greece; (S.G.K.); (E.I.V.)
| | - Eirinaios I. Vrettos
- Department of Chemistry, Section of Organic Chemistry and Biochemistry, University of Ioannina, 45110 Ioannina, Greece; (S.G.K.); (E.I.V.)
| | - Dimitris Gorpas
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Neuherberg, D-85764 Oberschleißheim, Germany;
- Chair of Biological Imaging, Technische Universität München, D-81675 Munich, Germany
| | - Timothy Crook
- John Fulcher Neuro-Oncology Laboratory, Department of Brain Sciences, Division of Neuroscience, Faculty of Medicine, Imperial College London, London W12 0NN, UK
| | - Nelofer Syed
- John Fulcher Neuro-Oncology Laboratory, Department of Brain Sciences, Division of Neuroscience, Faculty of Medicine, Imperial College London, London W12 0NN, UK
| | - Andreas G. Tzakos
- Department of Chemistry, Section of Organic Chemistry and Biochemistry, University of Ioannina, 45110 Ioannina, Greece; (S.G.K.); (E.I.V.)
- Institute of Materials Science and Computing, University Research Center of Ioannina (URCI), 45110 Ioannina, Greece
| |
Collapse
|
54
|
Wang Y, Bai H, Miao Y, Weng J, Huang Z, Fu J, Zhang Y, Lin J, Ye D. Tailoring a Near‐Infrared Macrocyclization Scaffold Allows the Control of In Situ Self‐assembly for Photoacoustic/PET Bimodal Imaging. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202200369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Yuqi Wang
- Nanjing University School of Chemistry and Chemical Engineering CHINA
| | - He Bai
- Nanjing University School of Chemistry and Chemical Engineering CHINA
| | - Yinxing Miao
- Nanjing University School of Chemistry and Chemical Engineering CHINA
| | - Jianhui Weng
- Nanjing University School of Chemistry and Chemical Engineering CHINA
| | - Zheng Huang
- Nanjing University School of Chemistry and Chemical Engineering CHINA
| | - Jiayu Fu
- Jiangsu Institute of Nuclear Medicine Molecular Nuclear Medicine CHINA
| | - Yan Zhang
- Nanjing University School of Chemistry and Chemical Engineering CHINA
| | - Jianguo Lin
- Jiangsu Institute of Nuclear Medicine Molecular Nuclear Medicine CHINA
| | - Deju Ye
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University Chemistry 163 Xianlin Road, 210023 Nanjing CHINA
| |
Collapse
|
55
|
Mantri Y, Jokerst JV. Impact of skin tone on photoacoustic oximetry and tools to minimize bias. BIOMEDICAL OPTICS EXPRESS 2022; 13:875-887. [PMID: 35284157 PMCID: PMC8884230 DOI: 10.1364/boe.450224] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/13/2022] [Accepted: 01/14/2022] [Indexed: 05/02/2023]
Abstract
The major optical absorbers in tissue are melanin and oxy/deoxy-hemoglobin, but the impact of skin tone and pigmentation on biomedical optics is still not completely understood or adequately addressed. Melanin largely governs skin tone with higher melanin concentration in subjects with darker skin tones. Recently, there has been extensive debate on the bias of pulse oximeters when used with darker subjects. Photoacoustic (PA) imaging can measure oxygen saturation similarly as pulse oximeters and could have value in studying this bias. More importantly, it can deconvolute the signal from the skin and underlying tissue. Here, we studied the impact of skin tone on PA signal generation, depth penetration, and oximetry. Our results show that subjects with darker skin tones exhibit significantly higher PA signal at the skin surface, reduced penetration depth, and lower oxygen saturation compared to subjects with lighter skin tones. We then suggest a simple way to compensate for these signal differences.
Collapse
Affiliation(s)
- Yash Mantri
- Department of Bioengineering, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Jesse V. Jokerst
- Department of Nanoengineering, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
- Material Science Department, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
- Department of Radiology, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| |
Collapse
|
56
|
Gao H, Wang Z, Tan M, Liu W, Zhang L, Huang J, Cao Y, Li P, Wang Z, Wen J, Shang T, Ran H. pH-Responsive Nanoparticles for Enhanced Antitumor Activity by High-Intensity Focused Ultrasound Therapy Combined with Sonodynamic Therapy. Int J Nanomedicine 2022; 17:333-350. [PMID: 35115772 PMCID: PMC8800590 DOI: 10.2147/ijn.s336632] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 12/24/2021] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Therapeutic ultrasound (US) has been extensively explored for its inherent high tissue-penetrating capability and on-demand irradiation without radioactive damage. Although high-intensity focused ultrasound (HIFU) is evolved as such an outstanding US-based approach, its insufficient therapeutic effect and the high-intensity induced potential damage to surrounding normal tissues hindered its development towards practical application. As opposed to high intensity ultrasound, sonodynamic therapy (SDT) is a low intensity US-based method which exhibits certain therapeutic effects against cancer via sonosensitizers-generated reactive oxygen species (ROS) overproduction. METHODS Hematoporphyrin monomethyl ether (HMME) loaded CaCO3 nanoparticles (designated as Ca@H) were synthesized by a gas diffusion method. The pH-responsive performance, in vitro SDT, ex vivo HIFU therapy (HIFUT), photoacoustic (PA) imaging and in vivo HIFUT combined with SDT were investigated thoroughly. RESULTS Ca@H NPs gradually decomposed in acid tumor microenvironment, produced CO2 and released HMME. Both CO2 and HMME enhanced photoacoustic (PA) imaging. The generated CO2 bubbles also enhanced HIFUT by inducing an enlarged ablation area. The tumor ablation efficiency (61.04%) was significantly improved with a combination of HIFU therapy and SDT. CONCLUSION pH-responsive Ca@H NPs have been successfully constructed for PA imaging-guided/monitored HIFUT combined with SDT. With the assistance of pH-responsive Ca@H NPs, the combination of these two US-based therapies is expected to play a role in the treatment of non-invasive tumor in the future.
Collapse
Affiliation(s)
- Hui Gao
- Chongqing Key Laboratory of Ultrasound Molecular Imaging & Institute of Ultrasound Imaging, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
- Department of Ultrasound, Children’s Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
| | - Zhaoxia Wang
- Chongqing Key Laboratory of Ultrasound Molecular Imaging & Institute of Ultrasound Imaging, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
- Department of Ultrasound, Children’s Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
| | - Mixiao Tan
- Chongqing Key Laboratory of Ultrasound Molecular Imaging & Institute of Ultrasound Imaging, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
| | - Weiwei Liu
- Chongqing Key Laboratory of Ultrasound Molecular Imaging & Institute of Ultrasound Imaging, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
| | - Liang Zhang
- Chongqing Key Laboratory of Ultrasound Molecular Imaging & Institute of Ultrasound Imaging, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
| | - Ju Huang
- Chongqing Key Laboratory of Ultrasound Molecular Imaging & Institute of Ultrasound Imaging, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
| | - Yang Cao
- Chongqing Key Laboratory of Ultrasound Molecular Imaging & Institute of Ultrasound Imaging, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
| | - Pan Li
- Chongqing Key Laboratory of Ultrasound Molecular Imaging & Institute of Ultrasound Imaging, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
| | - Zhigang Wang
- Chongqing Key Laboratory of Ultrasound Molecular Imaging & Institute of Ultrasound Imaging, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
| | - Jiexin Wen
- Department of Ultrasound, Children’s Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
| | - Tingting Shang
- Chongqing Key Laboratory of Ultrasound Molecular Imaging & Institute of Ultrasound Imaging, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
| | - Haitao Ran
- Chongqing Key Laboratory of Ultrasound Molecular Imaging & Institute of Ultrasound Imaging, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
| |
Collapse
|
57
|
Xie Q, Liu J, Chen B, Ge X, Zhang X, Gao S, Ma Q, Song J. NIR-II Fluorescent Activatable Drug Delivery Nanoplatform for Cancer-Targeted Combined Photodynamic and Chemotherapy. ACS APPLIED BIO MATERIALS 2022; 5:711-722. [PMID: 35044163 DOI: 10.1021/acsabm.1c01139] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Nanotheranostics with integrated imaging functions can help monitor nanoparticle accumulation in tumors, thus achieving synergism and higher therapeutic accuracy in cancer therapy. However, it remains challenging to monitor the release of therapeutic drugs in real time from a nanoparticulate drug delivery system (nano-DDS) in the body. Herein, we developed a nano-DDS for fluorescence imaging in the second near-infrared window (NIR-II) region, which can be used for monitoring the responsive release of drugs and cancer-targeted combined photodynamic and chemotherapy. There is a linear correlation between the cumulative release of the drug and the NIR-II fluorescence intensity. Moreover, hyaluronidase/glutathione dual-response RGD-SS-DOX/Ce6@HA-IR-1061 (RSSDCHI) exhibited a higher tumor-to-normal-tissue ratio in NIR-II fluorescence imaging and enhanced antitumor efficacy in vivo. This makes it possible to visualize drug release at the cellular level by the nanocomposites and to predict the treatment effect according to the NIR-II fluorescence intensity in the tumor site, serving as a promising nanoplatform for precision nanomedicine.
Collapse
Affiliation(s)
- Qian Xie
- Department of Nuclear Medicine, NHC Key Laboratory of Radiobiology, School of Public Health of Jilin University, China-Japan Union Hospital of Jilin University, Changchun 130000, P. R. China
| | - Junzhi Liu
- Department of Nuclear Medicine, NHC Key Laboratory of Radiobiology, School of Public Health of Jilin University, China-Japan Union Hospital of Jilin University, Changchun 130000, P. R. China
| | - Bin Chen
- Department of Nuclear Medicine, NHC Key Laboratory of Radiobiology, School of Public Health of Jilin University, China-Japan Union Hospital of Jilin University, Changchun 130000, P. R. China
| | - Xiaoguang Ge
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Xuan Zhang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Shi Gao
- Department of Nuclear Medicine, NHC Key Laboratory of Radiobiology, School of Public Health of Jilin University, China-Japan Union Hospital of Jilin University, Changchun 130000, P. R. China
| | - Qingjie Ma
- Department of Nuclear Medicine, NHC Key Laboratory of Radiobiology, School of Public Health of Jilin University, China-Japan Union Hospital of Jilin University, Changchun 130000, P. R. China
| | - Jibin Song
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| |
Collapse
|
58
|
Wen J, Luo Y, Gao H, Zhang L, Wang X, Huang J, Shang T, Zhou D, Wang D, Wang Z, Li P, Wang Z. Mitochondria-targeted nanoplatforms for enhanced photodynamic therapy against hypoxia tumor. J Nanobiotechnology 2021; 19:440. [PMID: 34930284 PMCID: PMC8686264 DOI: 10.1186/s12951-021-01196-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 12/08/2021] [Indexed: 12/12/2022] Open
Abstract
Background Photodynamic therapy (PDT) is a promising therapeutic modality that can convert oxygen into cytotoxic reactive oxygen species (ROS) via photosensitizers to halt tumor growth. However, hypoxia and the unsatisfactory accumulation of photosensitizers in tumors severely diminish the therapeutic effect of PDT. In this study, a multistage nanoplatform is demonstrated to overcome these limitations by encapsulating photosensitizer IR780 and oxygen regulator 3-bromopyruvate (3BP) in poly (lactic-co-glycolic acid) (PLGA) nanocarriers. Results The as-synthesized nanoplatforms penetrated deeply into the interior region of tumors and preferentially remained in mitochondria due to the intrinsic characteristics of IR780. Meanwhile, 3BP could efficiently suppress oxygen consumption of tumor cells by inhibiting mitochondrial respiratory chain to further improve the generation of ROS. Furthermore, 3BP could abolish the excessive glycolytic capacity of tumor cells and lead to the collapse of ATP production, rendering tumor cells more susceptible to PDT. Successful tumor inhibition in animal models confirmed the therapeutic precision and efficiency. In addition, these nanoplatforms could act as fluorescence (FL) and photoacoustic (PA) imaging contrast agents, effectuating imaging-guided cancer treatment. Conclusions This study provides an ideal strategy for cancer therapy by concurrent oxygen consumption reduction, oxygen-augmented PDT, energy supply reduction, mitochondria-targeted/deep-penetrated nanoplatforms and PA/FL dual-modal imaging guidance/monitoring. It is expected that such strategy will provide a promising alternative to maximize the performance of PDT in preclinical/clinical cancer treatment. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s12951-021-01196-6.
Collapse
Affiliation(s)
- Jiexin Wen
- Department of Ultrasound, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, People's Republic of China
| | - Yong Luo
- Department of Ultrasound, The First People's Hospital of Chongqing Liang Jiang New Area, Chongqing, 401121, People's Republic of China
| | - Hui Gao
- Department of Ultrasound, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, People's Republic of China
| | - Liang Zhang
- Chongqing Key Laboratory of Ultrasound Molecular Imaging, Institute of Ultrasound Imaging, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400010, People's Republic of China
| | - Xiang Wang
- Department of Ultrasound, The Third Affiliated Hospital, Chongqing Medical University, Chongqing, 401120, People's Republic of China
| | - Ju Huang
- Department of Ultrasound, The Third Affiliated Hospital, Chongqing Medical University, Chongqing, 401120, People's Republic of China
| | - Tingting Shang
- Chongqing Key Laboratory of Ultrasound Molecular Imaging, Institute of Ultrasound Imaging, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400010, People's Republic of China
| | - Di Zhou
- Department of Radiology, The First Affiliated Hospital, Chongqing Medical University, Chongqing, 400042, People's Republic of China
| | - Dong Wang
- Department of Ultrasound, The First Affiliated Hospital, Chongqing Medical University, Chongqing, 400042, People's Republic of China
| | - Zhigang Wang
- Chongqing Key Laboratory of Ultrasound Molecular Imaging, Institute of Ultrasound Imaging, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400010, People's Republic of China
| | - Pan Li
- Chongqing Key Laboratory of Ultrasound Molecular Imaging, Institute of Ultrasound Imaging, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400010, People's Republic of China
| | - Zhaoxia Wang
- Department of Ultrasound, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, People's Republic of China.
| |
Collapse
|
59
|
Lin H, Zhou Y, Wang J, Wang H, Yao T, Chen H, Zheng H, Zhang Y, Ren E, Jiang L, Chu C, Chen X, Mao J, Wang F, Liu G. Repurposing ICG enables MR/PA imaging signal amplification and iron depletion for iron-overload disorders. SCIENCE ADVANCES 2021; 7:eabl5862. [PMID: 34919434 PMCID: PMC8682994 DOI: 10.1126/sciadv.abl5862] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Precise and noninvasive theranostic methods to quantify and deplete focal iron are of crucial importance for iron-overload disorders. Here, we developed an indocyanine green (ICG)–based imaging platform to reveal Fe3+ in vitro and in vivo. The high sensitivity and specificity of ICG-Fe interaction facilitated MR images with a marked correlation between T1 signal intensity ratio (T1SIR) changes and Fe3+ concentration in rodent models and humans. On the basis of these findings, a rational design for coordination-driven self-assembly ICG-Lecithin (ICG/Leci) was proposed to determine Fe3+. The enhancement of photoacoustic signal at 890 nm with increasing Fe3+ concentration showed an over 600% higher linear slope than that of T1SIR changes in animal models. ICG/Leci also promoted a 100% increase in iron depletion in the liver compared with deferoxamine. The high MR sensitivity and superior photoacoustic contrast, combined with enhanced iron depletion, demonstrate that ICG/Leci is a promising theranostic agent for simultaneous detection and treatment of iron-overload disorders.
Collapse
Affiliation(s)
- Huirong Lin
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics and Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Yu Zhou
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics and Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Jiaming Wang
- The Fourth Affiliated Hospital, School of Public Health, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Huimeng Wang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics and Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Tianhong Yao
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics and Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Hu Chen
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics and Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Huili Zheng
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics and Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Yang Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics and Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
| | - En Ren
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics and Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Lai Jiang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics and Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Chengchao Chu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics and Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
- Amoy Hopeful Biotechnology Co. Ltd., Xiamen 361027, China
| | - Xiaoyuan Chen
- Departments of Diagnostic Radiology, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and Faculty of Engineering, National University of Singapore, Singapore, Singapore
| | - Jingsong Mao
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics and Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
- Department of Radiology, Xiang’an Hospital of Xiamen University, Xiamen 361102, China
- Corresponding author. (G.L.); (F.W.); (J.M.)
| | - Fudi Wang
- The Fourth Affiliated Hospital, School of Public Health, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China
- The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, China
- Corresponding author. (G.L.); (F.W.); (J.M.)
| | - Gang Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics and Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
- Corresponding author. (G.L.); (F.W.); (J.M.)
| |
Collapse
|
60
|
Early Diagnosis and Real-Time Monitoring of Regional Lung Function Changes to Prevent Chronic Obstructive Pulmonary Disease Progression to Severe Emphysema. J Clin Med 2021; 10:jcm10245811. [PMID: 34945107 PMCID: PMC8708661 DOI: 10.3390/jcm10245811] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/07/2021] [Accepted: 12/09/2021] [Indexed: 02/04/2023] Open
Abstract
First- and second-hand exposure to smoke or air pollutants is the primary cause of chronic obstructive pulmonary disease (COPD) pathogenesis, where genetic and age-related factors predispose the subject to the initiation and progression of obstructive lung disease. Briefly, airway inflammation, specifically bronchitis, initiates the lung disease, leading to difficulty in breathing (dyspnea) and coughing as initial symptoms, followed by air trapping and inhibition of the flow of air into the lungs due to damage to the alveoli (emphysema). In addition, mucus obstruction and impaired lung clearance mechanisms lead to recurring acute exacerbations causing progressive decline in lung function, eventually requiring lung transplant and other lifesaving interventions to prevent mortality. It is noteworthy that COPD is much more common in the population than currently diagnosed, as only 16 million adult Americans were reported to be diagnosed with COPD as of 2018, although an additional 14 million American adults were estimated to be suffering from COPD but undiagnosed by the current standard of care (SOC) diagnostic, namely the spirometry-based pulmonary function test (PFT). Thus, the main issue driving the adverse disease outcome and significant mortality for COPD is lack of timely diagnosis in the early stages of the disease. The current treatment regime for COPD emphysema is most effective when implemented early, on COPD onset, where alleviating symptoms and exacerbations with timely intervention(s) can prevent steep lung function decline(s) and disease progression to severe emphysema. Therefore, the key to efficiently combatting COPD relies on early detection. Thus, it is important to detect early regional pulmonary function and structural changes to monitor modest disease progression for implementing timely interventions and effectively eliminating emphysema progression. Currently, COPD diagnosis involves using techniques such as COPD screening questionnaires, PFT, arterial blood gas analysis, and/or lung imaging, but these modalities are limited in their capability for early diagnosis and real-time disease monitoring of regional lung function changes. Hence, promising emerging techniques, such as X-ray phase contrast, photoacoustic tomography, ultrasound computed tomography, electrical impedance tomography, the forced oscillation technique, and the impulse oscillometry system powered by robust artificial intelligence and machine learning analysis capability are emerging as novel solutions for early detection and real time monitoring of COPD progression for timely intervention. We discuss here the scope, risks, and limitations of current SOC and emerging COPD diagnostics, with perspective on novel diagnostics providing real time regional lung function monitoring, and predicting exacerbation and/or disease onset for prognosis-based timely intervention(s) to limit COPD–emphysema progression.
Collapse
|
61
|
Yang Y, Wu H, Liu B, Liu Z. Tumor microenvironment-responsive dynamic inorganic nanoassemblies for cancer imaging and treatment. Adv Drug Deliv Rev 2021; 179:114004. [PMID: 34662672 DOI: 10.1016/j.addr.2021.114004] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 09/08/2021] [Accepted: 10/11/2021] [Indexed: 02/07/2023]
Abstract
Dynamic inorganic nanoassemblies (DINAs) have emerged as smart nanomedicine platforms with promising potential for bioimaging and targeted drug delivery. In this review, we keep abreast of the advances in development of tumor microenvironment (TME)-responsive DINAs to meet the challenges associated with precise cancer therapy. TME-responsive DINAs are designed to achieve precise switches of structures/functions in response to TME-specific stimuli including reactive oxygen species (ROS), reduced pH and hypoxia, so as to enhance the tumor accumulation of nanoassemblies, overcome the biological barriers during intratumoral penentration of therapeutics, and achieve tumor-specific imaging and therapy. This progress report will summarize various types of recently reported smart DINAs for TME-responsive tumor imaging and therapy. Their future development towards potential clinical translation will also be discussed.
Collapse
|
62
|
Yi X, Shen M, Liu X, Gu J, Jiang Z, Xu L, Yang K. Diagnostic Radionuclides Labeled on Biomimetic Nanoparticles for Enhanced Follow-Up Photothermal Therapy of Cancer. Adv Healthc Mater 2021; 10:e2100860. [PMID: 34263561 DOI: 10.1002/adhm.202100860] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 07/06/2021] [Indexed: 12/23/2022]
Abstract
Imaging-guided local therapy is the most effective strategy to treat primary cancers in patients. However, the local therapeutic effect should be further improved under the premise of absence of induction of additional side effects. It would be meaningful to analyze the potential assistance of nuclear imaging to the follow-up treatments. In this study,cancer-targeted copper sulfide nanoparticles with 99m Tc labeling (99m Tc-M-CuS-PEG) are prepared using-cancer cell membranes as a synthesis reactor and applied for the potential single-photon emission computed tomography/photoacoustic imaging-guided and 99m Tc-amplified photothermal therapy of cancer. Owing to the homologous targeting capability of the cancer cell membrane, M-CuS-PEG selectively accumulates in homologous tumor sites. After labeling with 99m Tc, M-CuS-PEG with a high near-infrared light absorbance can realize bimodal imaging-guided photothermal therapy of cancer. Furthermore, the labeled 99m Tc significantly enhances the cell uptake of M-CuS-PEG by inducing G2/M arrest of the cell cycle, further improving the photothermal antitumor effect, which is positively correlated with endocytosis of the photothermal conversion reagent. Therefore, a novel cancer-targeted theranostic nanoplatform is developed and it is revealed that the labeled 99m Tc can not only guide but also amplify the subsequent therapy of cancer, providing a conceptual strategy for cancer theranostics with a high biosafety.
Collapse
Affiliation(s)
- Xuan Yi
- School of Pharmacy Jiangsu Key Laboratory of Inflammation and Molecular Drug Targets Nantong University Nantong Jiangsu 226001 China
| | - Mengling Shen
- School of Pharmacy Jiangsu Key Laboratory of Inflammation and Molecular Drug Targets Nantong University Nantong Jiangsu 226001 China
| | - Xinpei Liu
- School of Pharmacy Jiangsu Key Laboratory of Inflammation and Molecular Drug Targets Nantong University Nantong Jiangsu 226001 China
| | - Jingyu Gu
- School of Pharmacy Jiangsu Key Laboratory of Inflammation and Molecular Drug Targets Nantong University Nantong Jiangsu 226001 China
| | - Zewei Jiang
- School of Pharmacy Jiangsu Key Laboratory of Inflammation and Molecular Drug Targets Nantong University Nantong Jiangsu 226001 China
| | - Lixing Xu
- School of Pharmacy Jiangsu Key Laboratory of Inflammation and Molecular Drug Targets Nantong University Nantong Jiangsu 226001 China
| | - Kai Yang
- State Key Laboratory of Radiation Medicine and Protection School of Radiation Medicine and Protection and School for Radiological and Interdisciplinary Sciences (RADX) Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions Soochow University Suzhou Jiangsu 215123 China
| |
Collapse
|
63
|
Pan YT, Ding YF, Han ZH, Yuwen L, Ye Z, Mok GSP, Li S, Wang LH. Hyaluronic acid-based nanogels derived from multicomponent self-assembly for imaging-guided chemo-photodynamic cancer therapy. Carbohydr Polym 2021; 268:118257. [PMID: 34127228 DOI: 10.1016/j.carbpol.2021.118257] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 05/10/2021] [Accepted: 05/21/2021] [Indexed: 11/22/2022]
Abstract
Multifunctional theranostic nanoplatforms integrated of imaging function, multi-modality therapy, stimuli-responsiveness, and targeted delivery are of highly desirable attributes in achieving precise medicine. However, preparation of multifunctional nanoplatforms often involves laborious, multiple steps and inevitably utilizes low-biocompatible or non-functional components. Herein we report a facile, one-step self-assembly strategy to fabricate hyaluronic acid (HA)-based multifunctional tumor theranostic nanoplatform by employing magnetic resonance imaging (MRI) agent Mn2+ as a reversible crosslink agent for histidine-grafted HA, along with simultaneously loading chemotherapeutic agent doxorubicin hydrochloride (DOX) and photodynamic therapy agent chlorin e6, to realize MRI-guided targeted chemo-photodynamic cancer therapy. The targeted delivery and stimuli-responsive payload release were demonstrated in vitro and in vivo. Furthermore, the combined chemo-photodynamic therapy of the nanoassembly dramatically improved the cancer therapeutic outcome, in comparison with that of free DOX and nanoplatform solely loaded DOX in a melanoma bearing mice. Our one step assemble strategy is of great potential in clinic transformation.
Collapse
Affiliation(s)
- Ya-Ting Pan
- Key Laboratory for Organic Electronics and Information Displays, Jiangsu Key Laboratory of Biosensors, Institute of Advanced Materials, Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Yuan-Fu Ding
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau, China; Biomedical Imaging Laboratory (BIG), Department of Electrical and Computer Engineering, University of Macau, Taipa, Macau, China
| | - Zhi-Hao Han
- Key Laboratory for Organic Electronics and Information Displays, Jiangsu Key Laboratory of Biosensors, Institute of Advanced Materials, Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Lihui Yuwen
- Key Laboratory for Organic Electronics and Information Displays, Jiangsu Key Laboratory of Biosensors, Institute of Advanced Materials, Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Zhan Ye
- UltraSpec Lab, Victoria, BC V8P 2N1, Canada
| | - Greta S P Mok
- Biomedical Imaging Laboratory (BIG), Department of Electrical and Computer Engineering, University of Macau, Taipa, Macau, China
| | - Shengke Li
- Key Laboratory for Organic Electronics and Information Displays, Jiangsu Key Laboratory of Biosensors, Institute of Advanced Materials, Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China; School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| | - Lian-Hui Wang
- Key Laboratory for Organic Electronics and Information Displays, Jiangsu Key Laboratory of Biosensors, Institute of Advanced Materials, Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China.
| |
Collapse
|
64
|
Chen Y, Xu C, Cheng Y, Cheng Q. Photostability enhancement of silica-coated gold nanostars for photoacoustic imaging guided photothermal therapy. PHOTOACOUSTICS 2021; 23:100284. [PMID: 34354923 PMCID: PMC8322131 DOI: 10.1016/j.pacs.2021.100284] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 05/25/2021] [Accepted: 07/13/2021] [Indexed: 05/14/2023]
Abstract
Gold nanostars (GNSs) are promising contrast agents for simultaneous photothermal therapy and photoacoustic imaging (PAI) owing to their excellent photothermal conversion efficiency. However, GNSs are easily reshaped under transient high-intensity laser pulses, which can cause a rapid shift in the light absorption peak, resulting in a decrease in both therapeutic and monitoring effects. In this work, we synthesized GNSs without toxic surfactants and coated them with a silica shell to retain their shape, thus maintaining their photostability. The excellent performance of these silica-coated GNSs was verified through both in vitro and in vivo PAI experiments. The silica-coated GNSs exhibited a threefold improvement in photoacoustic stability, as compared with the non-coated GNSs. The proposed silica coating method for GNSs was found to improve the photostability of GNSs, making them efficient, safe, and reliable nanoparticles for PAI.
Collapse
Affiliation(s)
- Yingna Chen
- Institute of Acoustics, School of Physics Science and Engineering, Tongji University, Shanghai, PR China
| | - Chang Xu
- The Institute for Translational Nanomedicine, Shanghai East Hospital, The Institute for Biomedical Engineering & Nano Science, Tongji University School of Medicine, Shanghai, PR China
| | - Yu Cheng
- The Institute for Translational Nanomedicine, Shanghai East Hospital, The Institute for Biomedical Engineering & Nano Science, Tongji University School of Medicine, Shanghai, PR China
| | - Qian Cheng
- Institute of Acoustics, School of Physics Science and Engineering, Tongji University, Shanghai, PR China
- The Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration, Ministry of Education, Department of Orthopaedics, Tongji Hospital, Tongji University School of Medicine, Shanghai, PR China
| |
Collapse
|
65
|
Gellini C, Feis A. Optothermal properties of plasmonic inorganic nanoparticles for photoacoustic applications. PHOTOACOUSTICS 2021; 23:100281. [PMID: 34194975 PMCID: PMC8233228 DOI: 10.1016/j.pacs.2021.100281] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 05/05/2021] [Accepted: 06/10/2021] [Indexed: 05/08/2023]
Abstract
Plasmonic systems are becoming a favourable alternative to dye molecules in the generation of photoacoustic signals for spectroscopy and imaging. In particular, inorganic nanoparticles are appealing because of their versatility. In fact, as the shape, size and chemical composition of nanoparticles are directly correlated with their plasmonic properties, the excitation wavelength can be tuned to their plasmon resonance by adjusting such traits. This feature enables an extensive spectral range to be covered. In addition, surface chemical modifications can be performed to provide the nanoparticles with designed functionalities, e.g., selective affinity for specific macromolecules. The efficiency of the conversion of absorbed photon energy into heat, which is the physical basis of the photoacoustic signal, can be accurately determined by photoacoustic methods. This review contrasts studies that evaluate photoconversion in various kinds of nanomaterials by different methods, with the objective of facilitating the researchers' choice of suitable plasmonic nanoparticles for photoacoustic applications.
Collapse
Affiliation(s)
- Cristina Gellini
- Dipartimento di Chimica “Ugo Schiff”, Università di Firenze, Via della Lastruccia 3, I-50019 Sesto Fiorentino (FI), Italy
| | - Alessandro Feis
- Dipartimento di Chimica “Ugo Schiff”, Università di Firenze, Via della Lastruccia 3, I-50019 Sesto Fiorentino (FI), Italy
| |
Collapse
|
66
|
Borum RM, Moore C, Chan SK, Steinmetz NF, Jokerst JV. A Photoacoustic Contrast Agent for miR-21 via NIR Fluorescent Hybridization Chain Reaction. Bioconjug Chem 2021; 33:1080-1092. [PMID: 34406744 DOI: 10.1021/acs.bioconjchem.1c00375] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Nucleic acids are well-established biomarkers of cancer with immense value in diagnostics and basic research. However, strategies to monitor these species in tissue can be challenging due to the need for amplification of imaging signal from low analyte concentrations with high specificity. Photoacoustic (PA) imaging is gaining traction for molecular imaging of proteins, small biomolecules, and nucleic acids by coupling pulsed near-infrared (NIR) excitation with broadband acoustic detection. This work introduces a PA nucleic acid contrast agent that harnesses NIR fluorophore and quencher-tagged hybridization chain reaction (HCR) for signal amplification. This HCR probe was designed to enable contact quenching between NIR dye-quencher pairs by coercing their direct alignment when miR-21, a microRNA cancer biomarker, is detected. The probe demonstrated a ratiometric PA limit of detection of 148 pM miR-21, sequence specificity against one- and two-base mutations, and selectivity over other microRNAs. It was further tested in live human ovarian cancer (SKOV3) and noncancerous (HEK 293T) cells to exemplify in situ PA activation based on differences in endogenous miR-21 regulation (p = 0.0002). The probe was lastly tested in tissue mimicking phantoms to exemplify sustained contrast in centimeter-range depths and 85.3% photostability after 15 min of laser irradiation. The probe's miR-21-specific activation and its ability to maintain contrast in biologically relevant absorbing and scattering media support its consideration for live-cell PA microscopy and potential cancer diagnostics. Results from this probe also underscore the combined detection power between ratiometric PA signaling and strand amplification for more sensitive DNA-based PA sensors.
Collapse
Affiliation(s)
- Raina M Borum
- Department of NanoEngineering, University of California, San Diego, La Jolla, California 92093. United States
| | - Colman Moore
- Department of NanoEngineering, University of California, San Diego, La Jolla, California 92093. United States
| | - Soo Khim Chan
- Department of NanoEngineering, University of California, San Diego, La Jolla, California 92093. United States
| | - Nicole F Steinmetz
- Department of NanoEngineering, University of California, San Diego, La Jolla, California 92093. United States.,Department of Radiology, University of California, San Diego, La Jolla, California 92093. United States.,Department of Bioengineering, University of California, San Diego, La Jolla, California 92093. United States.,Center for Nano-ImmunoEngineering, University of California, San Diego, La Jolla, California 92093. United States.,Institute for Materials Discovery and Design, University of California, San Diego, La Jolla, California 92093. United States.,Moores Cancer Center, University of California, San Diego, La Jolla, California 92037. United States
| | - Jesse V Jokerst
- Department of NanoEngineering, University of California, San Diego, La Jolla, California 92093. United States.,Materials Science and Engineering Program, University of California, San Diego, La Jolla, California 92093. United States.,Department of Radiology, University of California, San Diego, La Jolla, California 92093. United States
| |
Collapse
|
67
|
Wang C, Xiong C, Li Z, Hu L, Wei J, Tian J. Defect-engineered porphyrinic metal-organic framework nanoparticles for targeted multimodal cancer phototheranostics. Chem Commun (Camb) 2021; 57:4035-4038. [PMID: 33885676 DOI: 10.1039/d0cc07903k] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Defect-engineered porphyrinic MOF nanoparticles were fabricated with an in situ one-pot protocol using cypate as the co-ligand and modulator. This multifunctional nanoplatform integrated the photothermal and multimodal imaging properties of cypate with the photodynamic effects of porphyrins, thus achieving targeted multimodal cancer phototheranostics after folic acid modification.
Collapse
Affiliation(s)
- Chenyuan Wang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE), School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China.
| | - Chuxiao Xiong
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE), School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China.
| | - Zhike Li
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE), School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China.
| | - Liefeng Hu
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE), School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China.
| | - Jianshuang Wei
- Collaborative Innovation Center for Biomedical Engineering, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Jian Tian
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE), School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China.
| |
Collapse
|
68
|
Moore C, Borum RM, Mantri Y, Xu M, Fajtová P, O’Donoghue AJ, Jokerst JV. Activatable Carbocyanine Dimers for Photoacoustic and Fluorescent Detection of Protease Activity. ACS Sens 2021; 6:2356-2365. [PMID: 34038103 DOI: 10.1021/acssensors.1c00518] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Activatable contrast agents are of ongoing research interest because they offer low background and high specificity to the imaging target. Engineered sensitivity to protease activity is particularly desirable because proteases are critical biomarkers in cancer, infectious disease, inflammatory disorders, and so forth. Herein, we developed and characterized a set of peptide-linked cyanine conjugates for dual-modal detection of protease activity via photoacoustic (PA) and fluorescence imaging. The peptide-dye conjugates were designed to undergo contact quenching via intramolecular dimerization and contained n dyes (n = 2, 3, or 4) with n - 1 cleavable peptide substrates. The absorption peaks of the conjugates were blue-shifted 50 nm relative to the free dye and had quenched fluorescence. This effect was sensitive to solvent polarity and could be reversed by solvent switching from water to dimethyl sulfoxide. Employing trypsin as a model protease, we observed a 2.5-fold recovery of the peak absorbance, 330-4600-fold fluorescent enhancement, and picomolar detection limits following proteolysis. The dimer probe was further characterized for PA activation. Proteolysis released single dye-peptide fragments that produced a 5-fold PA enhancement through the increased absorption at 680 nm with nanomolar sensitivity to trypsin. The peptide substrate could also be tuned for protease selectivity; as a proof-of-concept, we detected the main protease (Mpro) associated with the viral replication in SARS-CoV-2 infection. Last, the activated probe was imaged subcutaneously in mice and signal was linearly correlated to the cleaved probe. Overall, these results demonstrate a tunable scaffold for the PA molecular imaging of protease activity with potential value in areas such as disease monitoring, tumor imaging, intraoperative imaging, in vitro diagnostics, and point-of-care sensing.
Collapse
Affiliation(s)
- Colman Moore
- Department of Nanoengineering, University of California, San Diego, La Jolla, California 92093, United States
| | - Raina M. Borum
- Department of Nanoengineering, University of California, San Diego, La Jolla, California 92093, United States
| | - Yash Mantri
- Department of Bioengineering, University of California, San Diego, La Jolla, California 92093, United States
| | - Ming Xu
- Department of Nanoengineering, University of California, San Diego, La Jolla, California 92093, United States
| | - Pavla Fajtová
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California 92093, United States
| | - Anthony J. O’Donoghue
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California 92093, United States
| | - Jesse V. Jokerst
- Department of Nanoengineering, University of California, San Diego, La Jolla, California 92093, United States
- Materials Science and Engineering Program, University of California, San Diego, La Jolla, California 92093, United States
- Department of Radiology, University of California, San Diego, La Jolla, California 92093, United States
| |
Collapse
|
69
|
Wu Y, Zeng F, Zhao Y, Wu S. Emerging contrast agents for multispectral optoacoustic imaging and their biomedical applications. Chem Soc Rev 2021; 50:7924-7940. [PMID: 34114588 DOI: 10.1039/d1cs00358e] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Optoacoustic imaging is a hybrid biomedical imaging modality which collects ultrasound waves generated via photoexciting contrast agents in tissues and produces images of high resolution and penetration depth. As a functional optoacoustic imaging technique, multispectral optoacoustic imaging, which can discriminate optoacoustic signals from different contrast agents by illuminating samples with multi-wavelength lasers and then processing the collected data with specific algorithms, assists in the identification of a specific contrast agent in target tissues and enables simultaneous molecular and physiological imaging. Moreover, multispectral optoacoustic imaging can also generate three-dimensional images for biological tissues/samples with high resolution and thus holds great potential in biomedical applications. Contrast agents play essential roles in optoacoustic imaging, and they have been widely explored and applied as probes and sensors in recent years, leading to the emergence of a variety of new contrast agents. In this review, we aim to summarize the latest advances in emerging contrast agents, especially the activatable ones which can respond to specific biological stimuli, as well as their preclinical and clinical applications. We highlight their design strategies, discuss the challenges and prospects in multispectral optoacoustic imaging, and outline the possibility of applying it in clinical translation and public health services using synthetic contrast agents.
Collapse
Affiliation(s)
- Yinglong Wu
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, College of Materials Science and Engineering, South China University of Technology, Wushan Road 381, Guangzhou, 510640, China.
| | | | | | | |
Collapse
|
70
|
Affiliation(s)
- Qinrui Fu
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry Fuzhou University Fuzhou China
| | - Xuan Zhang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry Fuzhou University Fuzhou China
| | - Jibin Song
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry Fuzhou University Fuzhou China
| | - Huanghao Yang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry Fuzhou University Fuzhou China
| |
Collapse
|
71
|
D'Alonzo RA, Gill S, Rowshanfarzad P, Keam S, MacKinnon KM, Cook AM, Ebert MA. In vivo noninvasive preclinical tumor hypoxia imaging methods: a review. Int J Radiat Biol 2021; 97:593-631. [PMID: 33703994 DOI: 10.1080/09553002.2021.1900943] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 01/28/2021] [Accepted: 03/01/2021] [Indexed: 12/15/2022]
Abstract
Tumors exhibit areas of decreased oxygenation due to malformed blood vessels. This low oxygen concentration decreases the effectiveness of radiation therapy, and the resulting poor perfusion can prevent drugs from reaching areas of the tumor. Tumor hypoxia is associated with poorer prognosis and disease progression, and is therefore of interest to preclinical researchers. Although there are multiple different ways to measure tumor hypoxia and related factors, there is no standard for quantifying spatial and temporal tumor hypoxia distributions in preclinical research or in the clinic. This review compares imaging methods utilized for the purpose of assessing spatio-temporal patterns of hypoxia in the preclinical setting. Imaging methods provide varying levels of spatial and temporal resolution regarding different aspects of hypoxia, and with varying advantages and disadvantages. The choice of modality requires consideration of the specific experimental model, the nature of the required characterization and the availability of complementary modalities as well as immunohistochemistry.
Collapse
Affiliation(s)
- Rebecca A D'Alonzo
- School of Physics, Mathematics and Computing, The University of Western Australia, Crawley, Australia
| | - Suki Gill
- School of Physics, Mathematics and Computing, The University of Western Australia, Crawley, Australia
- Department of Radiation Oncology, Sir Charles Gairdner Hospital, Nedlands, Australia
| | - Pejman Rowshanfarzad
- School of Physics, Mathematics and Computing, The University of Western Australia, Crawley, Australia
| | - Synat Keam
- School of Medicine, The University of Western Australia, Crawley, Australia
| | - Kelly M MacKinnon
- School of Physics, Mathematics and Computing, The University of Western Australia, Crawley, Australia
| | - Alistair M Cook
- School of Medicine, The University of Western Australia, Crawley, Australia
| | - Martin A Ebert
- School of Physics, Mathematics and Computing, The University of Western Australia, Crawley, Australia
- Department of Radiation Oncology, Sir Charles Gairdner Hospital, Nedlands, Australia
- 5D Clinics, Claremont, Australia
| |
Collapse
|
72
|
Zheng BD, Huang ZL, Lv LL, Lan WL, Hu JQ, Li X, Zheng BY, Ke MR, Huang JD. A pH-sensitive nanoagent self-assembled from a highly negatively-charged phthalocyanine with excellent biosafety for photothermal therapy. J Mater Chem B 2021; 9:2845-2853. [PMID: 33704321 DOI: 10.1039/d0tb02981e] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Photothermal therapy (PTT) is a promising strategy for cancer treatment. However, the development of highly efficient photothermal agents with excellent biosafety, particularly with low liver retention, is very meaningful for clinical applications, but it is also challenging. We herein prepared a pH-sensitive nanoagent (NanoPc3) by the self-assembly of a zinc(ii) phthalocyanine substituted with hexadeca-sulphonates linked by hydrazone bonds for photoacoustic imaging and PTT. Due to the highly negative surface potential (-30.80 mV in water), NanoPc3 could effectively escape the phagocytosis of the reticuloendothelial system and be rapidly cleared from normal tissues, leading to little accumulation in the liver and excellent biosafety. The highly negatively-charged NanoPc3 changed into nearly neutral nanoparticles (NanoPc3H) under slightly acidic conditions, resulting in enhanced cellular uptake and retention time in tumor tissues. Moreover, the tumor of H22 tumor-bearing mice treated with NanoPc3 almost disappeared, suggesting an outstanding photothermal antitumor effect. NanoPc3 also hardly showed skin phototoxicity under irradiation. Its excellent antitumor effect and biosafety make NanoPc3 highly promising in clinical applications. This work will provide a new strategy for the design of tumor-targeted photothermal nanoagents with high biosafety.
Collapse
Affiliation(s)
- Bing-De Zheng
- College of Chemistry, State Key Laboratory of Photocatalysis on Energy and Environment, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University, Fuzhou 350116, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
73
|
Rad AT, Bao Y, Jang HS, Xia Y, Sharma H, Dormidontova EE, Zhao J, Arora J, John VT, Tang BZ, Dainese T, Hariri A, Jokerst JV, Maran F, Nieh MP. Aggregation-Enhanced Photoluminescence and Photoacoustics of Atomically Precise Gold Nanoclusters in Lipid Nanodiscs (NANO 2). ADVANCED FUNCTIONAL MATERIALS 2021; 31:2009750. [PMID: 34366760 PMCID: PMC8341053 DOI: 10.1002/adfm.202009750] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Indexed: 05/25/2023]
Abstract
The authors designed a structurally stable nano-in-nano (NANO2) system highly capable of bioimaging via an aggregation-enhanced NIR excited emission and photoacoustic response achieved based on atomically precise gold nanoclusters protected by linear thiolated ligands [Au25(SC n H2n+1)18, n = 4-16] encapsulated in discoidal phospholipid bicelles through a one-pot synthesis. The detailed morphological characterization of NANO2 is conducted using cryogenic transmission electron microscopy, small/wide angle X-ray scattering with the support of molecular dynamics simulations, providing information on the location of Au nanoclusters in NANO2. The photoluminescence observed for NANO2 is 20-60 times more intense than that of the free Au nanoclusters, with both excitation and emission wavelengths in the near-infrared range, and the photoacoustic signal is more than tripled. The authors attribute this newly discovered aggregation-enhanced photoluminescence and photoacoustic signals to the restriction of intramolecular motion of the clusters' ligands. With the advantages of biocompatibility and high cellular uptake, NANO2 is potentially applicable for both in vitro and in vivo imaging, as the authors demonstrate with NIR excited emission from in vitro A549 human lung and the KB human cervical cancer cells.
Collapse
Affiliation(s)
- Armin Tahmasbi Rad
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269, USA; Polymer Program, Institute of Materials Science, University of Connecticut, Storrs, CT 06269, USA
| | - Yue Bao
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269, USA
| | - Hyun-Sook Jang
- Polymer Program, Institute of Materials Science, University of Connecticut, Storrs, CT 06269, USA; Center for Soft and Living Matter, Institute for Basic Science (IBS), Ulsan 44919, Republic of Korea
| | - Yan Xia
- Department of Chemical and Biomolecular Engineering, University of Connecticut, Storrs, CT 06269, USA
| | - Hari Sharma
- Department of Physics, University of Connecticut, Storrs, CT 06269, USA
| | - Elena E Dormidontova
- Polymer Program, Institute of Materials Science, University of Connecticut, Storrs, CT 06269, USA; Department of Physics, University of Connecticut, Storrs, CT 06269, USA
| | - Jing Zhao
- Department of Chemistry, University of Connecticut, Storrs, CT 06269, USA
| | - Jaspreet Arora
- Department of Chemical and Biomolecular Engineering, Tulane University, New Orleans, LA 70118, USA
| | - Vijay T John
- Department of Chemical and Biomolecular Engineering, Tulane University, New Orleans, LA 70118, USA
| | - Ben Zhong Tang
- Department of Chemistry, the Hong Kong University of Science and Technology, Hong Kong, P. R. China
| | - Tiziano Dainese
- Department of Chemistry, University of Padova, Padova 35131, Italy
| | - Ali Hariri
- Department of NanoEngineering, University of California San Diego, La Jolla, CA 92093, USA
| | - Jesse V Jokerst
- Department of NanoEngineering, University of California San Diego, La Jolla, CA 92093, USA
| | - Flavio Maran
- Department of Chemistry, University of Connecticut, Storrs, CT 06269, USA, Department of Chemistry, University of Padova, Padova 35131, Italy
| | - Mu-Ping Nieh
- Department of Biomedical Engineering, University of Connecticut Storrs, CT 06269, USA; Polymer Program, Institute of Materials Science, University of Connecticut, Storrs, CT 06269, USA; Department of Chemical and Biomolecular Engineering, University of Connecticut, Storrs, CT 06269, USA
| |
Collapse
|
74
|
Xiao S, Lin Y, Tang Y, Lv Z, Chen L. Real-Time Quantification of Cartilage Degeneration by GAG-Targeted Cationic Nanoparticles for Efficient Therapeutic Monitoring in Living Mice. Mol Pharm 2021; 18:1444-1454. [PMID: 33538605 DOI: 10.1021/acs.molpharmaceut.0c01254] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
One of the characterizations of degenerative cartilage disease is the progressive loss of glycosaminoglycans (GAGs). The real-time imaging method to quantify GAGs is of great significance for the biochemical analysis of cartilage and diagnosis and therapeutic monitoring of cartilage degeneration in vivo. To this end, a cationic photoacoustic (PA) contrast agent, poly-l-lysine melanin nanoparticles (PLL-MNPs), specifically targeting anionic GAGs was developed in this study to investigate whether it can image cartilage degeneration. PLL-MNP assessed GAG depletion by Chondroitinase ABC in vitro rat cartilage and intact ex vivo mouse knee joint. A papain-induced cartilage degenerative mice model was used for in vivo photoacoustic imaging (PAI). Oral cartilage supplement glucosamine sulfate was intragastrically administered for mice cartilage repair and the therapeutic efficacy was monitored by PLL-MNP-enhanced PAI. Histologic findings were used to further confirm PAI results. In vitro results revealed that the PLL-MNPs not only had a high binding ability with GAGs but also sensitively monitored GAG content changes by PAI. The PA signal was gradually weakened along with the depletion of GAGs in cartilage. Particularly, PLL-MNPs depicted the cartilage structure and the distribution of GAGs was demonstrated in PA images in ex vivo joints. Compared with the normal joint, a lower signal intensity was detected from degenerative joint at 3 weeks after papain injection, suggesting an early diagnosis of cartilage lesion by PLL-MNPs. Importantly, this PA-enhanced nanoprobe was suitable for monitoring in vivo efficacy of glucosamine sulfate, which effectively blocked cartilage degradation in a high dose manner. In vivo imaging findings correlated well with histological examinations. PLL-MNPs provided sensitive visualization of cartilage degeneration and promising monitoring of therapeutic response in living subjects.
Collapse
Affiliation(s)
- Shuyi Xiao
- Department of Orthopedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, P. R. China.,Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's, Wenzhou 325027, P. R. China
| | - Yimu Lin
- Department of Orthopedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, P. R. China
| | - Yufu Tang
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech), Nanjing 211816, P. R. China
| | - Zhuang Lv
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong 999077, P. R. China
| | - Liang Chen
- Department of Orthopedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, P. R. China
| |
Collapse
|
75
|
Zhen X, Pu K, Jiang X. Photoacoustic Imaging and Photothermal Therapy of Semiconducting Polymer Nanoparticles: Signal Amplification and Second Near-Infrared Construction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2004723. [PMID: 33448155 DOI: 10.1002/smll.202004723] [Citation(s) in RCA: 142] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 09/20/2020] [Indexed: 06/12/2023]
Abstract
Photoacoustic (PA) imaging and photothermal therapy (PTT) have attracted extensive attention in disease diagnosis and treatment. Although many exogenous contrast agents have been developed for PA imaging and PTT, the design guidelines to amplify their imaging and therapy performances remain challenging and are highly demanded. Semiconducting polymer nanoparticles (SPNs) composed of polymers with π-electron delocalized backbones can be designed to amplify their PA imaging and PTT performance, because of their clear structure-property relation and versatility in modifying their molecular structures to tune their photophysical properties. This review summarizes the recent advances in the photoacoustic imaging and photothermal therapy applications of semiconducting polymer nanoparticles with a focus on signal amplification and second near-infrared (NIR-II, 1000-1700 nm) construction. The strategies such as structure-property screening, fluorescence quenching, accelerated heat dissipation, and size-dependent heat dissipation are first discussed to amplify the PA brightness of SPNs for in vivo PA. The molecular approaches to shifting the absorption of SPNs for NIR-II PA imaging and PTT are then introduced so as to improve the tissue penetration depth for diagnosis and therapy. At last, current challenges and perspectives of SPNs in the field of imaging and therapy are discussed.
Collapse
Affiliation(s)
- Xu Zhen
- MOE Key Laboratory of High Performance Polymer Materials and Technology and Department of Polymer Science and Engineering, College of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, P. R. China
| | - Kanyi Pu
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, Singapore, 637457, Singapore
| | - Xiqun Jiang
- MOE Key Laboratory of High Performance Polymer Materials and Technology and Department of Polymer Science and Engineering, College of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, P. R. China
| |
Collapse
|
76
|
Yang G, Ni JS, Li Y, Zha M, Tu Y, Li K. Acceptor Engineering for Optimized ROS Generation Facilitates Reprogramming Macrophages to M1 Phenotype in Photodynamic Immunotherapy. Angew Chem Int Ed Engl 2021; 60:5386-5393. [PMID: 33236483 DOI: 10.1002/anie.202013228] [Citation(s) in RCA: 100] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/01/2020] [Indexed: 12/17/2022]
Abstract
Reprogramming tumor-associated macrophages to an antitumor M1 phenotype by photodynamic therapy is a promising strategy to overcome the immunosuppression of tumor microenvironment for boosted immunotherapy. However, it remains unclear how the reactive oxygen species (ROS) generated from type I and II mechanisms, relate to the macrophage polarization efficacy. Herein, we design and synthesize three donor-acceptor structured photosensitizers with varied ROS-generating efficiencies. Surprisingly, we discovered that the extracellular ROS generated from type I mechanism are mainly responsible for reprogramming the macrophages from a pro-tumor type (M2) to an anti-tumor state (M1). In vivo experiments prove that the photosensitizer can trigger photodynamic immunotherapy for effective suppression of the tumor growth, while the therapeutic outcome is abolished with depleted macrophages. Overall, our strategy highlights the designing guideline of macrophage-activatable photosensitizers.
Collapse
Affiliation(s)
- Guang Yang
- Department of Biomedical Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China
| | - Jen-Shyang Ni
- Department of Biomedical Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China
| | - Yaxi Li
- Department of Biomedical Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China
| | - Menglei Zha
- Department of Biomedical Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China
| | - Yao Tu
- Department of Biomedical Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China
| | - Kai Li
- Department of Biomedical Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China
| |
Collapse
|
77
|
Yang G, Ni J, Li Y, Zha M, Tu Y, Li K. Acceptor Engineering for Optimized ROS Generation Facilitates Reprogramming Macrophages to M1 Phenotype in Photodynamic Immunotherapy. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202013228] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Guang Yang
- Department of Biomedical Engineering Southern University of Science and Technology (SUSTech) Shenzhen 518055 China
| | - Jen‐Shyang Ni
- Department of Biomedical Engineering Southern University of Science and Technology (SUSTech) Shenzhen 518055 China
| | - Yaxi Li
- Department of Biomedical Engineering Southern University of Science and Technology (SUSTech) Shenzhen 518055 China
| | - Menglei Zha
- Department of Biomedical Engineering Southern University of Science and Technology (SUSTech) Shenzhen 518055 China
| | - Yao Tu
- Department of Biomedical Engineering Southern University of Science and Technology (SUSTech) Shenzhen 518055 China
| | - Kai Li
- Department of Biomedical Engineering Southern University of Science and Technology (SUSTech) Shenzhen 518055 China
| |
Collapse
|
78
|
Teng CW, Huang V, Arguelles GR, Zhou C, Cho SS, Harmsen S, Lee JYK. Applications of indocyanine green in brain tumor surgery: review of clinical evidence and emerging technologies. Neurosurg Focus 2021; 50:E4. [PMID: 33386005 DOI: 10.3171/2020.10.focus20782] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 10/23/2020] [Indexed: 11/06/2022]
Abstract
Indocyanine green (ICG) is a water-soluble dye that was approved by the FDA for biomedical purposes in 1956. Initially used to measure cardiocirculatory and hepatic functions, ICG's fluorescent properties in the near-infrared (NIR) spectrum soon led to its application in ophthalmic angiography. In the early 2000s, ICG was formally introduced in neurosurgery as an angiographic tool. In 2016, the authors' group pioneered a novel technique with ICG named second-window ICG (SWIG), which involves infusion of a high dose of ICG (5.0 mg/kg) in patients 24 hours prior to surgery. To date, applications of SWIG have been reported in patients with high-grade gliomas, meningiomas, brain metastases, pituitary adenomas, craniopharyngiomas, chordomas, and pinealomas.The applications of ICG have clearly expanded rapidly across different specialties since its initial development. As an NIR fluorophore, ICG has advantages over other FDA-approved fluorophores, all of which are currently in the visible-light spectrum, because of NIR fluorescence's increased tissue penetration and decreased autofluorescence. Recently, interest in the latest applications of ICG in brain tumor surgery has grown beyond its role as an NIR fluorophore, extending into shortwave infrared imaging and integration into nanotechnology. This review aims to summarize reported clinical studies on ICG fluorescence-guided surgery of intracranial tumors, as well as to provide an overview of the literature on emerging technologies related to the utility of ICG in neuro-oncological surgeries, including the following aspects: 1) ICG fluorescence in the NIR-II window; 2) ICG for photoacoustic imaging; and 3) ICG nanoparticles for combined diagnostic imaging and therapy (theranostic) applications.
Collapse
Affiliation(s)
- Clare W Teng
- 1Department of Neurosurgery, Hospital of the University of Pennsylvania, Philadelphia; and.,2Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Vincent Huang
- 1Department of Neurosurgery, Hospital of the University of Pennsylvania, Philadelphia; and.,2Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Gabriel R Arguelles
- 1Department of Neurosurgery, Hospital of the University of Pennsylvania, Philadelphia; and.,2Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Cecilia Zhou
- 1Department of Neurosurgery, Hospital of the University of Pennsylvania, Philadelphia; and.,2Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Steve S Cho
- 1Department of Neurosurgery, Hospital of the University of Pennsylvania, Philadelphia; and
| | - Stefan Harmsen
- 1Department of Neurosurgery, Hospital of the University of Pennsylvania, Philadelphia; and
| | - John Y K Lee
- 1Department of Neurosurgery, Hospital of the University of Pennsylvania, Philadelphia; and
| |
Collapse
|
79
|
Mercuri M, Fernandez Rivas D. Challenges and opportunities for small volumes delivery into the skin. BIOMICROFLUIDICS 2021; 15:011301. [PMID: 33532017 PMCID: PMC7826167 DOI: 10.1063/5.0030163] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Accepted: 01/09/2021] [Indexed: 05/04/2023]
Abstract
Each individual's skin has its own features, such as strength, elasticity, or permeability to drugs, which limits the effectiveness of one-size-fits-all approaches typically found in medical treatments. Therefore, understanding the transport mechanisms of substances across the skin is instrumental for the development of novel minimal invasive transdermal therapies. However, the large difference between transport timescales and length scales of disparate molecules needed for medical therapies makes it difficult to address fundamental questions. Thus, this lack of fundamental knowledge has limited the efficacy of bioengineering equipment and medical treatments. In this article, we provide an overview of the most important microfluidics-related transport phenomena through the skin and versatile tools to study them. Moreover, we provide a summary of challenges and opportunities faced by advanced transdermal delivery methods, such as needle-free jet injectors, microneedles, and tattooing, which could pave the way to the implementation of better therapies and new methods.
Collapse
Affiliation(s)
- Magalí Mercuri
- Instituto de Nanociencia y Nanotecnología (CNEA-CONICET), Av. Gral. Paz 1499, 1650 San Martín, Buenos Aires, Argentina
| | - David Fernandez Rivas
- Mesoscale Chemical Systems Group, MESA+ Institute, TechMed Centre and Faculty of Science and Technology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| |
Collapse
|
80
|
De Marchi S, Núñez-Sánchez S, Bodelón G, Pérez-Juste J, Pastoriza-Santos I. Pd nanoparticles as a plasmonic material: synthesis, optical properties and applications. NANOSCALE 2020; 12:23424-23443. [PMID: 33231597 DOI: 10.1039/d0nr06270g] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
This review provides an overview of current progress in Pd nanoparticles supporting localized surface plasmon resonance and their applications. We begin by analyzing briefly the optical properties of Pd putting particular focus on outlining the origin of its size- and shape-dependent LSPR, high refractive index sensitivity, and high absorption contribution. The differences in the optical behavior with Au and Ag, the primary plasmonic materials, are highlighted. The main strategies to synthesize Pd nanoparticles, pure or hybrid, with well-defined optical properties are then reviewed. In this section, we include only those works that carry out the study of the optical properties of the nanoparticles. The applications of plasmonic Pd nanoparticles are also discussed in detail. This review is concluded with a section devoted to the future perspectives highlighting the most relevant challenges to be addressed to take Pd nanoparticles from the laboratory to real applications.
Collapse
Affiliation(s)
- Sarah De Marchi
- CINBIO, Universidade de Vigo, Departamento de Química Física, Campus Universitario As Lagoas, Marcosende, 36310 Vigo, Spain.
| | | | | | | | | |
Collapse
|
81
|
Kalashnikova I, Chung SJ, Nafiujjaman M, Hill ML, Siziba ME, Contag CH, Kim T. Ceria-based nanotheranostic agent for rheumatoid arthritis. Theranostics 2020; 10:11863-11880. [PMID: 33204316 PMCID: PMC7667692 DOI: 10.7150/thno.49069] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 10/10/2020] [Indexed: 12/13/2022] Open
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease that affects 1-2% of the human population worldwide, and effective therapies with targeted delivery for local immune suppression have not been described. We address this problem by developing a novel theranostic nanoparticle for RA and assessed its therapeutic and targeting effects under image-guidance. Methods: Albumin-cerium oxide nanoparticles were synthesized by the biomineralization process and further conjugated with near-infrared, indocyanine green (ICG) dye. Enzymatic-like properties and reactive oxygen species (ROS) scavenging activities, as well as the ability to reprogram macrophages, were determined on a monocyte cell line in culture. The therapeutic effect and systemic targeting potential were evaluated in collagen-induced arthritis (CIA) mouse model using optical/optoacoustic tomographic imaging. Results: Small nanotheranostics with narrow size distribution and high colloidal stability were fabricated and displayed high ROS scavenging and enzymatic-like activity, as well as advanced efficacy in a converting pro-inflammatory macrophage phenotype into anti-inflammatory phenotype. When administrated into affected animals, these nanoparticles accumulated in inflamed joints and revealed a therapeutic effect similar to the gold-standard therapy for RA, methotrexate. Conclusions: The inflammation-targeting, inherent contrast and therapeutic activity of this new albumin-cerium oxide nanoparticle may make it a relevant agent for assessing severity in RA, and other inflammatory diseases, and controlling inflammation with image-guidance. The design of these nanotheranostics will enable potential clinical translation as systemic therapy for RA.
Collapse
MESH Headings
- Animals
- Antirheumatic Agents/administration & dosage
- Antirheumatic Agents/chemistry
- Antirheumatic Agents/pharmacokinetics
- Arthritis, Experimental/diagnosis
- Arthritis, Experimental/drug therapy
- Arthritis, Experimental/immunology
- Arthritis, Experimental/pathology
- Arthritis, Rheumatoid/diagnosis
- Arthritis, Rheumatoid/drug therapy
- Arthritis, Rheumatoid/immunology
- Arthritis, Rheumatoid/pathology
- Cerium/administration & dosage
- Cerium/chemistry
- Cerium/pharmacokinetics
- Collagen/administration & dosage
- Collagen/immunology
- Coloring Agents/administration & dosage
- Coloring Agents/chemistry
- Drug Compounding/methods
- Drug Monitoring/methods
- Freund's Adjuvant/administration & dosage
- Freund's Adjuvant/immunology
- Half-Life
- Humans
- Indocyanine Green/administration & dosage
- Indocyanine Green/chemistry
- Injections, Intra-Articular
- Joints/diagnostic imaging
- Joints/drug effects
- Joints/immunology
- Joints/pathology
- Mice
- Nanoparticles/administration & dosage
- Nanoparticles/chemistry
- Photoacoustic Techniques/methods
- RAW 264.7 Cells
- Serum Albumin, Bovine/chemistry
- Severity of Illness Index
- THP-1 Cells
- Theranostic Nanomedicine/methods
- Tomography/methods
Collapse
Affiliation(s)
- Irina Kalashnikova
- Department of Biomedical Engineering and the Institute for Quantitative Health Science & Engineering
| | - Seock-Jin Chung
- Department of Biomedical Engineering and the Institute for Quantitative Health Science & Engineering
| | - Md Nafiujjaman
- Department of Biomedical Engineering and the Institute for Quantitative Health Science & Engineering
| | - Meghan L. Hill
- Department of Biomedical Engineering and the Institute for Quantitative Health Science & Engineering
| | - Mzingaye E. Siziba
- Department of Biomedical Engineering and the Institute for Quantitative Health Science & Engineering
| | - Christopher H. Contag
- Department of Biomedical Engineering and the Institute for Quantitative Health Science & Engineering
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824, USA
| | - Taeho Kim
- Department of Biomedical Engineering and the Institute for Quantitative Health Science & Engineering
| |
Collapse
|
82
|
Photoacoustic Imaging as a Tool for Assessing Hair Follicular Organization. SENSORS 2020; 20:s20205848. [PMID: 33081093 PMCID: PMC7602872 DOI: 10.3390/s20205848] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/11/2020] [Accepted: 10/11/2020] [Indexed: 01/13/2023]
Abstract
Follicular unit extraction (FUE) and follicular unit transplantation (FUT) account for 99% of hair transplant procedures. In both cases, it is important for clinicians to characterize follicle density for treatment planning and evaluation. The existing gold-standard is photographic examination. However, this approach is insensitive to subdermal hair and cannot identify follicle orientation. Here, we introduce a fast and non-invasive imaging technique to measure follicle density and angles across regions of varying density. We first showed that hair is a significant source of photoacoustic signal. We then selected regions of low, medium, and high follicle density and showed that photoacoustic imaging can measure the density of follicles even when they are not visible by eye. We performed handheld imaging by sweeping the transducer across the imaging area to generate 3D images via maximum intensity projection. Background signal from the dermis was removed using a skin tracing method. Measurement of follicle density using photoacoustic imaging was highly correlated with photographic determination (R2 = 0.96). Finally, we measured subdermal follicular angles-a key parameter influencing transection rates in FUE.
Collapse
|
83
|
Ye F, Huang W, Li C, Li G, Yang W, Liu SH, Yin J, Sun Y, Yang G. Near‐Infrared Fluorescence/Photoacoustic Agent with an Intensifying Optical Performance for Imaging‐Guided Effective Photothermal Therapy. ADVANCED THERAPEUTICS 2020. [DOI: 10.1002/adtp.202000170] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Fengying Ye
- Key Laboratory of Pesticide and Chemical Biology (Ministry of Education); Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis; International Joint Research Center for Intelligent Biosensing Technology and Health; College of Chemistry Central China Normal University Wuhan 430079 P. R. China
| | - Weijing Huang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences Wuhan University Wuhan 430072 P. R. China
| | - Chonglu Li
- Key Laboratory of Pesticide and Chemical Biology (Ministry of Education); Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis; International Joint Research Center for Intelligent Biosensing Technology and Health; College of Chemistry Central China Normal University Wuhan 430079 P. R. China
| | - Guangjin Li
- Key Laboratory of Pesticide and Chemical Biology (Ministry of Education); Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis; International Joint Research Center for Intelligent Biosensing Technology and Health; College of Chemistry Central China Normal University Wuhan 430079 P. R. China
| | - Wen‐Chao Yang
- Key Laboratory of Pesticide and Chemical Biology (Ministry of Education); Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis; International Joint Research Center for Intelligent Biosensing Technology and Health; College of Chemistry Central China Normal University Wuhan 430079 P. R. China
| | - Sheng Hua Liu
- Key Laboratory of Pesticide and Chemical Biology (Ministry of Education); Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis; International Joint Research Center for Intelligent Biosensing Technology and Health; College of Chemistry Central China Normal University Wuhan 430079 P. R. China
| | - Jun Yin
- Key Laboratory of Pesticide and Chemical Biology (Ministry of Education); Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis; International Joint Research Center for Intelligent Biosensing Technology and Health; College of Chemistry Central China Normal University Wuhan 430079 P. R. China
| | - Yao Sun
- Key Laboratory of Pesticide and Chemical Biology (Ministry of Education); Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis; International Joint Research Center for Intelligent Biosensing Technology and Health; College of Chemistry Central China Normal University Wuhan 430079 P. R. China
| | - Guang‐Fu Yang
- Key Laboratory of Pesticide and Chemical Biology (Ministry of Education); Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis; International Joint Research Center for Intelligent Biosensing Technology and Health; College of Chemistry Central China Normal University Wuhan 430079 P. R. China
| |
Collapse
|
84
|
Feasibility Study of Precise Balloon Catheter Tracking and Visualization with Fast Photoacoustic Microscopy. SENSORS 2020; 20:s20195585. [PMID: 33003536 PMCID: PMC7582572 DOI: 10.3390/s20195585] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 09/20/2020] [Accepted: 09/28/2020] [Indexed: 12/14/2022]
Abstract
Correct guiding of the catheter is a critical issue in almost all balloon catheter applications, including arterial stenosis expansion, coronary arterial diseases, and gastrointestinal tracking. To achieve safe and precise guiding of the balloon catheter, a novel imaging method with high-resolution, sufficient depth of penetration, and real-time display is required. Here, we present a new balloon catheter guiding method using fast photoacoustic microscopy (PAM) technique for precise balloon catheter tracking and visualization as a feasibility study. We implemented ex vivo and in vivo experiments with three different medium conditions of balloon catheter: no air, air, and water. Acquired cross-sectional, maximum amplitude projection (MAP), and volumetric 3D PAM images demonstrated its capability as a new imaging guiding tool for balloon catheter tracking and visualization.
Collapse
|
85
|
Wang X, Cheng L. Multifunctional Prussian blue-based nanomaterials: Preparation, modification, and theranostic applications. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2020.213393] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
86
|
Lediju Bell MA. Photoacoustic imaging for surgical guidance: Principles, applications, and outlook. JOURNAL OF APPLIED PHYSICS 2020; 128:060904. [PMID: 32817994 PMCID: PMC7428347 DOI: 10.1063/5.0018190] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 07/30/2020] [Indexed: 05/08/2023]
Abstract
Minimally invasive surgeries often require complicated maneuvers and delicate hand-eye coordination and ideally would incorporate "x-ray vision" to see beyond tool tips and underneath tissues prior to making incisions. Photoacoustic imaging has the potential to offer this feature but not with ionizing x-rays. Instead, optical fibers and acoustic receivers enable photoacoustic sensing of major structures-such as blood vessels and nerves-that are otherwise hidden from view. This imaging process is initiated by transmitting laser pulses that illuminate regions of interest, causing thermal expansion and the generation of sound waves that are detectable with conventional ultrasound transducers. The recorded signals are then converted to images through the beamforming process. Photoacoustic imaging may be implemented to both target and avoid blood-rich surgical contents (and in some cases simultaneously or independently visualize optical fiber tips or metallic surgical tool tips) in order to prevent accidental injury and assist device operators during minimally invasive surgeries and interventional procedures. Novel light delivery systems, counterintuitive findings, and robotic integration methods introduced by the Photoacoustic & Ultrasonic Systems Engineering Lab are summarized in this invited Perspective, setting the foundation and rationale for the subsequent discussion of the author's views on possible future directions for this exciting frontier known as photoacoustic-guided surgery.
Collapse
Affiliation(s)
- Muyinatu A. Lediju Bell
- Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, Maryland 21218, USA
| |
Collapse
|
87
|
Teber D, Engels C, Maier-Hein L, Ayala L, Onogur S, Seitel A, März K. [Surgery 4.0-are we ready?]. Urologe A 2020; 59:1035-1043. [PMID: 32710195 DOI: 10.1007/s00120-020-01272-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The increasing networking of data systems in medicine is not only leading to modern interdisciplinarity in the sense of cooperation between different medical departments, but also poses new challenges regarding the building and room infrastructure. The surgical operating room of the future expands or augments its reality, away from the pure building characteristics, towards an intelligent and communicative space platform. The building infrastructure (operating theatre) serves as sensor and actuator. Thus, it is possible to inform about missing diagnostics as well as to register them directly in the contextualization of the planned surgical intervention or to integrate them into the processes. Integrated operating theatres represent a comprehensive computer platform based on a corresponding system architecture with software-based protocols. An underlying modular system consisting of various modules for image acquisition and analysis, interaction and visualization supports the integration and merging of heterogeneous data that are generated in a hospital operation. Integral building data (e.g., air conditioning, lighting control, device registration) are merged with patient-related data (age, type of illness, concomitant diseases, existing diagnostic CT and MRI images). New systems coming onto the market, as well as already existing systems will have to be measured by the extent to which they will be able to guarantee this integration of information-similar to the development from mobile phone to smartphone. Cost reduction should not be the only legitimizing argument for the market launch, but the vision of a new quality of surgical perception and action.
Collapse
Affiliation(s)
- D Teber
- Urologische Klinik, Städtisches Klinikum Karlsruhe, Moltkestr. 90, 76133, Karlsruhe, Deutschland.
| | - C Engels
- Urologische Klinik, Städtisches Klinikum Karlsruhe, Moltkestr. 90, 76133, Karlsruhe, Deutschland
| | - L Maier-Hein
- Abteilung Computer-assistierte Medizinische Interventionen (CAMI), Deutsches Krebsforschungszentrum, Heidelberg, Deutschland
| | - L Ayala
- Abteilung Computer-assistierte Medizinische Interventionen (CAMI), Deutsches Krebsforschungszentrum, Heidelberg, Deutschland
| | - S Onogur
- Abteilung Computer-assistierte Medizinische Interventionen (CAMI), Deutsches Krebsforschungszentrum, Heidelberg, Deutschland
| | - A Seitel
- Abteilung Computer-assistierte Medizinische Interventionen (CAMI), Deutsches Krebsforschungszentrum, Heidelberg, Deutschland
| | - K März
- Abteilung Computer-assistierte Medizinische Interventionen (CAMI), Deutsches Krebsforschungszentrum, Heidelberg, Deutschland
| |
Collapse
|
88
|
Kuriakose M, Nguyen CD, Kuniyil Ajith Singh M, Mallidi S. Optimizing Irradiation Geometry in LED-Based Photoacoustic Imaging with 3D Printed Flexible and Modular Light Delivery System. SENSORS 2020; 20:s20133789. [PMID: 32640683 PMCID: PMC7374354 DOI: 10.3390/s20133789] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 06/29/2020] [Accepted: 06/29/2020] [Indexed: 01/04/2023]
Abstract
Photoacoustic (PA) imaging–a technique combining the ability of optical imaging to probe functional properties of the tissue and deep structural imaging ability of ultrasound–has gained significant popularity in the past two decades for its utility in several biomedical applications. More recently, light-emitting diodes (LED) are being explored as an alternative to bulky and expensive laser systems used in PA imaging for their portability and low-cost. Due to the large beam divergence of LEDs compared to traditional laser beams, it is imperative to quantify the angular dependence of LED-based illumination and optimize its performance for imaging superficial or deep-seated lesions. A custom-built modular 3-D printed hinge system and tissue-mimicking phantoms with various absorption and scattering properties were used in this study to quantify the angular dependence of LED-based illumination. We also experimentally calculated the source divergence of the pulsed-LED arrays to be 58° ± 8°. Our results from point sources (pencil lead phantom) in non-scattering medium obey the cotangential relationship between the angle of irradiation and maximum PA intensity obtained at various imaging depths, as expected. Strong dependence on the angle of illumination at superficial depths (−5°/mm at 10 mm) was observed that becomes weaker at intermediate depths (−2.5°/mm at 20 mm) and negligible at deeper locations (−1.1°/mm at 30 mm). The results from the tissue-mimicking phantom in scattering media indicate that angles between 30–75° could be used for imaging lesions at various depths (12 mm–28 mm) where lower LED illumination angles (closer to being parallel to the imaging plane) are preferable for deep tissue imaging and superficial lesion imaging is possible with higher LED illumination angles (closer to being perpendicular to the imaging plane). Our results can serve as a priori knowledge for the future LED-based PA system designs employed for both preclinical and clinical applications.
Collapse
Affiliation(s)
- Maju Kuriakose
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA; (M.K.); (C.D.N.)
| | - Christopher D. Nguyen
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA; (M.K.); (C.D.N.)
| | | | - Srivalleesha Mallidi
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA; (M.K.); (C.D.N.)
- Correspondence:
| |
Collapse
|
89
|
Sun T, Dasgupta A, Zhao Z, Nurunnabi M, Mitragotri S. Physical triggering strategies for drug delivery. Adv Drug Deliv Rev 2020; 158:36-62. [PMID: 32589905 DOI: 10.1016/j.addr.2020.06.010] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 06/06/2020] [Accepted: 06/10/2020] [Indexed: 12/14/2022]
Abstract
Physically triggered systems hold promise for improving drug delivery by enhancing the controllability of drug accumulation and release, lowering non-specific toxicity, and facilitating clinical translation. Several external physical stimuli including ultrasound, light, electric fields and magnetic fields have been used to control drug delivery and they share some common features such as spatial targeting, spatiotemporal control, and minimal invasiveness. At the same time, they possess several distinctive features in terms of interactions with biological entities and/or the extent of stimulus response. Here, we review the key advances of such systems with a focus on discussing their physical mechanisms, the design rationales, and translational challenges.
Collapse
Affiliation(s)
- Tao Sun
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA; Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Anshuman Dasgupta
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, RWTH Aachen University, Aachen, Germany
| | - Zongmin Zhao
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Md Nurunnabi
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Texas at El Paso, TX 79902, USA
| | - Samir Mitragotri
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA.
| |
Collapse
|
90
|
Mishra K, Stankevych M, Fuenzalida-Werner JP, Grassmann S, Gujrati V, Huang Y, Klemm U, Buchholz VR, Ntziachristos V, Stiel AC. Multiplexed whole-animal imaging with reversibly switchable optoacoustic proteins. SCIENCE ADVANCES 2020; 6:eaaz6293. [PMID: 32582850 PMCID: PMC7292636 DOI: 10.1126/sciadv.aaz6293] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 05/01/2020] [Indexed: 05/04/2023]
Abstract
We introduce two photochromic proteins for cell-specific in vivo optoacoustic (OA) imaging with signal unmixing in the temporal domain. We show highly sensitive, multiplexed visualization of T lymphocytes, bacteria, and tumors in the mouse body and brain. We developed machine learning-based software for commercial imaging systems for temporal unmixed OA imaging, enabling its routine use in life sciences.
Collapse
Affiliation(s)
- Kanuj Mishra
- Institute of Biological and Medical Imaging (IBMI), Helmholtz Zentrum München, Neuherberg, Germany
| | - Mariia Stankevych
- Institute of Biological and Medical Imaging (IBMI), Helmholtz Zentrum München, Neuherberg, Germany
| | | | - Simon Grassmann
- Institute for Medical Microbiology, Immunology and Hygiene, Technische Universität München (TUM), Munich, Germany
| | - Vipul Gujrati
- Institute of Biological and Medical Imaging (IBMI), Helmholtz Zentrum München, Neuherberg, Germany
- Chair of Biological Imaging and Center for Translational Cancer Research (TranslaTUM), Technische Universität München (TUM), Munich, Germany
| | - Yuanhui Huang
- Institute of Biological and Medical Imaging (IBMI), Helmholtz Zentrum München, Neuherberg, Germany
- Chair of Biological Imaging and Center for Translational Cancer Research (TranslaTUM), Technische Universität München (TUM), Munich, Germany
| | - Uwe Klemm
- Institute of Biological and Medical Imaging (IBMI), Helmholtz Zentrum München, Neuherberg, Germany
| | - Veit R. Buchholz
- Institute for Medical Microbiology, Immunology and Hygiene, Technische Universität München (TUM), Munich, Germany
| | - Vasilis Ntziachristos
- Institute of Biological and Medical Imaging (IBMI), Helmholtz Zentrum München, Neuherberg, Germany
- Chair of Biological Imaging and Center for Translational Cancer Research (TranslaTUM), Technische Universität München (TUM), Munich, Germany
| | - Andre C. Stiel
- Institute of Biological and Medical Imaging (IBMI), Helmholtz Zentrum München, Neuherberg, Germany
- Corresponding author.
| |
Collapse
|
91
|
Liu D, Zhou Z, Wang X, Deng H, Sun L, Lin H, Kang F, Zhang Y, Wang Z, Yang W, Rao L, Yang K, Yu G, Du J, Shen Z, Chen X. Yolk-shell nanovesicles endow glutathione-responsive concurrent drug release and T 1 MRI activation for cancer theranostics. Biomaterials 2020; 244:119979. [PMID: 32200104 PMCID: PMC7138217 DOI: 10.1016/j.biomaterials.2020.119979] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 03/15/2020] [Indexed: 01/04/2023]
Abstract
The effort of incorporating therapeutic drugs with imaging agents has been one of the mainstreams of nanomedicine, which holds great promise in cancer treatment in terms of monitoring therapeutic drug activity and evaluating prognostic index. However, it is still technically challenging to develop nanomedicine endowing a spatiotemporally controllable mechanism of drug release and activatable imaging capability. Here, we developed a yolk-shell type of GSH-responsive nanovesicles (NVs) in which therapeutic drug (Doxorubicin, DOX) and magnetic resonance imaging (MRI) contrast agent (ultrasmall paramagnetic iron oxide nanoparticles, USPIO NPs) formed complexes (denoted as USD) and were encapsulated inside the NVs. The formation of USD complexes is mediated by both the electrostatic adsorption between DOX and poly(acrylic acid) (PAA) polymers and the DOX-iron coordination effect on USPIO NPs. The obtained USD NVs showed a unique yolk-shell structure with restrained drug activity and quenched T1 MRI contrast ability which, on the other hand, can respond to glutathione (GSH) and lead to drug release and T1 contrast activation in a spatiotemporally concurrent manner. Furthermore, the USD NVs exhibited great potential to kill HCT116 cancer cells in vitro and effectively inhibit the tumor growth in vivo. This study may shed light on the design of sophisticated nanotheranostics in precision nanomedicine.
Collapse
Affiliation(s)
- Dahai Liu
- Lymph and Vascular Surgery Department, China-Japan Union Hospital of Jilin University, Changchun, Jilin, 130033, China
| | - Zijian Zhou
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, 20892, United States
| | - Xinyu Wang
- Lymph and Vascular Surgery Department, China-Japan Union Hospital of Jilin University, Changchun, Jilin, 130033, China
| | - Hongzhang Deng
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, 20892, United States
| | - Lin Sun
- Department of Materials Science and Engineering, International Institute for Nanotechnology, Northwestern University, Evanston, IL, 60208, United States
| | - Haixin Lin
- Department of Chemistry, International Institute for Nanotechnology, Northwestern University, Evanston, IL, 60208, United States
| | - Fei Kang
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, 20892, United States
| | - Yong Zhang
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, 20892, United States
| | - Zhantong Wang
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, 20892, United States
| | - Weijing Yang
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, 20892, United States
| | - Lang Rao
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, 20892, United States
| | - Kuikun Yang
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, 20892, United States
| | - Guocan Yu
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, 20892, United States
| | - Jianshi Du
- Lymph and Vascular Surgery Department, China-Japan Union Hospital of Jilin University, Changchun, Jilin, 130033, China.
| | - Zheyu Shen
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, Guangzhou, 510515, China.
| | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, 20892, United States.
| |
Collapse
|
92
|
Luo Y, Qiao B, Zhang P, Yang C, Cao J, Yuan X, Ran H, Wang Z, Hao L, Cao Y, Ren J, Zhou Z. TME-activatable theranostic nanoplatform with ATP burning capability for tumor sensitization and synergistic therapy. Theranostics 2020; 10:6987-7001. [PMID: 32550917 PMCID: PMC7295044 DOI: 10.7150/thno.44569] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 05/05/2020] [Indexed: 02/06/2023] Open
Abstract
Adenosine triphosphate (ATP), as a key substance for regulating tumor progression in the tumor microenvironemnt (TME), is an emerging target for tumor theranostics. Herein, we report a minimalist but versatile nanoplatform with simultaneously TME-responsive drug release, TME-enhanced imaging, ATP-depletion sensitized chemotherapy and photothermal therapy for intelligent tumor theranostics. Methods: The Fe3+ and tannic acid (TA) coordination were self-deposited on doxorubicin (Dox) in a facile method to prepare Dox-encapsulated nanoparticles (DFTNPs). Results: When irradiated by a near infrared laser, the DFTNPs could elevate the temperature in the tumor region efficiently. Subsequently, the Dox could be released by the disassembly of Fe3+/TA in the TME to initiate chemotherapy. Particularly, the smart nanoagent not only enabled ATP-depletion and enhanced the therapeutic effect of chemotherapy, but also acted as photothermal transduction agent for photothermal therapy. Moreover, the nanoagent also acted as T1-weighted MR imaging,photoacoustic imaging and photothermal imaging contrast agent. The mice treated by DFTNPs plus laser showed a complete tumor eradication in 14d observation. Conclusion: This as-prepared versatile nanoplatform offers new insights toward the application of smart nanoagents for improved tumor theranostics.
Collapse
|
93
|
Photoacoustic Imaging Probes Based on Tetrapyrroles and Related Compounds. Int J Mol Sci 2020; 21:ijms21093082. [PMID: 32349297 PMCID: PMC7247687 DOI: 10.3390/ijms21093082] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 04/21/2020] [Accepted: 04/22/2020] [Indexed: 12/11/2022] Open
Abstract
Photoacoustic imaging (PAI) is a rapidly evolving field in molecular imaging that enables imaging in the depths of ultrasound and with the sensitivity of optical modalities. PAI bases on the photoexcitation of a chromophore, which converts the absorbed light into thermal energy, causing an acoustic pressure wave that can be captured with ultrasound transducers, in generating an image. For in vivo imaging, chromophores strongly absorbing in the near-infrared range (NIR; > 680 nm) are required. As tetrapyrroles have a long history in biomedical applications, novel tetrapyrroles and inspired mimics have been pursued as potentially suitable contrast agents for PAI. The goal of this review is to summarize the current state of the art in PAI applications using tetrapyrroles and related macrocycles inspired by it, highlighting those compounds exhibiting strong NIR-absorption. Furthermore, we discuss the current developments of other absorbers for in vivo photoacoustic (PA) applications.
Collapse
|
94
|
Meyer T, Ackermann R, Kammel R, Schmitt M, Nolte S, Tünnermann A, Popp J. CARS-imaging guidance for fs-laser ablation precision surgery. Analyst 2020; 144:7310-7317. [PMID: 31686084 DOI: 10.1039/c9an01545k] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Due to ageing populations the number of tumors is increasing worldwide. Successful surgical treatment requires complete resection of tumors to reduce recurrence rates. To reach this goal, novel methods combining in vivo tumor and tumor margin detection with low invasive precision surgical tools are needed. Coherent anti-Stokes Raman scattering (CARS) imaging is a highly promising optical tool for visualizing tumors based on characteristic changes in tissue morphology and molecular composition, while fs-laser ablation is to date the most precise surgical tool established in ophthalmology. In this contribution, CARS imaging has been combined with fs-laser ablation as a new approach for image-guided precision surgery for the first time. CARS guided fs-ablation has been applied to ablate brain, liver, skin, muscular and vascular tissues with μm-precision using sub-100 fs pulses of μJ level. We demonstrate superior imaging performance and contrast as well as detection of tissue margins by coherent Raman microscopy in comparison to laser reflectance imaging. The combination of CARS-image-guided tissue ablation is a promising tool for minimally invasive surgeries particularly in the vicinity of functional structures in the future.
Collapse
Affiliation(s)
- Tobias Meyer
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich-Schiller-Universität Jena, Albert-Einstein-Straße 6, D-07745 Jena, Germany.
| | | | | | | | | | | | | |
Collapse
|
95
|
Chaudhary Z, Khan GM, Abeer MM, Pujara N, Wan-Chi Tse B, McGuckin MA, Popat A, Kumeria T. Efficient photoacoustic imaging using indocyanine green (ICG) loaded functionalized mesoporous silica nanoparticles. Biomater Sci 2020; 7:5002-5015. [PMID: 31617526 DOI: 10.1039/c9bm00822e] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Photoacoustic (PA) imaging is gaining momentum due to its greater depth of field, low background, and 3D imaging capabilities. However, traditional PA imaging agents (e.g. dyes, quantum dots, etc.) are usually unstable in plasma and bind to serum proteins, and thus cleared rapidly. Because of this, the nanoparticle encapsulation of PA imaging agents is becoming increasingly popular. Therefore, the rational design of carrier nanoparticles for this purpose is necessary for strong imaging signal intensity, high biosafety, and precise targeting. Herein, we systematically evaluate the influence of the chemical and physical surface functionalization of mesoporous silica nanoparticles (MSNs) on the photo-stability, loading, release, and photoacoustic (PA) signal strength of the FDA approved small molecule contrast agent, indocyanine green (ICG). Chemical functionalization involved the modification of MSNs with silanes having amine (NH2) or phosphonate (PO3) terminal groups, whereas physical modifications were performed by capping the ICG loaded MSNs with lipid bilayer (LB) or layer-by-layer (LBL) polyelectrolyte coatings. The NH2-MSNs display the highest ICG mass loading capacity (16.5 wt%) with a limited release of ICG (5%) in PBS over 48 h, while PO3-MSNs only loaded ICG around 3.5 wt%. The physically modified MSNs (i.e. LBMSNs and LBLMSNs) were vacuum loaded resulting in approximately 9 wt% loading and less than 10% ICG release in 48 h. Pure ICG was highly photo-unstable and showed 20% reduction in photoluminescence (PL) within 3 h of exposure to 800 nm, while the ICG loaded onto functionalized MSNs did not photo-degrade. Among the tested formulations, NH2-MSNs and LBLMSNs presented 4-fold in vitro PA signal intensity enhancement at a 200 μg mL-1 equivalent ICG dose. Similar to the in vitro PA imaging, NH2-MSNs and LBLMSNs performed the best when subcutaneously injected into mouse cadavers with 1.29- and 1.43-fold PA signal enhancement in comparison to the pure ICG, respectively.
Collapse
Affiliation(s)
- Zanib Chaudhary
- School of Pharmacy, The University of Queensland, Queensland-4102, Australia.
| | | | | | | | | | | | | | | |
Collapse
|
96
|
Ning G, Zhang X, Zhang Q, Wang Z, Liao H. Real-time and multimodality image-guided intelligent HIFU therapy for uterine fibroid. Theranostics 2020; 10:4676-4693. [PMID: 32292522 PMCID: PMC7150484 DOI: 10.7150/thno.42830] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Accepted: 01/26/2020] [Indexed: 12/02/2022] Open
Abstract
Rationale: High-intensity focused ultrasound (HIFU) therapy represents a noninvasive surgical approach to treat uterine fibroids. The operation of HIFU therapy relies on the information provided by medical images. In current HIFU therapy, all operations such as positioning of the lesion in magnetic resonance (MR) and ultrasound (US) images are manually performed by specifically trained doctors. Manual processing is an important limitation of the efficiency of HIFU therapy. In this paper, we aim to provide an automatic and accurate image guidance system, intelligent diagnosis, and treatment strategy for HIFU therapy by combining multimodality information. Methods: In intelligent HIFU therapy, medical information and treatment strategy are automatically processed and generated by a real-time image guidance system. The system comprises a novel multistage deep convolutional neural network for preoperative diagnosis and a nonrigid US lesion tracking procedure for HIFU intraoperative image-assisted treatment. In the process of intelligent therapy, the treatment area is determined from the autogenerated lesion area. Based on the autodetected treatment area, the HIFU foci are distributed automatically according to the treatment strategy. Moreover, an image-based unexpected movement warning and other physiological monitoring are used during the intelligent treatment procedure for safety assurance. Results: In the experiment, we integrated the intelligent treatment system on a commercial HIFU treatment device, and eight clinical experiments were performed. In the clinical validation, eight randomly selected clinical cases were used to verify the feasibility of the system. The results of the quantitative experiment indicated that our intelligent system met the HIFU clinical tracking accuracy and speed requirements. Moreover, the results of simulated repeated experiments confirmed that the autodistributed HIFU focus reached the level of intermediate clinical doctors. Operations performed by junior- or middle-level operators with the assistance of the proposed system can reach the level of operation performed by senior doctors. Various experiments prove that our proposed intelligent HIFU therapy process is feasible for treating common uterine fibroid cases. Conclusion: We propose an intelligent HIFU therapy for uterine fibroid which integrates multiple medical information processing procedures. The experiment results demonstrated that the proposed procedures and methods can achieve monitored and automatic HIFU diagnosis and treatment. This research provides a possibility for intelligent and automatic noninvasive therapy for uterine fibroid.
Collapse
|
97
|
Wang P, Liu Q, Zhao H, Bishop JO, Zhou G, Olson LK, Moore A. miR-216a-targeting theranostic nanoparticles promote proliferation of insulin-secreting cells in type 1 diabetes animal model. Sci Rep 2020; 10:5302. [PMID: 32210316 PMCID: PMC7093482 DOI: 10.1038/s41598-020-62269-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 03/06/2020] [Indexed: 11/30/2022] Open
Abstract
Aberrant expression of miRNAs in pancreatic islets is closely related to the development of type 1 diabetes (T1D). The aim of this study was to identify key miRNAs dysregulated in pancreatic islets during T1D progression and to develop a theranostic approach to modify their expression using an MRI-based nanodrug consisting of iron oxide nanoparticles conjugated to miRNA-targeting oligonucleotides in a mouse model of T1D. Isolated pancreatic islets were derived from NOD mice of three distinct age groups (3, 8 and 18-week-old). Total RNA collected from cultured islets was purified and global miRNA profiling was performed with 3D-Gene global miRNA microarray mouse chips encompassing all mouse miRNAs available on the Sanger miRBase V16. Of the miRNAs that were found to be differentially expressed across three age groups, we identified one candidate (miR-216a) implicated in beta cell proliferation for subsequent validation by RT-PCR. Alterations in miR-216a expression within pancreatic beta cells were also examined using in situ hybridization on the frozen pancreatic sections. For in vitro studies, miR-216a mimics/inhibitors were conjugated to iron oxide nanoparticles and incubated with beta cell line, βTC-6. Cell proliferation marker Ki67 was evaluated. Expression of the phosphatase and tensin homolog (PTEN), which is one of the direct targets of miR-216a, was analyzed using western blot. For in vivo study, the miR-216a mimics/inhibitors conjugated to the nanoparticles were injected into 12-week-old female diabetic Balb/c mice via pancreatic duct. The delivery of the nanodrug was monitored by in vivo MRI. Blood glucose of the treated mice was monitored post injection. Ex vivo histological analysis of the pancreatic sections included staining for insulin, PTEN and Ki67. miRNA microarray demonstrated that the expression of miR-216a in the islets from NOD mice significantly changed during T1D progression. In vitro studies showed that treatment with a miR-216a inhibitor nanodrug suppressed proliferation of beta cells and increased the expression of PTEN, a miR-216a target. In contrast, introduction of a mimic nanodrug decreased PTEN expression and increased beta cell proliferation. Animals treated in vivo with a mimic nanodrug had higher insulin-producing functionality compared to controls. These observations were in line with downregulation of PTEN and increase in beta cell proliferation in that group. Our studies demonstrated that miR-216a could serve as a potential therapeutic target for the treatment of diabetes. miR-216a-targeting theranostic nanodrugs served as exploratory tools to define functionality of this miRNA in conjunction with in vivo MR imaging.
Collapse
Affiliation(s)
- Ping Wang
- Precision Health Program, Department of Radiology, College of Human Medicine, Michigan State University, East Lansing, Michigan, 48823, USA.
| | - Qiong Liu
- Department of Anatomy, Histology and Embryology, School of Basic Medical Science, Fudan University, Shanghai, 200032, China
| | - Hongwei Zhao
- Shanxi Medical University, Taiyuan, Shanxi, 030001, China.,Department of Gynecologic Oncology, Shanxi Provincial Cancer Hospital, Taiyuan, Shanxi, 030013, China
| | - Jack Owen Bishop
- Precision Health Program, Department of Radiology, College of Human Medicine, Michigan State University, East Lansing, Michigan, 48823, USA.,Department of Neuroscience, College of Natural Science, Michigan State University, East Lansing, Michigan, 48824, USA
| | - Guoli Zhou
- Biomedical Research Informatics Core, Clinical & Translational Sciences Institute, Michigan State University, East Lansing, Michigan, 48824, USA
| | - L Karl Olson
- Department of Physiology, College of Natural Science, Michigan State University, East Lansing, Michigan, 48824, USA
| | - Anna Moore
- Precision Health Program, Department of Radiology, College of Human Medicine, Michigan State University, East Lansing, Michigan, 48823, USA.
| |
Collapse
|
98
|
Sun A, Guo H, Gan Q, Yang L, Liu Q, Xi L. Evaluation of visible NIR-I and NIR-II light penetration for photoacoustic imaging in rat organs. OPTICS EXPRESS 2020; 28:9002-9013. [PMID: 32225514 DOI: 10.1364/oe.389714] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
In this study, we evaluate the penetration capability of light in visible, near-infrared-I (NIR-I) and near-infrared-II (NIR-II) optical windows for photoacoustic macroscale imaging inside 9 biological tissues with three typical penetration depths. An acoustic resolution photoacoustic microscopy is designed to guarantee the consistent experiment conditions except excitation wavelength. Experimental results show that short NIR-II (1000-1150 nm) shows the best performance inside kidney, spleen and liver tissues at all depths, while NIR-I (700-1000 nm) works better for muscle, stomach, heart and brain tissues, especially in deep imaging. This study proposes the optimal selection of illumination wavelengths for photoacoustic macroscale imaging in rat organs, which enables the best signal-to-noise ratio (SNR) of the observed target.
Collapse
|
99
|
Li G, Wang S, Deng D, Xiao Z, Dong Z, Wang Z, Lei Q, Gao S, Huang G, Zhang E, Zeng G, Wen Z, Wu S, Liu Z. Fluorinated Chitosan To Enhance Transmucosal Delivery of Sonosensitizer-Conjugated Catalase for Sonodynamic Bladder Cancer Treatment Post-intravesical Instillation. ACS NANO 2020; 14:1586-1599. [PMID: 32011860 DOI: 10.1021/acsnano.9b06689] [Citation(s) in RCA: 156] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Sonodynamic therapy (SDT) is a noninvasive ultrasound-triggered therapeutic strategy for site-specific treatment of tumors with great depth penetration. The design of nano-sonosensitizers suitable for SDT treatment of bladder cancer (BCa) post-intravesical instillation has not yet been reported. Herein, a transmucosal oxygen-self-production SDT nanoplatform is developed to achieve highly efficient SDT against BCa. In this system, fluorinated chitosan (FCS) is synthesized as a highly effective nontoxic transmucosal delivery carrier to assemble with meso-tetra(4-carboxyphenyl)porphine-conjugated catalase (CAT-TCPP). The formed CAT-TCPP/FCS nanoparticles after intravesical instillation into the bladder cavity exhibit excellent transmucosal and intratumoral penetration capacities and could efficiently relieve hypoxia in tumor tissues by the catalase-catalyzed O2 generation from tumor endogenous H2O2 to further improve the therapeutic efficacy of SDT to ablate orthotopic bladder tumors under ultrasound. Our work presents a nano-sonosensitizer formulation with FCS to enhance transmucosal delivery and intratumoral diffusion and CAT to improve tumor oxygenation, promising for instillation-based SDT to treat bladder tumors without the concern of systemic toxicity.
Collapse
Affiliation(s)
- Guangzhi Li
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices , Soochow University , Suzhou 215123 , China
- Institute of Urology, The Affiliated Luohu Hospital of Shenzhen University , Shenzhen University , Shenzhen 518000 , China
- Department of Nephrology, The Second Hospital and Center for Renal Diseases, Advanced Institute for Medical Sciences , Dalian Medical University , Dalian 116044 , China
| | - Shupeng Wang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices , Soochow University , Suzhou 215123 , China
- School of Material Science and Engineering , Beijing Institute of Technology , Beijing 100081 , China
| | - Dashi Deng
- Institute of Urology, The Affiliated Luohu Hospital of Shenzhen University , Shenzhen University , Shenzhen 518000 , China
| | - Zhisheng Xiao
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices , Soochow University , Suzhou 215123 , China
| | - Ziliang Dong
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices , Soochow University , Suzhou 215123 , China
| | - Zhiping Wang
- Department of Urology , The Second Hospital of Lanzhou University , Lanzhou 730030 , China
| | - Qifang Lei
- Institute of Urology, The Affiliated Luohu Hospital of Shenzhen University , Shenzhen University , Shenzhen 518000 , China
- Department of Nephrology, The Second Hospital and Center for Renal Diseases, Advanced Institute for Medical Sciences , Dalian Medical University , Dalian 116044 , China
| | - Shan Gao
- Institute of Urology, The Affiliated Luohu Hospital of Shenzhen University , Shenzhen University , Shenzhen 518000 , China
| | - Guixiao Huang
- Institute of Urology, The Affiliated Luohu Hospital of Shenzhen University , Shenzhen University , Shenzhen 518000 , China
| | - Enpu Zhang
- Institute of Urology, The Affiliated Luohu Hospital of Shenzhen University , Shenzhen University , Shenzhen 518000 , China
| | - Guohua Zeng
- Department of Urology, Minimally Invasive Surgery Center , The First Affiliated Hospital of Guangzhou Medical University , Guangzhou 510120 , China
| | - Zhong Wen
- Department of Urology, Minimally Invasive Surgery Center , The First Affiliated Hospital of Guangzhou Medical University , Guangzhou 510120 , China
| | - Song Wu
- Institute of Urology, The Affiliated Luohu Hospital of Shenzhen University , Shenzhen University , Shenzhen 518000 , China
- Department of Urology , The Second Hospital of Lanzhou University , Lanzhou 730030 , China
| | - Zhuang Liu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices , Soochow University , Suzhou 215123 , China
| |
Collapse
|
100
|
Abstract
Photoacoustic imaging has demonstrated its potential for diagnosis over the last few decades. In recent years, its unique imaging capabilities, such as detecting structural, functional and molecular information in deep regions with optical contrast and ultrasound resolution, have opened up many opportunities for photoacoustic imaging to be used during image-guided interventions. Numerous studies have investigated the capability of photoacoustic imaging to guide various interventions such as drug delivery, therapies, surgeries, and biopsies. These studies have demonstrated that photoacoustic imaging can guide these interventions effectively and non-invasively in real-time. In this minireview, we will elucidate the potential of photoacoustic imaging in guiding active and passive drug deliveries, photothermal therapy, and other surgeries and therapies using endogenous and exogenous contrast agents including organic, inorganic, and hybrid nanoparticles, as well as needle-based biopsy procedures. The advantages of photoacoustic imaging in guided interventions will be discussed. It will, therefore, show that photoacoustic imaging has great potential in real-time interventions due to its advantages over current imaging modalities like computed tomography, magnetic resonance imaging, and ultrasound imaging.
Collapse
Affiliation(s)
- Madhumithra S Karthikesh
- Bioengineering Program and Institute for Bioengineering Research, University of Kansas, Lawrence, KS 66045, USA
| | - Xinmai Yang
- Bioengineering Program and Institute for Bioengineering Research, University of Kansas, Lawrence, KS 66045, USA
- Department of Mechanical Engineering, University of Kansas, Lawrence, KS 66045, USA
| |
Collapse
|