51
|
Levesque S, de Melo AG, Labrie SJ, Moineau S. Mobilome of Brevibacterium aurantiacum Sheds Light on Its Genetic Diversity and Its Adaptation to Smear-Ripened Cheeses. Front Microbiol 2019; 10:1270. [PMID: 31244798 PMCID: PMC6579920 DOI: 10.3389/fmicb.2019.01270] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 05/22/2019] [Indexed: 11/13/2022] Open
Abstract
Brevibacterium aurantiacum is an actinobacterium that confers key organoleptic properties to washed-rind cheeses during the ripening process. Although this industrially relevant species has been gaining an increasing attention in the past years, its genome plasticity is still understudied due to the unavailability of complete genomic sequences. To add insights on the mobilome of this group, we sequenced the complete genomes of five dairy Brevibacterium strains and one non-dairy strain using PacBio RSII. We performed phylogenetic and pan-genome analyses, including comparisons with other publicly available Brevibacterium genomic sequences. Our phylogenetic analysis revealed that these five dairy strains, previously identified as Brevibacterium linens, belong instead to the B. aurantiacum species. A high number of transposases and integrases were observed in the Brevibacterium spp. strains. In addition, we identified 14 and 12 new insertion sequences (IS) in B. aurantiacum and B. linens genomes, respectively. Several stretches of homologous DNA sequences were also found between B. aurantiacum and other cheese rind actinobacteria, suggesting horizontal gene transfer (HGT). A HGT region from an iRon Uptake/Siderophore Transport Island (RUSTI) and an iron uptake composite transposon were found in five B. aurantiacum genomes. These findings suggest that low iron availability in milk is a driving force in the adaptation of this bacterial species to this niche. Moreover, the exchange of iron uptake systems suggests cooperative evolution between cheese rind actinobacteria. We also demonstrated that the integrative and conjugative element BreLI (Brevibacterium Lanthipeptide Island) can excise from B. aurantiacum SMQ-1417 chromosome. Our comparative genomic analysis suggests that mobile genetic elements played an important role into the adaptation of B. aurantiacum to cheese ecosystems.
Collapse
Affiliation(s)
- Sébastien Levesque
- Département de Biochimie, de microbiologie, et de Bio-informatique, Faculté des Sciences et de Génie, Groupe de Recherche en Écologie Buccale, Faculté de Médecine Dentaire, Université Laval, Quebec City, QC, Canada
| | - Alessandra G de Melo
- Département de Biochimie, de microbiologie, et de Bio-informatique, Faculté des Sciences et de Génie, Groupe de Recherche en Écologie Buccale, Faculté de Médecine Dentaire, Université Laval, Quebec City, QC, Canada
| | | | - Sylvain Moineau
- Département de Biochimie, de microbiologie, et de Bio-informatique, Faculté des Sciences et de Génie, Groupe de Recherche en Écologie Buccale, Faculté de Médecine Dentaire, Université Laval, Quebec City, QC, Canada.,Centre de Référence pour Virus Bactériens Félix d'Hérelle, Faculté de Médecine Dentaire, Université Laval, Quebec City, QC, Canada
| |
Collapse
|
52
|
Steensels J, Gallone B, Voordeckers K, Verstrepen KJ. Domestication of Industrial Microbes. Curr Biol 2019; 29:R381-R393. [DOI: 10.1016/j.cub.2019.04.025] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
53
|
Anast JM, Dzieciol M, Schultz DL, Wagner M, Mann E, Schmitz-Esser S. Brevibacterium from Austrian hard cheese harbor a putative histamine catabolism pathway and a plasmid for adaptation to the cheese environment. Sci Rep 2019; 9:6164. [PMID: 30992535 PMCID: PMC6467879 DOI: 10.1038/s41598-019-42525-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 04/02/2019] [Indexed: 02/01/2023] Open
Abstract
The genus Brevibacterium harbors many members important for cheese ripening. We performed real-time quantitative PCR (qPCR) to determine the abundance of Brevibacterium on rinds of Vorarlberger Bergkäse, an Austrian artisanal washed-rind hard cheese, over 160 days of ripening. Our results show that Brevibacterium are abundant on Vorarlberger Bergkäse rinds throughout the ripening time. To elucidate the impact of Brevibacterium on cheese production, we analysed the genomes of three cheese rind isolates, L261, S111, and S22. L261 belongs to Brevibacterium aurantiacum, whereas S111 and S22 represent novel species within the genus Brevibacterium based on 16S rRNA gene similarity and average nucleotide identity. Our comparative genomic analysis showed that important cheese ripening enzymes are conserved among the genus Brevibacterium. Strain S22 harbors a 22 kb circular plasmid which encodes putative iron and hydroxymethylpyrimidine/thiamine transporters. Histamine formation in fermented foods can cause histamine intoxication. We revealed the presence of a putative metabolic pathway for histamine degradation. Growth experiments showed that the three Brevibacterium strains can utilize histamine as the sole carbon source. The capability to utilize histamine, possibly encoded by the putative histamine degradation pathway, highlights the importance of Brevibacterium as key cheese ripening cultures beyond their contribution to cheese flavor production.
Collapse
Affiliation(s)
- Justin M Anast
- Interdepartmental Microbiology Graduate Program Iowa State University, Ames, IA, USA.,Department of Animal Science, Iowa State University, Ames, IA, USA
| | - Monika Dzieciol
- Institute for Milk Hygiene, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Dylan L Schultz
- Interdepartmetal Microbiology Undergraduate Program, Iowa State University, Ames, IA, USA
| | - Martin Wagner
- Institute for Milk Hygiene, University of Veterinary Medicine Vienna, Vienna, Austria.,Austrian Competence Center for Feed and Food Quality, Safety and Innovation (FFoQSI), Technopark C, 3430, Tulln, Austria
| | - Evelyne Mann
- Institute for Milk Hygiene, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Stephan Schmitz-Esser
- Interdepartmental Microbiology Graduate Program Iowa State University, Ames, IA, USA. .,Department of Animal Science, Iowa State University, Ames, IA, USA.
| |
Collapse
|
54
|
Zhang D, Wang J, Wang D, Kong Z, Zhou L, Zhang G, Gui Y, Li J, Huang J, Wang B, Liu C, Yin C, Li R, Li T, Wang J, Short DPG, Klosterman SJ, Bostock RM, Subbarao KV, Chen J, Dai X. Population genomics demystifies the defoliation phenotype in the plant pathogen Verticillium dahliae. THE NEW PHYTOLOGIST 2019; 222:1012-1029. [PMID: 30609067 PMCID: PMC6594092 DOI: 10.1111/nph.15672] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 12/18/2018] [Indexed: 05/19/2023]
Abstract
Verticillium dahliae is a broad host-range pathogen that causes vascular wilts in plants. Interactions between three hosts and specific V. dahliae genotypes result in severe defoliation. The underlying mechanisms of defoliation are unresolved. Genome resequencing, gene deletion and complementation, gene expression analysis, sequence divergence, defoliating phenotype identification, virulence analysis, and quantification of V. dahliae secondary metabolites were performed. Population genomics previously revealed that G-LSR2 was horizontally transferred from the fungus Fusarium oxysporum f. sp. vasinfectum to V. dahliae and is exclusively found in the genomes of defoliating (D) strains. Deletion of seven genes within G-LSR2, designated as VdDf genes, produced the nondefoliation phenotype on cotton, olive, and okra but complementation of two genes restored the defoliation phenotype. Genes VdDf5 and VdDf6 associated with defoliation shared homology with polyketide synthases involved in secondary metabolism, whereas VdDf7 shared homology with proteins involved in the biosynthesis of N-lauroylethanolamine (N-acylethanolamine (NAE) 12:0), a compound that induces defoliation. NAE overbiosynthesis by D strains also appears to disrupt NAE metabolism in cotton by inducing overexpression of fatty acid amide hydrolase. The VdDfs modulate the synthesis and overproduction of secondary metabolites, such as NAE 12:0, that cause defoliation either by altering abscisic acid sensitivity, hormone disruption, or sensitivity to the pathogen.
Collapse
Affiliation(s)
- Dan‐Dan Zhang
- Laboratory of Crop Verticillium WiltInstitute of Food Science and TechnologyChinese Academy of Agricultural SciencesBeijing100193China
| | - Jie Wang
- Laboratory of Crop Verticillium WiltInstitute of Food Science and TechnologyChinese Academy of Agricultural SciencesBeijing100193China
| | - Dan Wang
- Laboratory of Crop Verticillium WiltInstitute of Food Science and TechnologyChinese Academy of Agricultural SciencesBeijing100193China
| | - Zhi‐Qiang Kong
- Laboratory of Crop Verticillium WiltInstitute of Food Science and TechnologyChinese Academy of Agricultural SciencesBeijing100193China
| | - Lei Zhou
- Laboratory of Crop Verticillium WiltInstitute of Food Science and TechnologyChinese Academy of Agricultural SciencesBeijing100193China
| | | | - Yue‐Jing Gui
- Laboratory of Crop Verticillium WiltInstitute of Food Science and TechnologyChinese Academy of Agricultural SciencesBeijing100193China
| | - Jun‐Jiao Li
- Laboratory of Crop Verticillium WiltInstitute of Food Science and TechnologyChinese Academy of Agricultural SciencesBeijing100193China
| | | | - Bao‐Li Wang
- Laboratory of Crop Verticillium WiltInstitute of Food Science and TechnologyChinese Academy of Agricultural SciencesBeijing100193China
| | - Chun Liu
- GenomicsBGI‐ShenzhenShenzhen518083China
| | - Chun‐Mei Yin
- Laboratory of Crop Verticillium WiltInstitute of Food Science and TechnologyChinese Academy of Agricultural SciencesBeijing100193China
| | - Rui‐Xing Li
- Laboratory of Crop Verticillium WiltInstitute of Food Science and TechnologyChinese Academy of Agricultural SciencesBeijing100193China
| | - Ting‐Gang Li
- Laboratory of Crop Verticillium WiltInstitute of Food Science and TechnologyChinese Academy of Agricultural SciencesBeijing100193China
| | - Jin‐Long Wang
- Department of BiologyDuke UniversityDurhamNC27708USA
| | - Dylan P. G. Short
- Department of Plant PathologyUniversity of California, Davisc/o US Agricultural Research StationSalinasCA93905USA
| | - Steven J. Klosterman
- United States Department of AgricultureAgricultural Research ServiceCrop Improvement and Protection Research UnitSalinasCA93905USA
| | | | - Krishna V. Subbarao
- Department of Plant PathologyUniversity of California, Davisc/o US Agricultural Research StationSalinasCA93905USA
| | - Jie‐Yin Chen
- Laboratory of Crop Verticillium WiltInstitute of Food Science and TechnologyChinese Academy of Agricultural SciencesBeijing100193China
| | - Xiao‐Feng Dai
- Laboratory of Crop Verticillium WiltInstitute of Food Science and TechnologyChinese Academy of Agricultural SciencesBeijing100193China
| |
Collapse
|
55
|
Bellio A, Chiesa F, Gallina S, Bianchi DM, Macori G, Bossi D, Nia Y, Mutel I, Messio S, Hennekinne JA, Decastelli L. Insight Into the Distribution of Staphylococci and Their Enterotoxins in Cheeses Under Natural Conditions. Front Microbiol 2019; 9:3233. [PMID: 30666242 PMCID: PMC6330353 DOI: 10.3389/fmicb.2018.03233] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 12/12/2018] [Indexed: 01/18/2023] Open
Abstract
Staphylococcal food poisoning outbreaks are a major cause of food-borne illness in the European Union and their notification has been mandatory since 2005. Criteria for the enumeration of coagulase-positive Staphylococci (CPS) and the detection of staphylococcal enterotoxins (SEs) in cheese have been set down in Commission Regulation EC 2073/2005. Currently, few information are available about the distribution of SEs in naturally contaminated cheeses, including raw-milk and artisanal dairy products. The aim of this study was therefore to investigate at both the CPS enumeration and the succession of the enterotoxigenic Staphylococcus aureus and produced enterotoxins levels on the rind and the core of a raw-milk semi-hard cheese, produced on farm. The study has been conducted in three steps: (I) seven wheels at different time of ripening where tested for the presence of SEs. (II) from each wheel, four portions were subsequently sampled from four different areas (peripheral rind, central rind, peripheral core and central core). (III) two cheese wheels, characterized by the highest and lowest CPS numbers and SEs quantification, based on the second step of the study, were further analyzed. A significant difference has been observed in the distribution of CPS and SEs in the four areas sampled, irrespectively of the batch and the time of ripening. The results of this study provided a set of previously unknown information on the influence of natural conditions on the distribution of CPS and SEs thereof in the cheese matrix, filling a gap in the understanding of SEs biosynthesis process.
Collapse
Affiliation(s)
- Alberto Bellio
- National Reference Laboratory for Coagulase Positive Staphylococci, Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, Turin, Italy
| | - Francesco Chiesa
- Dipartimento di Medicina Veterinaria, Università degli Studi di Torino, Turin, Italy
| | - Silvia Gallina
- National Reference Laboratory for Coagulase Positive Staphylococci, Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, Turin, Italy
| | - Daniela Manila Bianchi
- S.C. Controllo Alimenti e Igiene delle Produzioni, Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, Turin, Italy
| | - Guerrino Macori
- S.C. Controllo Alimenti e Igiene delle Produzioni, Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, Turin, Italy
| | - Dario Bossi
- Servizio Veterinario Asl VC, Vercelli, Italy
| | - Yacine Nia
- European Union Reference Laboratory for Coagulase Positive Staphylococci, Agence Nationale de Sécurité Sanitaire de l'Alimentation, de l'Environnement et du Travail, Maisons-Alfort, France
| | - Isabelle Mutel
- European Union Reference Laboratory for Coagulase Positive Staphylococci, Agence Nationale de Sécurité Sanitaire de l'Alimentation, de l'Environnement et du Travail, Maisons-Alfort, France
| | - Sabine Messio
- European Union Reference Laboratory for Coagulase Positive Staphylococci, Agence Nationale de Sécurité Sanitaire de l'Alimentation, de l'Environnement et du Travail, Maisons-Alfort, France
| | - Jacques-Antoine Hennekinne
- European Union Reference Laboratory for Coagulase Positive Staphylococci, Agence Nationale de Sécurité Sanitaire de l'Alimentation, de l'Environnement et du Travail, Maisons-Alfort, France
| | - Lucia Decastelli
- National Reference Laboratory for Coagulase Positive Staphylococci, Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, Turin, Italy.,S.C. Controllo Alimenti e Igiene delle Produzioni, Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, Turin, Italy
| |
Collapse
|
56
|
Affiliation(s)
- Corina E Tarnita
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA.
| |
Collapse
|
57
|
Likotrafiti E, Oniciuc EA, Prieto M, Santos JA, López S, Alvarez-Ordóñez A. Risk assessment of antimicrobial resistance along the food chain through culture-independent methodologies. EFSA J 2018; 16:e160811. [PMID: 32626061 PMCID: PMC7015484 DOI: 10.2903/j.efsa.2018.e160811] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Antimicrobial resistance (AMR) represents a major challenge for Public Health and the scientific community, and requires immediate and drastic solutions. Acquired resistance to certain antimicrobials is already widespread to such an extent that their efficacy in the treatment of certain life-threatening infections is already compromised. To date, the emergence and spread of AMR has been attributed to the use, misuse or indiscriminate use of antibiotics as therapeutic drugs in human, animal and plant health, or as growth promoters in veterinary husbandry. In addition, there is growing concern over the possibility of AMR transmission via the food chain. Food processing environments could act as potential hotspots for AMR acquisition and spread. Indeed, biocide use and exposure to food-related stresses and food processing technologies could presumably act as selection pressures for increased microbial resistance against clinically relevant antibiotics. Global AMR surveillance is critical for providing the necessary information to form global strategies and to monitor the effectiveness of public health interventions as well as to detect new trends and emerging threats. Surveillance of AMR is currently based on the isolation of indicator microorganisms and the phenotypic characterisation of the strains isolated. However, this approach provides very limited information on the mechanisms driving AMR or on the presence and spread of AMR genes. Whole genome sequencing (WGS) of bacterial pathogens is a powerful tool that can be used for epidemiological surveillance, outbreak detection and infection control. In addition, whole metagenome sequencing (WMS) allows for the culture-independent analysis of complex microbial communities, providing useful information on the occurrence of AMR genes. Both approaches can be used to provide the information necessary for the implementation of quantitative risk assessment of AMR transmission routes along the food chain.
Collapse
|
58
|
Coproporphyrin III Produced by the Bacterium Glutamicibacter arilaitensis Binds Zinc and Is Upregulated by Fungi in Cheese Rinds. mSystems 2018; 3:mSystems00036-18. [PMID: 30175236 PMCID: PMC6104308 DOI: 10.1128/msystems.00036-18] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 07/30/2018] [Indexed: 01/30/2023] Open
Abstract
Bacterium-fungus interactions play key roles in the assembly of cheese rind microbial communities, but the molecular mechanisms underlying these interactions are poorly characterized. Moreover, millions of people around the world enjoy eating cheeses and cheese rinds, but our understanding of the diversity of microbial metabolites ingested during cheese consumption is limited. The discovery of zinc coproporphyrin III as the cause of pink pigment production by Glutamicibacter arilaitensis suggests that secretion of this molecule is important for microbial acquisition of trace metals. Microbial communities of fermented food microbiomes typically exhibit predictable patterns of microbial succession. However, the biochemical mechanisms that control the diversity and dynamics of these communities are not well described. Interactions between bacteria and fungi may be one mechanism controlling the development of cheese rind microbiomes. This study characterizes a specific bacterium-fungus interaction previously discovered on cheese rinds between the bacterium Glutamicibacter arilaitensis (formerly Arthrobacter arilaitensis) and fungi of the genus Penicillium and identifies the specialized metabolites produced during cocultures. G. arilaitensis was previously shown to produce an unknown pink pigment in response to the presence of Penicillium. Using a combination of mass spectrometry, nuclear magnetic resonance (NMR), and transcriptome sequencing (RNA-seq), we determined that this pigment production is associated with production of coproporphyrin III. The discovery that coproporphyrin III preferentially bound zinc over other trace metals found in cheese curds highlights the value of using analytical chemistry to confirm identity of predicted chemical species. IMPORTANCE Bacterium-fungus interactions play key roles in the assembly of cheese rind microbial communities, but the molecular mechanisms underlying these interactions are poorly characterized. Moreover, millions of people around the world enjoy eating cheeses and cheese rinds, but our understanding of the diversity of microbial metabolites ingested during cheese consumption is limited. The discovery of zinc coproporphyrin III as the cause of pink pigment production by Glutamicibacter arilaitensis suggests that secretion of this molecule is important for microbial acquisition of trace metals. Author Video: An author video summary of this article is available.
Collapse
|
59
|
Ricci A, Allende A, Bolton D, Chemaly M, Davies R, Fernández Escámez PS, Girones R, Koutsoumanis K, Lindqvist R, Nørrung B, Robertson L, Ru G, Sanaa M, Simmons M, Skandamis P, Snary E, Speybroeck N, Ter Kuile B, Threlfall J, Wahlström H, Cocconcelli PS, Peixe L, Maradona MP, Querol A, Suarez JE, Sundh I, Vlak J, Barizzone F, Correia S, Herman L. Update of the list of QPS-recommended biological agents intentionally added to food or feed as notified to EFSA 8: suitability of taxonomic units notified to EFSA until March 2018. EFSA J 2018; 16:e05315. [PMID: 32625958 PMCID: PMC7009647 DOI: 10.2903/j.efsa.2018.5315] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The qualified presumption of safety (QPS) was developed to provide a harmonised generic pre‐evaluation procedure to support safety risk assessments of biological agents performed by EFSA's Scientific Panels. The identity, body of knowledge, safety concerns and antimicrobial resistance of valid taxonomic units were assessed. Safety concerns identified for a taxonomic unit are, where possible and reasonable in number, reflected by ‘qualifications’ which should be assessed at the strain level by the EFSA's Scientific Panels. During the current assessment, no new information was found that would change the previously recommended QPS taxonomic units and their qualifications. The Panel clarified that the qualification ‘for production purpose only’ implies the absence of viable cells of the production organism in the final product and can also be applied for food and feed products based on microbial biomass. Between September 2017 and March 2018, the QPS notification list was updated with 46 microorganisms from applications for market authorisation. From these, 28 biological agents already had QPS status, 15 were excluded of the QPS exercise from the previous QPS mandate (10 filamentous fungi and one bacteriophage) or from further evaluations within the current mandate (two notifications of Streptomyces spp. and one of Escherichia coli), and one was excluded where confirmatory data for the risk assessment of a plant protection product (PPP) was requested (Pseudomonas sp.). Three taxonomic units were (re)evaluated: Paracoccus carotinifaciens and Paenibacillus lentus had been previously evaluated in 2008 and 2014, respectively, and were now re‐evaluated within this mandate, and Yarrowia lipolytica, which was evaluated for the first time. P. carotinifaciens and P. lentus cannot be granted QPS status due to lack of scientific knowledge. Y. lipolytica is recommended for QPS status, but only for production purpose.
Collapse
|
60
|
Oniciuc EA, Likotrafiti E, Alvarez-Molina A, Prieto M, Santos JA, Alvarez-Ordóñez A. The Present and Future of Whole Genome Sequencing (WGS) and Whole Metagenome Sequencing (WMS) for Surveillance of Antimicrobial Resistant Microorganisms and Antimicrobial Resistance Genes across the Food Chain. Genes (Basel) 2018; 9:E268. [PMID: 29789467 PMCID: PMC5977208 DOI: 10.3390/genes9050268] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Revised: 05/14/2018] [Accepted: 05/15/2018] [Indexed: 12/21/2022] Open
Abstract
Antimicrobial resistance (AMR) surveillance is a critical step within risk assessment schemes, as it is the basis for informing global strategies, monitoring the effectiveness of public health interventions, and detecting new trends and emerging threats linked to food. Surveillance of AMR is currently based on the isolation of indicator microorganisms and the phenotypic characterization of clinical, environmental and food strains isolated. However, this approach provides very limited information on the mechanisms driving AMR or on the presence or spread of AMR genes throughout the food chain. Whole-genome sequencing (WGS) of bacterial pathogens has shown potential for epidemiological surveillance, outbreak detection, and infection control. In addition, whole metagenome sequencing (WMS) allows for the culture-independent analysis of complex microbial communities, providing useful information on AMR genes occurrence. Both technologies can assist the tracking of AMR genes and mobile genetic elements, providing the necessary information for the implementation of quantitative risk assessments and allowing for the identification of hotspots and routes of transmission of AMR across the food chain. This review article summarizes the information currently available on the use of WGS and WMS for surveillance of AMR in foodborne pathogenic bacteria and food-related samples and discusses future needs that will have to be considered for the routine implementation of these next-generation sequencing methodologies with this aim. In particular, methodological constraints that impede the use at a global scale of these high-throughput sequencing (HTS) technologies are identified, and the standardization of methods and protocols is suggested as a measure to upgrade HTS-based AMR surveillance schemes.
Collapse
Affiliation(s)
- Elena A Oniciuc
- Faculty of Food Science and Engineering, Dunarea de Jos University of Galati, Galati 800008, Romania.
| | - Eleni Likotrafiti
- Laboratory of Food Microbiology, Department of Food Technology, Alexander Technological Educational Institute of Thessaloniki, Thessaloniki T.K. 57400, Greece.
| | - Adrián Alvarez-Molina
- Department of Food Hygiene and Technology and Institute of Food Science and Technology, Universidad de León, 24071 León, Spain.
| | - Miguel Prieto
- Department of Food Hygiene and Technology and Institute of Food Science and Technology, Universidad de León, 24071 León, Spain.
| | - Jesús A Santos
- Department of Food Hygiene and Technology and Institute of Food Science and Technology, Universidad de León, 24071 León, Spain.
| | - Avelino Alvarez-Ordóñez
- Department of Food Hygiene and Technology and Institute of Food Science and Technology, Universidad de León, 24071 León, Spain.
| |
Collapse
|
61
|
Li X, Tong W, Wang L, Rahman SU, Wei G, Tao S. A Novel Strategy for Detecting Recent Horizontal Gene Transfer and Its Application to Rhizobium Strains. Front Microbiol 2018; 9:973. [PMID: 29867876 PMCID: PMC5968381 DOI: 10.3389/fmicb.2018.00973] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 04/25/2018] [Indexed: 11/13/2022] Open
Abstract
Recent horizontal gene transfer (HGT) is crucial for enabling microbes to rapidly adapt to their novel environments without relying upon rare beneficial mutations that arise spontaneously. For several years now, computational approaches have been developed to detect HGT, but they typically lack the sensitivity and ability to detect recent HGT events. Here we introduce a novel strategy, named RecentHGT. The number of genes undergoing recent HGT between two bacterial genomes was estimated by a new algorithm derived from the expectation-maximization algorithm and is based on the theoretical sequence-similarity distribution of orthologous genes. We tested the proposed strategy by applying it to a set of 10 Rhizobium genomes, and detected several large-scale recent HGT events. We also found that our strategy was more sensitive than other available HGT detection methods. These HGT events were mainly mediated by symbiotic plasmids. Our new strategy can provide clear evidence of recent HGT events and thus it brings us closer to the goal of detecting these potentially adaptive evolution processes in rhizobia as well as pathogens.
Collapse
Affiliation(s)
- Xiangchen Li
- College of Life Sciences and State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, China.,Bioinformatics Center, Northwest A&F University, Yangling, China
| | - Wenjun Tong
- College of Life Sciences and State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, China
| | - Lina Wang
- College of Life Sciences and State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, China.,Bioinformatics Center, Northwest A&F University, Yangling, China
| | - Siddiq Ur Rahman
- College of Life Sciences and State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, China.,Bioinformatics Center, Northwest A&F University, Yangling, China
| | - Gehong Wei
- College of Life Sciences and State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, China
| | - Shiheng Tao
- College of Life Sciences and State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, China.,Bioinformatics Center, Northwest A&F University, Yangling, China
| |
Collapse
|
62
|
Kenny DJ, Balskus EP. Engineering chemical interactions in microbial communities. Chem Soc Rev 2018; 47:1705-1729. [PMID: 29210396 DOI: 10.1039/c7cs00664k] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Microbes living within host-associated microbial communities (microbiotas) rely on chemical communication to interact with surrounding organisms. These interactions serve many purposes, from supplying the multicellular host with nutrients to antagonizing invading pathogens, and breakdown of chemical signaling has potentially negative consequences for both the host and microbiota. Efforts to engineer microbes to take part in chemical interactions represent a promising strategy for modulating chemical signaling within these complex communities. In this review, we discuss prominent examples of chemical interactions found within host-associated microbial communities, with an emphasis on the plant-root microbiota and the intestinal microbiota of animals. We then highlight how an understanding of such interactions has guided efforts to engineer microbes to participate in chemical signaling in these habitats. We discuss engineering efforts in the context of chemical interactions that enable host colonization, promote host health, and exclude pathogens. Finally, we describe prominent challenges facing this field and propose new directions for future engineering efforts.
Collapse
Affiliation(s)
- Douglas J Kenny
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, MA 02138, USA.
| | | |
Collapse
|
63
|
Novel insights into the microbiology of fermented dairy foods. Curr Opin Biotechnol 2018; 49:172-178. [DOI: 10.1016/j.copbio.2017.09.002] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 09/11/2017] [Accepted: 09/11/2017] [Indexed: 12/21/2022]
|
64
|
Pham NP, Layec S, Dugat-Bony E, Vidal M, Irlinger F, Monnet C. Comparative genomic analysis of Brevibacterium strains: insights into key genetic determinants involved in adaptation to the cheese habitat. BMC Genomics 2017; 18:955. [PMID: 29216827 PMCID: PMC5719810 DOI: 10.1186/s12864-017-4322-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 11/21/2017] [Indexed: 11/10/2022] Open
Abstract
Background Brevibacterium strains are widely used for the manufacturing of surface-ripened cheeses, contributing to the breakdown of lipids and proteins and producing volatile sulfur compounds and red-orange pigments. The objective of the present study was to perform comparative genomic analyses in order to better understand the mechanisms involved in their ability to grow on the cheese surface and the differences between the strains. Results The genomes of 23 Brevibacterium strains, including twelve strains isolated from cheeses, were compared for their gene repertoire involved in salt tolerance, iron acquisition, bacteriocin production and the ability to use the energy compounds present in cheeses. All or almost all the genomes encode the enzymes involved in ethanol, acetate, lactate, 4-aminobutyrate and glycerol catabolism, and in the synthesis of the osmoprotectants ectoine, glycine-betaine and trehalose. Most of the genomes contain two contiguous genes encoding extracellular proteases, one of which was previously characterized for its activity on caseins. Genes encoding a secreted triacylglycerol lipase or involved in the catabolism of galactose and D-galactonate or in the synthesis of a hydroxamate-type siderophore are present in part of the genomes. Numerous Fe3+/siderophore ABC transport components are present, part of them resulting from horizontal gene transfers. Two cheese-associated strains have also acquired catecholate-type siderophore biosynthesis gene clusters by horizontal gene transfer. Predicted bacteriocin biosynthesis genes are present in most of the strains, and one of the corresponding gene clusters is located in a probable conjugative transposon that was only found in cheese-associated strains. Conclusions Brevibacterium strains show differences in their gene repertoire potentially involved in the ability to grow on the cheese surface. Part of these differences can be explained by different phylogenetic positions or by horizontal gene transfer events. Some of the distinguishing features concern biotic interactions with other strains such as the secretion of proteases and triacylglycerol lipases, and competition for iron or bacteriocin production. In the future, it would be interesting to take the properties deduced from genomic analyses into account in order to improve the screening and selection of Brevibacterium strains, and their association with other ripening culture components. Electronic supplementary material The online version of this article (10.1186/s12864-017-4322-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Nguyen-Phuong Pham
- UMR GMPA, AgroParisTech, INRA, Université Paris-Saclay, 78850, Thiverval-Grignon, France
| | - Séverine Layec
- UMR GMPA, AgroParisTech, INRA, Université Paris-Saclay, 78850, Thiverval-Grignon, France
| | - Eric Dugat-Bony
- UMR GMPA, AgroParisTech, INRA, Université Paris-Saclay, 78850, Thiverval-Grignon, France
| | - Marie Vidal
- US 1426, GeT-PlaGe, Genotoul, INRA, 31326, Castanet-Tolosan, France
| | - Françoise Irlinger
- UMR GMPA, AgroParisTech, INRA, Université Paris-Saclay, 78850, Thiverval-Grignon, France
| | - Christophe Monnet
- UMR GMPA, AgroParisTech, INRA, Université Paris-Saclay, 78850, Thiverval-Grignon, France.
| |
Collapse
|
65
|
Horizontal Gene Transfer and Ecosystem Function Dynamics. Trends Microbiol 2017; 25:699-700. [DOI: 10.1016/j.tim.2017.07.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 07/13/2017] [Indexed: 11/23/2022]
|