51
|
Brodie J, Ball SG, Bouget FY, Chan CX, De Clerck O, Cock JM, Gachon C, Grossman AR, Mock T, Raven JA, Saha M, Smith AG, Vardi A, Yoon HS, Bhattacharya D. Biotic interactions as drivers of algal origin and evolution. THE NEW PHYTOLOGIST 2017; 216:670-681. [PMID: 28857164 DOI: 10.1111/nph.14760] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 07/10/2017] [Indexed: 05/07/2023]
Abstract
Contents 670 I. 671 II. 671 III. 676 IV. 678 678 References 678 SUMMARY: Biotic interactions underlie life's diversity and are the lynchpin to understanding its complexity and resilience within an ecological niche. Algal biologists have embraced this paradigm, and studies building on the explosive growth in omics and cell biology methods have facilitated the in-depth analysis of nonmodel organisms and communities from a variety of ecosystems. In turn, these advances have enabled a major revision of our understanding of the origin and evolution of photosynthesis in eukaryotes, bacterial-algal interactions, control of massive algal blooms in the ocean, and the maintenance and degradation of coral reefs. Here, we review some of the most exciting developments in the field of algal biotic interactions and identify challenges for scientists in the coming years. We foresee the development of an algal knowledgebase that integrates ecosystem-wide omics data and the development of molecular tools/resources to perform functional analyses of individuals in isolation and in populations. These assets will allow us to move beyond mechanistic studies of a single species towards understanding the interactions amongst algae and other organisms in both the laboratory and the field.
Collapse
Affiliation(s)
- Juliet Brodie
- Department of Life Sciences, Natural History Museum, London, SW7 5BD, UK
| | - Steven G Ball
- UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, Université de Lille CNRS, F 59000, Lille, France
| | - François-Yves Bouget
- Laboratoire d'Océanographie Microbienne, Observatoire Océanologique, University Pierre et Marie Curie, University of Paris VI, CNRS, F-66650, Banyuls-sur-Mer, France
| | - Cheong Xin Chan
- Institute for Molecular Bioscience and School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Qld, 4072, Australia
| | - Olivier De Clerck
- Phycology Research Group, Ghent University, Krijgslaan 281, S8, 9000, Gent, Belgium
| | - J Mark Cock
- CNRS, Sorbonne Université, UPMC University Paris 06, Algal Genetics Group, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, Roscoff, F-29688, France
| | | | - Arthur R Grossman
- Department of Plant Biology, The Carnegie Institution for Science, Stanford, CA, 94305, USA
| | - Thomas Mock
- School of Environmental Sciences, University of East Anglia, Norwich, NR4 7TJ, UK
| | - John A Raven
- Division of Plant Sciences, University of Dundee at the James Hutton Institute, Dundee, DD2 5DA, UK
| | - Mahasweta Saha
- Helmholtz Center for Ocean Research, Kiel, 24105, Germany
| | - Alison G Smith
- Department of Plant Sciences, University of Cambridge, Cambridge, CB2 3EA, UK
| | - Assaf Vardi
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Hwan Su Yoon
- Department of Biological Sciences, Sungkyunkwan University, Suwon, 440-746, South Korea
| | - Debashish Bhattacharya
- Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, NJ, 08901, USA
| |
Collapse
|
52
|
Al-Zeer MA, Xavier A, Abu Lubad M, Sigulla J, Kessler M, Hurwitz R, Meyer TF. Chlamydia trachomatis Prevents Apoptosis Via Activation of PDPK1-MYC and Enhanced Mitochondrial Binding of Hexokinase II. EBioMedicine 2017; 23:100-110. [PMID: 28803120 PMCID: PMC5605330 DOI: 10.1016/j.ebiom.2017.08.005] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 08/02/2017] [Accepted: 08/03/2017] [Indexed: 12/29/2022] Open
Abstract
The intracellular human bacterial pathogen Chlamydia trachomatis pursues effective strategies to protect infected cells against death-inducing stimuli. Here, we show that Chlamydia trachomatis infection evokes 3-phosphoinositide-dependent protein kinase-1 (PDPK1) signaling to ensure the completion of its developmental cycle, further leading to the phosphorylation and stabilization of MYC. Using biochemical approaches and imaging we demonstrate that Chlamydia-induced PDPK1-MYC signaling induces host hexokinase II (HKII), which becomes enriched and translocated to the mitochondria. Strikingly, preventing the HKII interaction with mitochondria using exogenous peptides triggers apoptosis of infected cells as does inhibiting either PDPK1 or MYC, which also disrupts intracellular development of Chlamydia trachomatis. These findings identify a previously unknown pathway activated by Chlamydia infection, which exhibits pro-carcinogenic features. Targeting the PDPK1-MYC-HKII-axis may provide a strategy to overcome therapeutic resistance of infection.
Collapse
Affiliation(s)
- Munir A Al-Zeer
- Department of Molecular Biology, Max Planck Institute for Infection Biology, Berlin, Germany.
| | - Audrey Xavier
- Department of Molecular Biology, Max Planck Institute for Infection Biology, Berlin, Germany; The Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Mohammad Abu Lubad
- Department of Molecular Biology, Max Planck Institute for Infection Biology, Berlin, Germany; Mu'tah University, Faculty of Medicine, Al-Karak, Jordan
| | - Janine Sigulla
- Department of Molecular Biology, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Mirjana Kessler
- Department of Molecular Biology, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Robert Hurwitz
- Protein Purification Core Facility, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Thomas F Meyer
- Department of Molecular Biology, Max Planck Institute for Infection Biology, Berlin, Germany.
| |
Collapse
|
53
|
Haferkamp I. Crossing the border - Solute entry into the chlamydial inclusion. Int J Med Microbiol 2017; 308:41-48. [PMID: 28864236 DOI: 10.1016/j.ijmm.2017.08.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 08/10/2017] [Accepted: 08/17/2017] [Indexed: 10/19/2022] Open
Abstract
Chlamydiales comprise important human and animal pathogens as well as endosymbionts of amoebae. Generally, these obligate intracellular living bacteria are characterized by a biphasic developmental cycle, a reduced genome and a restricted metabolic capacity. Because of their metabolic impairment, Chlamydiales essentially rely on the uptake of diverse metabolites from their hosts. Chlamydiales thrive in a special compartment, the inclusion, and hence are surrounded by an additional membrane. Solutes might enter the inclusion through pores and open channels or by redirection of host vesicles, which fuse with the inclusion membrane and release their internal cargo. Recent investigations shed new light on the chlamydia-host interaction and identified an additional way for nutrient uptake into the inclusion. Proteome studies and targeting analyses identified chlamydial and host solute carriers in inclusions of Chlamydia trachomatis infected cells. These transporters are involved in the provision of UDP-glucose and biotin, and probably deliver further metabolites to the inclusion. By the controlled recruitment of specific solute carriers to the inclusion, the chlamydial resident thus can actively manipulate the metabolite availability and composition in the inclusion. This review summarizes recent findings and new ideas on carrier mediated solute uptake into the chlamydial inclusion in the context of the bacterial and host metabolism.
Collapse
Affiliation(s)
- Ilka Haferkamp
- Universität Kaiserslautern, Pflanzenphysiologie, Erwin-Schrödinger Str. 22, 67663 Kaiserslautern, Germany.
| |
Collapse
|
54
|
Collingro A, Köstlbacher S, Mussmann M, Stepanauskas R, Hallam SJ, Horn M. Unexpected genomic features in widespread intracellular bacteria: evidence for motility of marine chlamydiae. ISME JOURNAL 2017. [PMID: 28644443 PMCID: PMC5604735 DOI: 10.1038/ismej.2017.95] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Chlamydiae are obligate intracellular bacteria comprising important human pathogens and symbionts of protists. Molecular evidence indicates a tremendous diversity of chlamydiae particularly in marine environments, yet our current knowledge is based mainly on terrestrial representatives. Here we provide first insights into the biology of marine chlamydiae representing three divergent clades. Our analysis of single-cell amplified genomes revealed hallmarks of the chlamydial lifestyle, supporting the ancient origin of their characteristic developmental cycle and major virulence mechanisms. Surprisingly, these chlamydial genomes encode a complete flagellar apparatus, a previously unreported feature. We show that flagella are an ancient trait that was subject to differential gene loss among extant chlamydiae. Together with a chemotaxis system, these marine chlamydiae are likely motile, with flagella potentially playing a role during host cell infection. This study broadens our view on chlamydial biology and indicates a largely underestimated potential to adapt to different hosts and environments.
Collapse
Affiliation(s)
- Astrid Collingro
- Department of Microbial and Ecosystems Science, Division of Microbial Ecology, University of Vienna, Vienna, Austria
| | - Stephan Köstlbacher
- Department of Microbial and Ecosystems Science, Division of Microbial Ecology, University of Vienna, Vienna, Austria
| | - Marc Mussmann
- Department of Microbial and Ecosystems Science, Division of Microbial Ecology, University of Vienna, Vienna, Austria
| | | | - Steven J Hallam
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada.,Genome Science and Technology Program, University of British Columbia, Vancouver, British Columbia, Canada.,Graduate Program in Bioinformatics, University of British Columbia, Vancouver, British Columbia, Canada.,Peter Wall Institute for Advanced Studies, University of British Columbia, Vancouver, British Columbia, Canada.,ECOSCOPE Training Program, University of British Columbia, Vancouver, British Columbia, Canada
| | - Matthias Horn
- Department of Microbial and Ecosystems Science, Division of Microbial Ecology, University of Vienna, Vienna, Austria
| |
Collapse
|
55
|
da Cunha M, Pais SV, Bugalhão JN, Mota LJ. The Chlamydia trachomatis type III secretion substrates CT142, CT143, and CT144 are secreted into the lumen of the inclusion. PLoS One 2017. [PMID: 28622339 PMCID: PMC5473537 DOI: 10.1371/journal.pone.0178856] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Chlamydia trachomatis is a human bacterial pathogen causing ocular and genital infections. It multiplies exclusively within an intracellular membrane-bound vacuole, the inclusion, and uses a type III secretion system to manipulate host cells by injecting them with bacterially-encoded effector proteins. In this work, we characterized the expression and subcellular localization in infected host cells of the C. trachomatis CT142, CT143, and CT144 proteins, which we previously showed to be type III secretion substrates. Transcriptional analyses in C. trachomatis confirmed the prediction that ct142, ct143 and ct144 are organized in an operon and revealed that their expression is likely driven by the main σ factor, σ66. In host cells infected by C. trachomatis, production of CT142 and CT143 could be detected by immunoblotting from 20–26 h post-infection. Immunofluorescence microscopy of infected cells revealed that from 20 h post-infection CT143 appeared mostly as globular structures outside of the bacterial cells but within the lumen of the inclusion. Furthermore, immunofluorescence microscopy of cells infected by C. trachomatis strains carrying plasmids producing CT142, CT143, or CT144 under the control of the ct142 promoter and with a C-terminal double hemagglutinin (2HA) epitope tag revealed that CT142-2HA, CT143-2HA or CT144-2HA showed an identical localization to chromosomally-encoded CT143. Moreover, CT142-2HA or CT144-2HA and CT143 produced by the same bacteria co-localized in the lumen of the inclusion. Overall, these data suggest that the CT142, CT143, and CT144 type III secretion substrates are secreted into the lumen of the inclusion where they might form a protein complex.
Collapse
Affiliation(s)
- Maria da Cunha
- UCIBIO—REQUIMTE, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Sara V. Pais
- UCIBIO—REQUIMTE, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
| | - Joana N. Bugalhão
- UCIBIO—REQUIMTE, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
| | - Luís Jaime Mota
- UCIBIO—REQUIMTE, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
- * E-mail:
| |
Collapse
|
56
|
Vromman F, Perrinet S, Gehre L, Subtil A. The DUF582 Proteins of Chlamydia trachomatis Bind to Components of the ESCRT Machinery, Which Is Dispensable for Bacterial Growth In vitro. Front Cell Infect Microbiol 2016; 6:123. [PMID: 27774439 PMCID: PMC5053991 DOI: 10.3389/fcimb.2016.00123] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2016] [Accepted: 09/22/2016] [Indexed: 11/13/2022] Open
Abstract
Chlamydiae are Gram negative bacteria that develop exclusively inside eukaryotic host cells, within a membrane-bounded compartment. Members of the family Chlamydiaceae, such as Chlamydia trachomatis, are pathogenic species infecting vertebrates. They have a very reduced genome and exploit the capacities of their host for their own development, mainly through the secretion of proteins tailored to interfere with eukaryotic processes, called effector proteins. All Chlamydiaceae possess genes coding for four to five effectors that share a domain of unknown function (DUF582). Here we show that four of these effectors, which represent the conserved set in all Chlamydiaceae, accumulate in the infectious form of C. trachomatis, and are therefore likely involved in an early step of the developmental cycle. The fifth member of the family, CT621, is specific to C. trachomatis, and is secreted during the growth phase. Using a two-hybrid screen in yeast we identified an interaction between the host protein Hrs and the DUF582, which we confirmed by co-immunoprecipitations in co-transfected mammalian cells. Furthermore, we provide biochemical evidence that a second domain of one of the DUF582 proteins, CT619, binds the host protein Tsg101. Hrs and Tsg101 are both implicated in a well conserved machinery of the eukaryotic cell called the ESCRT machinery, which is involved in several cellular processes requiring membrane constriction. Using RNA interference targeting proteins implicated at different stages of ESCRT-driven processes, or inhibition by expression of a dominant negative mutant of VPS4, we demonstrated that this machinery was dispensable for bacterial entry, multiplication and differentiation into infectious progeny, and for uptake of glycogen into the parasitophorous vacuole. In light of these observations we discuss how the DUF582 proteins might target the ESCRT machinery during infection.
Collapse
Affiliation(s)
- François Vromman
- Institut Pasteur, Unité de Biologie Cellulaire de l'Infection MicrobienneParis, France; CNRS UMR 3691Paris, France; Université Pierre et Marie Curie, Cellule Pasteur UPMCParis, France
| | - Stéphanie Perrinet
- Institut Pasteur, Unité de Biologie Cellulaire de l'Infection MicrobienneParis, France; CNRS UMR 3691Paris, France
| | - Lena Gehre
- Institut Pasteur, Unité de Biologie Cellulaire de l'Infection MicrobienneParis, France; CNRS UMR 3691Paris, France
| | - Agathe Subtil
- Institut Pasteur, Unité de Biologie Cellulaire de l'Infection MicrobienneParis, France; CNRS UMR 3691Paris, France
| |
Collapse
|
57
|
Zhong G. Chlamydial Plasmid-Dependent Pathogenicity. Trends Microbiol 2016; 25:141-152. [PMID: 27712952 DOI: 10.1016/j.tim.2016.09.006] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 09/11/2016] [Accepted: 09/19/2016] [Indexed: 10/20/2022]
Abstract
Most Chlamydia species carry a 7.5kb plasmid encoding eight open reading frames conventionally called plasmid glycoproteins 1-8 or pGP1-8. Although the plasmid is not critical for chlamydial growth in vitro, its role in chlamydial pathogenesis is clearly demonstrated in the genital tracts of mice infected with Chlamydia muridarum, a model for investigating the human pathogen Chlamydia trachomatis. Plasmid-free C. trachomatis is also attenuated in both the mouse genital tract and nonhuman primate ocular tissue. Deficiency in pGP3 alone, which is regulated by pGP4, largely reproduced the in vivo but not in vitro phenotypes of the plasmid-free organisms, suggesting that pGP3 is a key in vivo virulence factor. The positive and negative regulations of some chromosomal genes by pGP4 and pGP5, respectively, may allow the plasmid to promote chlamydial adaptation to varied animal tissue environments. The focus of this review is to summarize the progress on the pathogenic functions of the plasmid-encoded open reading frames, which may motivate further investigation of the molecular mechanisms of chlamydial pathogenicity and development of medical utility of the chlamydial plasmid system.
Collapse
Affiliation(s)
- Guangming Zhong
- Department of Microbiology and Immunology, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA.
| |
Collapse
|
58
|
Cenci U, Ducatez M, Kadouche D, Colleoni C, Ball SG. Was the Chlamydial Adaptative Strategy to Tryptophan Starvation an Early Determinant of Plastid Endosymbiosis? Front Cell Infect Microbiol 2016; 6:67. [PMID: 27446814 PMCID: PMC4916741 DOI: 10.3389/fcimb.2016.00067] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 06/07/2016] [Indexed: 12/17/2022] Open
Abstract
Chlamydiales were recently proposed to have sheltered the future cyanobacterial ancestor of plastids in a common inclusion. The intracellular pathogens are thought to have donated those critical transporters that triggered the efflux of photosynthetic carbon and the consequent onset of symbiosis. Chlamydiales are also suspected to have encoded glycogen metabolism TTS (Type Three Secretion) effectors responsible for photosynthetic carbon assimilation in the eukaryotic cytosol. We now review the reasons underlying other chlamydial lateral gene transfers evidenced in the descendants of plastid endosymbiosis. In particular we show that half of the genes encoding enzymes of tryptophan synthesis in Archaeplastida are of chlamydial origin. Tryptophan concentration is an essential cue triggering two alternative modes of replication in Chlamydiales. In addition, sophisticated tryptophan starvation mechanisms are known to act as antibacterial defenses in animal hosts. We propose that Chlamydiales have donated their tryptophan operon to the emerging plastid to ensure increased synthesis of tryptophan by the plastid ancestor. This would have allowed massive expression of the tryptophan rich chlamydial transporters responsible for symbiosis. It would also have allowed possible export of this valuable amino-acid in the inclusion of the tryptophan hungry pathogens. Free-living single cell cyanobacteria are devoid of proteins able to transport this amino-acid. We therefore investigated the phylogeny of the Tyr/Trp transporters homologous to E. coli TyrP/Mre and found yet another LGT from Chlamydiales to Archaeplastida thereby considerably strengthening our proposal.
Collapse
Affiliation(s)
- Ugo Cenci
- Unité de Glycobiologie Structurale et Fonctionnelle, UMR8576 Centre National de la Recherche Scientifique, Université des Sciences et Technologies de Lille, Villeneuve d'Ascq France
| | - Mathieu Ducatez
- Unité de Glycobiologie Structurale et Fonctionnelle, UMR8576 Centre National de la Recherche Scientifique, Université des Sciences et Technologies de Lille, Villeneuve d'Ascq France
| | - Derifa Kadouche
- Unité de Glycobiologie Structurale et Fonctionnelle, UMR8576 Centre National de la Recherche Scientifique, Université des Sciences et Technologies de Lille, Villeneuve d'Ascq France
| | - Christophe Colleoni
- Unité de Glycobiologie Structurale et Fonctionnelle, UMR8576 Centre National de la Recherche Scientifique, Université des Sciences et Technologies de Lille, Villeneuve d'Ascq France
| | - Steven G Ball
- Unité de Glycobiologie Structurale et Fonctionnelle, UMR8576 Centre National de la Recherche Scientifique, Université des Sciences et Technologies de Lille, Villeneuve d'Ascq France
| |
Collapse
|
59
|
Abstract
The lifestyle of Chlamydiae is unique: the bacteria alternate between two morphologically distinct forms, an infectious non-replicative elementary body (EB), and a replicative, non-infectious reticulate body (RB). This review focuses on recent advances in understanding the structure and function of the infectious form of the best-studied member of the phylum, the human pathogen Chlamydia trachomatis. Once considered as an inert particle of little functional capacity, the EB is now perceived as a sophisticated entity that encounters at least three different environments during each infectious cycle. We review current knowledge on its composition and morphology, and emerging metabolic activities. These features confer resistance to the extracellular environment, the ability to penetrate a host cell and ultimately enable the EB to establish a niche enabling bacterial survival and growth. The bacterial and host molecules involved in these processes are beginning to emerge.
Collapse
|