51
|
Ye M, Liu W, Yan L, Cheng S, Li X, Qiao S. 3D‑printed Ti6Al4V scaffolds combined with pulse electromagnetic fields enhance osseointegration in osteoporosis. Mol Med Rep 2021; 23:410. [PMID: 33786622 PMCID: PMC8025457 DOI: 10.3892/mmr.2021.12049] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 03/08/2021] [Indexed: 12/14/2022] Open
Abstract
The loosening and displacement of prostheses after dental implantation and arthroplasty is a substantial medical burden due to the complex correction surgery. Three-dimensional (3D)-printed porous titanium (pTi) alloy scaffolds are characterized by low stiffness, are beneficial to bone ingrowth, and may be used in orthopedic applications. However, for the bio-inert nature between host bone and implants, titanium alloy remains poorly compatible with osseointegration, especially in disease conditions, such as osteoporosis. In the present study, 3D-printed pTi scaffolds with ideal pore size and porosity matching the bone tissue, were combined with pulse electromagnetic fields (PEMF), an exogenous osteogenic induction stimulation, to evaluate osseointegration in osteoporosis. In vitro, external PEMF significantly improved osteoporosis-derived bone marrow mesenchymal stem cell proliferation and osteogenic differentiation on the surface of pTi scaffolds by enhancing the expression of alkaline phosphatase, runt-related transcription factor-2, osteocalcin, and bone morphogenetic protein-2. In vivo, Microcomputed tomography analysis and histological evaluation indicated the external PEMF markedly enhanced bone regeneration and osseointegration. This novel therapeutic strategy has potential to promote osseointegration of dental implants or artificial prostheses for patients with osteoporosis.
Collapse
Affiliation(s)
- Mingfu Ye
- Department of Oral Implantology, Xiamen Key Laboratory of Stomatological Disease Diagnosis and Treatment, Stomatological Hospital of Xiamen Medical College, Xiamen, Fujian 361008, P.R. China
| | - Wenjun Liu
- Department of Oral Implantology, Xiamen Key Laboratory of Stomatological Disease Diagnosis and Treatment, Stomatological Hospital of Xiamen Medical College, Xiamen, Fujian 361008, P.R. China
| | - Lihui Yan
- Department of Oral Implantology, Xiamen Key Laboratory of Stomatological Disease Diagnosis and Treatment, Stomatological Hospital of Xiamen Medical College, Xiamen, Fujian 361008, P.R. China
| | - Shaolong Cheng
- Department of Oral Implantology, Xiamen Key Laboratory of Stomatological Disease Diagnosis and Treatment, Stomatological Hospital of Xiamen Medical College, Xiamen, Fujian 361008, P.R. China
| | - Xiaoxiong Li
- Department of Pain, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 201112, P.R. China
| | - Shichong Qiao
- Department of Implant Dentistry, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200011, P.R. China
| |
Collapse
|
52
|
Mou D, Yu Q, Zhang J, Zhou J, Li X, Zhuang W, Yang X. Intra-articular Injection of Chitosan-Based Supramolecular Hydrogel for Osteoarthritis Treatment. Tissue Eng Regen Med 2021; 18:113-125. [PMID: 33511556 PMCID: PMC7862498 DOI: 10.1007/s13770-020-00322-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 10/18/2020] [Accepted: 11/05/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Pain and cartilage destruction caused by osteoarthritis (OA) is a major challenge in clinical treatment. Traditional intra-articular injection of hyaluronic acid (HA) can relieve the disease, but limited by the difficulty of long-term maintenance of efficacy. METHODS In this study, an injectable and self-healing hydrogel was synthesized by in situ crosslinking of N-carboxyethyl chitosan (N-chitosan), adipic acid dihydrazide (ADH), and hyaluronic acid-aldehyde (HA-ALD). RESULTS This supramolecular hydrogel sustains good biocompatibility for chondrocytes. Intra-articular injection of this novel hydrogel can significantly alleviate the local inflammation microenvironment in knee joints, through inhibiting the inflammatory cytokines (such as TNF-α, IL-1β, IL-6 and IL-17) in the synovial fluid and cartilage at 2- and even 12-weeks post-injection. Histological and behavioral test indicated that hydrogel injection protected cartilage destruction and relieved pain in OA rats, in comparison to HA injection. CONCLUSION This kind of novel hydrogel, which is superior to the traditional HA injection, reveals a great potential for the treatment of OA.
Collapse
Affiliation(s)
- Donggang Mou
- Department of Orthopedics, Yan'an Hospital Affiliated to Kunming Medical University, Kunming, 650035, People's Republic of China
| | - Qunying Yu
- Department of Maternity, The Second Affiliated Hospital of Kunming Medical University, Kunming, 650051, People's Republic of China
| | - Jimei Zhang
- Department of Gastroenterology, Chenggong Hospital, Yan'an Hospital Affiliated to Kunming Medical University, Kunming, 650035, People's Republic of China
| | - Jianping Zhou
- Department of Orthopedics, Chenggong Hospital, Yan'an Hospital Affiliated to Kunming Medical University, Kunming, 650035, People's Republic of China
| | - Xinmin Li
- Department of Orthopedics, Chenggong Hospital, Yan'an Hospital Affiliated to Kunming Medical University, Kunming, 650035, People's Republic of China
| | - Weiyi Zhuang
- Department of Cardiology, Chenggong Hospital, Yan'an Hospital Affiliated to Kunming Medical University, Kunming, 650035, People's Republic of China
| | - Xuming Yang
- Department of Orthopedics, Chenggong Hospital, Yan'an Hospital Affiliated to Kunming Medical University, Kunming, 650035, People's Republic of China.
| |
Collapse
|
53
|
Li L, Yu M, Li Y, Li Q, Yang H, Zheng M, Han Y, Lu D, Lu S, Gui L. Synergistic anti-inflammatory and osteogenic n-HA/resveratrol/chitosan composite microspheres for osteoporotic bone regeneration. Bioact Mater 2020; 6:1255-1266. [PMID: 33210023 PMCID: PMC7653289 DOI: 10.1016/j.bioactmat.2020.10.018] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 10/23/2020] [Accepted: 10/23/2020] [Indexed: 02/07/2023] Open
Abstract
The development of functional materials for osteoporosis is ultimately required for bone remodeling. However, grafts were accompanied by increasing pro-inflammatory cytokines that impaired bone formation. In this work, nano-hydroxyapatite (n-HA)/resveratrol (Res)/chitosan (CS) composite microspheres were designed to create a beneficial microenvironment and help improve the osteogenesis by local sustained release of Res. Study of in vitro release confirmed the feasibility of n-HA/Res/CS microspheres for controlled Res release. Notably, microspheres had anti-inflammatory activity evidenced by the decreased expression of pro-inflammatory cytokines TNF-α, IL-1β and iNOS in RAW264.7 cells in a dose dependent manner. Further, enhanced adhesion and proliferation of BMSCs seeded onto microspheres demonstrated that composite microspheres were conducive to cell growth. The ability to enhance osteo-differentiation was supported by up-regulation of Runx2, ALP, Col-1 and OCN, and substantial mineralization in osteogenic medium. When implanted into bone defects in the osteoporotic rat femoral condyles, enhanced entochondrostosis and bone regeneration suggested that the n-HA/Res/CS composite microspheres were more favorable for impaired fracture healing. The results indicated that optimized n-HA/Res/CS composite microspheres could serve as promising multifunctional fillers for osteoporotic bone defect/fracture treatment. The microspheres with sustained Res release possessed obvious anti-inflammatory activity. The microspheres were favorable for cell growth and osteo-differentiation. Higher Res-loaded microspheres significantly improved entochondrostosis and bone remodeling. The microspheres are promising bone fillers for the healing of osteoporotic bone defects/fractures.
Collapse
Affiliation(s)
- Limei Li
- Yunnan Key Laboratory of Stem Cell and Regenerative Medicine, Science and Technology Achievement Incubation Center, Kunming Medical University, Kunming, 650500, China
| | - Mali Yu
- Yunnan Key Laboratory of Stem Cell and Regenerative Medicine, Science and Technology Achievement Incubation Center, Kunming Medical University, Kunming, 650500, China
| | - Yao Li
- Department of Stomatology, The First People's Hospital of Yunnan Province, Kunming, 650032, China
| | - Qing Li
- Yunnan Key Laboratory of Stem Cell and Regenerative Medicine, Science and Technology Achievement Incubation Center, Kunming Medical University, Kunming, 650500, China
| | - Hongcai Yang
- Department of Neurology, The First Affiliated Hospital, Kunming Medical University, Kunming, 650000, China
| | - Meng Zheng
- Yunnan Key Laboratory of Stem Cell and Regenerative Medicine, Science and Technology Achievement Incubation Center, Kunming Medical University, Kunming, 650500, China
| | - Yi Han
- Yunnan Key Laboratory of Stem Cell and Regenerative Medicine, Science and Technology Achievement Incubation Center, Kunming Medical University, Kunming, 650500, China
| | - Di Lu
- Yunnan Key Laboratory of Stem Cell and Regenerative Medicine, Science and Technology Achievement Incubation Center, Kunming Medical University, Kunming, 650500, China
| | - Sheng Lu
- Yunnan Key Laboratory of Digital Orthopaedics, Department of Orthopaedics, The First People's Hospital of Yunnan Province, Kunming, 650032, China
| | - Li Gui
- Department of Endocrinology, The Third People's Hospital of Yunnan Province, Kunming, 650011, China
| |
Collapse
|
54
|
Sommer U, Laurich S, de Azevedo L, Viehoff K, Wenisch S, Thormann U, Alt V, Heiss C, Schnettler R. In Vitro and In Vivo Biocompatibility Studies of a Cast and Coated Titanium Alloy. Molecules 2020; 25:E3399. [PMID: 32727093 PMCID: PMC7436028 DOI: 10.3390/molecules25153399] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/24/2020] [Accepted: 07/24/2020] [Indexed: 12/13/2022] Open
Abstract
The biocompatibility of a cast porous and with a calcium titanate reaction layer functionalized titanium alloy (Ti-6Al-7Nb) was tested by means of cell culture, and a small (rat) and large animal (sheep) model. The uncoated titanium material served as a control. In-vitro tests included the validation of osteoblast-like cells attached to the surface of the material with scanning electron microscopy and immunofluorescence of cytoskeletal actin as well as their osteogenic development, the ability to mineralize, and their vitality. Following the in-vitro tests a small animal (rat) and big animal (sheep) model were accomplished by inserting a cylindrical titanium implant into a drill hole defect in the femoral condyle. After 7, 14, and 30 days (rat) and 6 months (sheep) the condyles were studied regarding histological and histomorphometrical characteristics. Uncoated and coated material showed a good biocompatibility both in cell culture and animal models. While the defect area in the rat is well consolidated after 30 days, the sheep show only little bone inside the implant after 6 months, possibly due to stress shielding. None of the executed methods indicated a statistically significant difference between coated and uncoated material.
Collapse
Affiliation(s)
- Ursula Sommer
- Experimental Trauma Surgery, Justus-Liebig-University Giessen, Aulweg 128 (ForMED), 35392 Giessen, Germany; (S.L.); (L.d.A.); (K.V.); (U.T.); (C.H.)
| | - Stephan Laurich
- Experimental Trauma Surgery, Justus-Liebig-University Giessen, Aulweg 128 (ForMED), 35392 Giessen, Germany; (S.L.); (L.d.A.); (K.V.); (U.T.); (C.H.)
| | - Lucie de Azevedo
- Experimental Trauma Surgery, Justus-Liebig-University Giessen, Aulweg 128 (ForMED), 35392 Giessen, Germany; (S.L.); (L.d.A.); (K.V.); (U.T.); (C.H.)
| | - Katharina Viehoff
- Experimental Trauma Surgery, Justus-Liebig-University Giessen, Aulweg 128 (ForMED), 35392 Giessen, Germany; (S.L.); (L.d.A.); (K.V.); (U.T.); (C.H.)
| | - Sabine Wenisch
- Clinic of Small Animals, c/o Institute of Veterinary Anatomy, Histology and Embryology, Justus-Liebig-University Giessen, Frankfurter Strasse 98, 35392 Giessen, Germany;
| | - Ulrich Thormann
- Experimental Trauma Surgery, Justus-Liebig-University Giessen, Aulweg 128 (ForMED), 35392 Giessen, Germany; (S.L.); (L.d.A.); (K.V.); (U.T.); (C.H.)
- Department of Trauma, Hand and Reconstructive Surgery, University Hospital Giessen-Marburg GmbH, Campus Giessen, Rudolf-Buchheim-Str. 7, 35385 Giessen, Germany
| | - Volker Alt
- Department of Trauma Surgery, University Medical Center Regensburg, Franz-Josef-Strauss-Allee 11, 93053 Regensburg, Germany;
| | - Christian Heiss
- Experimental Trauma Surgery, Justus-Liebig-University Giessen, Aulweg 128 (ForMED), 35392 Giessen, Germany; (S.L.); (L.d.A.); (K.V.); (U.T.); (C.H.)
- Department of Trauma, Hand and Reconstructive Surgery, University Hospital Giessen-Marburg GmbH, Campus Giessen, Rudolf-Buchheim-Str. 7, 35385 Giessen, Germany
| | - Reinhard Schnettler
- Department of Oral and Maxillofacial Surgery, Division for Regenerative Orofacial Medicine, University Hospital Hamburg-Eppendorf, 20246 Hamburg, Germany;
| |
Collapse
|
55
|
Hua C, Liu J, Hua X, Wang X. Synergistic Fabrication of Dose-Response Chitosan/Dextran/β-Glycerophosphate Injectable Hydrogel as Cell Delivery Carrier for Cardiac Healing After Acute Myocardial Infarction. Dose Response 2020; 18:1559325820941323. [PMID: 32922226 PMCID: PMC7457666 DOI: 10.1177/1559325820941323] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 05/26/2020] [Accepted: 06/01/2020] [Indexed: 12/14/2022] Open
Abstract
The human mesenchymal stem cells (hMSCs) therapy offering an encouraging the new methods to establish the conveying on the chitosan (C)/dextran (D)/β-glycerophosphate (β-GP) loaded with hMSCs to enhance the acute myocardial infarctions. The synthesized hMSCs-CD@β-GP system displayed the ratio of determination modules, size of the pore, absorbency, and the swellings ratio in the assortment of the 65 ka, 149 ± 39.8 µm, 92.2%, 42 ± 1.38, and 29 ± 1.9, respectively. The fabricated hMSCs-CD@β-GP was highly stable and physicochemical investigated and confirmed the suitability of the materials for cardiac regeneration applications. The in vitro examinations of the injectable hydrogels with hMSCs-CD@β-GP have recognized that the improved survival rate of the cells, increased the pro-inflammatory expressions factors, pro-angiogenic factors analysis confirmed the promising results of the ejection of fractions, fibrosis area, vessel density with decreased infractions size, with suggesting that the remarkable improvement of the heart regenerative function after myocardial infarctions. The new synergistic approach of the injectable hydrogels with hMSCs could able appropriate for the effective treatment of cardiac therapies after acute myocardial infarctions.
Collapse
Affiliation(s)
- Chongjun Hua
- Department of Cardiology, Jinhua Central Hospital, Jinhua, China
| | - Jing Liu
- Department of Cardiology, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, China
| | - Xiuhong Hua
- Department of Pharmacy, Jinhua Fifth Hospital, Jinhua, China
| | - Xinyu Wang
- Department of Ultrasonography, Xiamen Cardiovascular Hospital Xiamen University, Xiamen, China
| |
Collapse
|
56
|
Bai H, Kyu-Cheol N, Wang Z, Cui Y, Liu H, Liu H, Feng Y, Zhao Y, Lin Q, Li Z. Regulation of inflammatory microenvironment using a self-healing hydrogel loaded with BM-MSCs for advanced wound healing in rat diabetic foot ulcers. J Tissue Eng 2020; 11:2041731420947242. [PMID: 32913623 PMCID: PMC7444096 DOI: 10.1177/2041731420947242] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 07/15/2020] [Indexed: 02/06/2023] Open
Abstract
A diabetic foot ulcer (DFUs) is a state of prolonged chronic inflammation, which can result in amputation. Different from normal skin wounds, various commercially available dressings have not sufficiently improved the healing of DFUs. In this study, a novel self-healing hydrogel was prepared by in situ crosslinking of N-carboxyethyl chitosan (N-chitosan) and adipic acid dihydrazide (ADH) with hyaluronic acid-aldehyde (HA-ALD), to provide a moist and inflammatory relief environment to promote stem cell proliferation or secretion of growth factors, thus accelerating wound healing. The results demonstrated that this injectable and self-healing hydrogel has excellent swelling properties, stability, and mechanical properties. This biocompatible hydrogel stimulated secretion of growth factors from bone marrow mesenchymal stem cells (BM-MSCs) and regulated the inflammatory environment by inhibiting the expression of M1 macrophages and promoting the expression of M2 macrophages, resulting in granulation tissue formation, collagen deposition, nucleated cell proliferation, neovascularization, and enhanced diabetic wound healing. This study showed that N-chitosan/HA-ALD hydrogel could be used as a multifunctional injectable wound dressing to regulate chronic inflammation and provide an optimal environment for BM-MSCs to promote diabetic wound healing.
Collapse
Affiliation(s)
- Haotian Bai
- Department of Orthopedics, Hallym University, Chuncheon, Gangwon-do, Korea
| | - Noh Kyu-Cheol
- Department of Orthopedics, Hallym University, Chuncheon, Gangwon-do, Korea
| | - Zhonghan Wang
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, Jilin, P. R. China
| | - Yutao Cui
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, Jilin, P. R. China
| | - He Liu
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, Jilin, P. R. China
| | - Hou Liu
- State Key Lab of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin, P. R. China
| | - Yubin Feng
- State Key Lab of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin, P. R. China
| | - Yue Zhao
- State Key Lab of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin, P. R. China
| | - Quan Lin
- State Key Lab of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin, P. R. China
| | - Zuhao Li
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, Jilin, P. R. China
- Department of Pain, Renji Hospital, South Campus, Shanghai Jiaotong University, Shanghai, P. R. China
| |
Collapse
|
57
|
Qiao S, Wu D, Li Z, Zhu Y, Zhan F, Lai H, Gu Y. The combination of multi-functional ingredients-loaded hydrogels and three-dimensional printed porous titanium alloys for infective bone defect treatment. J Tissue Eng 2020; 11:2041731420965797. [PMID: 33149880 PMCID: PMC7586025 DOI: 10.1177/2041731420965797] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 09/23/2020] [Indexed: 12/13/2022] Open
Abstract
Biomaterial with the dual-functions of bone regeneration and antibacterial is a novel therapy for infective bone defects. Three-dimensional (3D)-printed porous titanium (pTi) benefits bone ingrowth, but its microporous structure conducive to bacteria reproduction. Herein, a multifunctional hydrogel was prepared from dynamic supramolecular assembly of sodium tetraborate (Na2B4O7), polyvinyl alcohol (PVA), silver nanoparticles (AgNPs) and tetraethyl orthosilicate (TEOS), and composited with pTi as an implant system. The pTi scaffolds have ideal pore size and porosity matching with bone, while the supramolecular hydrogel endows pTi scaffolds with antibacterial and biological activity. In vitro assessments indicated the 3D composite implant was biocompatible, promoted bone marrow mesenchymal stem cells (BMSCs) proliferation and osteogenic differentiation, and inhibited bacteria, simultaneously. In vivo experiments further demonstrated that the implant showed effective antibacterial ability while promoting bone regeneration. Besides distal femur defect, the innovative scaffolds may also serve as an ideal biomaterial (e.g. dental implants) for other contaminated defects.
Collapse
Affiliation(s)
- Shichong Qiao
- Department of Implant Dentistry, Shanghai Ninth People’s Hospital, College of Stomatology, Shanghai Jiaotong University School of Medicine, National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, P.R. China
| | - Dongle Wu
- Department of Implant Dentistry, Shanghai Ninth People’s Hospital, College of Stomatology, Shanghai Jiaotong University School of Medicine, National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, P.R. China
| | - Zuhao Li
- Department of Pain, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, P. R. China
| | - Yu Zhu
- Department of Implant Dentistry, Shanghai Ninth People’s Hospital, College of Stomatology, Shanghai Jiaotong University School of Medicine, National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, P.R. China
| | - Fei Zhan
- Shanghai Zammax Biotech Co., Ltd. Shanghai, P.R. China
| | - Hongchang Lai
- Department of Implant Dentistry, Shanghai Ninth People’s Hospital, College of Stomatology, Shanghai Jiaotong University School of Medicine, National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, P.R. China
| | - Yingxin Gu
- Department of Implant Dentistry, Shanghai Ninth People’s Hospital, College of Stomatology, Shanghai Jiaotong University School of Medicine, National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, P.R. China
| |
Collapse
|